Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Mechanisms of insulin resistance at the crossroads of obesity with associated metabolic abnormalities and cognitive dysfunction

Tools
- Tools
+ Tools

Barber, Thomas M., Kyrou, Ioannis, Randeva, Harpal S. and Weickert, Martin O. (2021) Mechanisms of insulin resistance at the crossroads of obesity with associated metabolic abnormalities and cognitive dysfunction. International Journal of Molecular Sciences, 22 (2). 546. doi:10.3390/ijms22020546

[img]
Preview
PDF
WRAP-mechanisms-insulin-resistance-crossroads-obesity-associated-metabolic-abnormalities-cognitive-dysfunction-Barber-2021.pdf - Unspecified Version - Requires a PDF viewer.
Available under License Creative Commons Attribution 4.0.

Download (747Kb) | Preview
Official URL: https://doi.org/10.3390/ijms22020546

Request Changes to record.

Abstract

Obesity mediates most of its direct medical sequelae through the development of insulin resistance (IR). The cellular effects of insulin occur through two main postreceptor pathways that are the phosphatidylinositol 3-kinase (PI3-K) and the mitogen-activated protein kinase (MAP-K) pathways. Obesity-related IR implicates the PI3-K pathway that confers the metabolic effects of insulin. Numerous and complex pathogenic pathways link obesity with the development of IR, including chronic inflammation, mitochondrial dysfunction (with the associated production of reactive oxygen species and endoplasmic reticulum stress), gut microbiota dysbiosis and adipose extracellular matrix remodelling. IR itself plays a key role in the development of metabolic dysfunction, including hypertension, dyslipidaemia and dysglycaemia. Furthermore, IR promotes weight gain related to secondary hyperinsulinaemia, with a resulting vicious cycle of worsening IR and its metabolic sequelae. Ultimately, IR underlies obesity-related conditions such as type 2 diabetes mellitus (T2D) and polycystic ovary syndrome (PCOS). IR also underlies many obesity-related malignancies, through the effects of compensatory hyperinsulinaemia on the relatively intact MAP-K insulin pathway, which controls cellular growth processes and mitoses. Furthermore, the emergent data over recent decades support an important role of obesity- and T2D-related central IR in the development of cognitive dysfunction, including effects on hippocampal synaptic plasticity. Importantly, IR is largely reversible through the optimisation of lifestyle factors that include regular engagement in physical activity with the avoidance of sedentariness, improved diet including increased fibre intake and sleep sufficiency. IR lies at the key crossroad between obesity and both metabolic and cognitive dysfunction. Given the importance of IR in the pathogenesis of many 21st century chronic diseases and its eminent reversibility, it is important that we all embrace and facilitate optimised lifestyles to improve the future health and wellbeing of the populace.

Item Type: Journal Article
Subjects: R Medicine > RC Internal medicine
Divisions: Faculty of Medicine > Warwick Medical School > Biomedical Sciences
Faculty of Medicine > Warwick Medical School > Biomedical Sciences > Translational & Experimental Medicine > Metabolic and Vascular Health (- until July 2016)
Faculty of Medicine > Warwick Medical School
Library of Congress Subject Headings (LCSH): Insulin resistance, Obesity, Cognition disorders, Metabolism -- Disorders
Journal or Publication Title: International Journal of Molecular Sciences
Publisher: MDPI
Official Date: 7 January 2021
Dates:
DateEvent
7 January 2021Published
6 January 2021Accepted
Volume: 22
Number: 2
Article Number: 546
DOI: 10.3390/ijms22020546
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Open Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us