Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Construction and dynamics of knotted fields in soft matter systems

Tools
- Tools
+ Tools

Binysh, Jack (2019) Construction and dynamics of knotted fields in soft matter systems. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Binysh_2019.pdf - Submitted Version - Requires a PDF viewer.

Download (16Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3489857~S15

Request Changes to record.

Abstract

Knotted fields are physical fields containing knotted, linked, or otherwise topologically interesting structure. They occur in a wide variety of physical systems — fluids, superfluids, electromagnetism, optics and high energy physics to name a few. Far from being passive structures, the occurrence of knotting in a physical field often modifies its overall properties, rendering their study interesting from both a theoretical and practical point of view. In this thesis, we focus on knotted fields in ‘soft matter’ systems, systems which may be loosely characterised as those in which geometry plays a fundamental role, and which undergo substantial deformations in response to external forces, changes in temperature etc. Such systems are often experimentally accessible, making them natural testbeds for exploring knotted fields in all their guises.

After providing an introduction to knotted fields with a focus on soft matter in the first chapter, in the second we introduce a method of explicitly constructing such fields for any knotted curve based on Maxwell’s solid angle construction. We discuss its theory, emphasising a fundamental homotopy formula as unifying methods for computing the solid angle, as well as describing a naturally induced curve framing, which we show is related to the writhe of the curve before using it to characterise the local structure in the neighbourhood of the knot. We then discuss its practical implementation, giving examples of its use and providing C code. In subsequent chapters we use this methodology to initialise simulations in our study of knotted fields in two soft matter systems: excitable media and twist-bend nematics. In excitable media we provide a systematic survey of knot dynamics up to crossing number eight, finding generically unsteady behaviour driven by a wave-slapping mechanism. Nevertheless, we also find novel complex knotted structures and characterise their geometry and steady state motion, as well as greatly expanding upon previous evidence to demonstrate the ability of the dynamics to untangle geometries without reconnection. In twist-bend nematics we describe their fundamental geometry, that of bend. The zeros of bend are a set of lines with rich geometric and topological structure. We characterise their local structure, describe how they are canonically oriented and discuss a notion of their self-linking. We then describe their topological significance, showing that these zeros compute Skyrmion and Hopfion numbers, with accompanying simulations in twist-bend nematics.

Item Type: Thesis (PhD)
Subjects: Q Science > QA Mathematics
Library of Congress Subject Headings (LCSH): Knot theory, Geometry, Homotopy theory, Soft condensed matter
Official Date: April 2019
Dates:
DateEvent
April 2019UNSPECIFIED
Institution: University of Warwick
Theses Department: Mathematics for Real-World Systems Centre for Doctoral Training
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Alexander, Gareth P.
Format of File: pdf
Extent: ix, 135 leaves : illustrations, charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us