Manuscript version: Published Version
The version presented in WRAP is the published version (Version of Record).

Persistent WRAP URL:
http://wrap.warwick.ac.uk/146901

How to cite:
The repository item page linked to above, will contain details on accessing citation guidance from the publisher.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
German Jewish Émigrés and US Invention†

By Petra Moser, Alessandra Voena, and Fabian Waldinger*

Historical accounts suggest that Jewish émigrés from Nazi Germany revolutionized US science. To analyze the émigrés’ effects on chemical innovation in the United States, we compare changes in patenting by US inventors in research fields of émigrés with fields of other German chemists. Patenting by US inventors increased by 31 percent in émigré fields. Regressions which instrument for émigré fields with pre-1933 fields of dismissed German chemists confirm a substantial increase in US invention. Inventor-level data indicate that émigrés encouraged innovation by attracting new researchers to their fields, rather than by increasing the productivity of incumbent inventors. (JEL J15, L65, N62, O31, O34)

Historical accounts suggest that German Jewish scientists who fled from Nazi Germany revolutionized US innovation. By 1944, more than 133,000 German Jewish émigrés found refuge in the United States. Most of them were urban white-collar workers; one-fifth were university graduates. The National Refugee Service listed roughly 900 lawyers, 2,000 physicians, 1,500 writers, 1,500 musicians, and 2,400 academics (Sachar 1992; Möller 1984). In physics, émigrés such as Leo Szilard, Eugene Wigner, Edward Teller, John von Neumann, and Hans Bethe formed the core of the Manhattan project which developed the atomic bomb. In chemistry, émigrés such as Otto Meyerhof (Nobel Prize 1922), Otto Stern (Nobel Prize 1943), Otto Loewi (Nobel Prize 1936), Max Bergmann, Carl Neuberg, and Kasimir Fajans “soon affected hardly less than a revolution… their work on the structures of proteins and amino acids, on metabolic pathways and genetics, almost immediately propelled the United States to world leadership in the chemistry of life.” (Sachar 1992, p. 749).

* Moser: Department of Economics, Stanford University, 579 Serra Mall, Stanford, CA 94305, and NBER (e-mail: pmoser@stanford.edu); Voena: Department of Economics, University of Chicago, 1126 E 59th Street, Chicago, IL 60637, and NBER (e-mail: avoena@uchicago.edu); Waldinger: University of Warwick, Coventry, CV4 7AL, United Kingdom (e-mail: f.waldinger@warwick.ac.uk). We wish to thank seminar participants at the ASSA Meetings in Chicago, Bologna, Carnegie Mellon, Chicago, Collegio Carlo Alberto, Harvard, ISNIE, MIT, Naples, the NBER Group on the Development of the American Economy (DAE), and the NBER Group on High-Skilled Immigration, Northwestern, NYU, Paris, Sant’Anna Pisa, Stanford, St. Gallen, Torino, Tübingen, UBC, UCLA, and Warwick, as well as Claudia Goldin, Dietmar Harhoff, Eric Hilt, Naomi Lamoreaux, Maggie Levenstein, Neale Mahoney, Tom Nicholas, and Paul Rhode for helpful comments. We are especially indebted to Ryan Lampe for his invaluable help with collecting the patent data. Arthur Blouin, Mariela Dal Borgo, Nicola Bianchi, Anna Elisabeth Hage, Stephanie Lee, Marina Kutyavina, Michael Talbot, and Tilky Xu provided outstanding research assistance. Moser gratefully acknowledges financial support through NSF CAREER Grant 1,151,180 and the Center for Advanced Study in the Behavioral Sciences. The authors declare that they have no relevant or material financial interest that relate to the research described in this paper.

† Go to http://dx.doi.org/10.1257/aer.104.10.3222 to visit the article page for additional materials and author disclosure statement(s).
Alternative accounts, however, indicate that the émigrés’ contributions may have been limited as a result of administrative hurdles and anti-Semitism. Jewish scientists met with a “Kafkaesque gridlock of seeking affidavits from relatives in America, visas from less-than-friendly United States consuls” (Sachar 1992, p. 495). Once they were in the United States, a rising wave of anti-Semitism made it difficult for them to find employment; in “the hungry 1930s, antisemitism (sic) was a fact of life among American universities as in other sectors of the US economy” (Sachar 1992, p. 498).

This paper presents the first systematic empirical analysis of the effects of German Jewish émigrés on US innovation. Analyses of present-day immigrants to the United States, which exploit geographic variation in the exposure to immigrants, yield ambiguous results. State-level variation of contemporary data indicates that college-educated immigrants may encourage patenting among natives (Hunt and Gauthier-Loiselle 2010). Analyses at the city-level, however, suggest no significant effect (Kerr and Lincoln 2010).

A significant challenge to analyses of geographic variation is that immigrants may choose to live in more innovative regions, so that estimates may overstate immigrants’ effects on innovation. To address this problem, Kerr and Lincoln (2010) instrument for the number of immigrants per city by interacting variation in national grants of H1-B visas with city-level demand for immigrant workers. In an alternative approach, Borjas and Doran (2012) examine effects of Soviet mathematicians on the research output of incumbent US mathematicians by comparing changes in publications by US mathematicians for fields in which Soviet émigrés were active with other fields. Their analysis suggests that incumbent US mathematicians published less after Soviet mathematicians arrived in the United States, possibly because émigré and US mathematicians competed for journal space and other resources, which were fixed in the short run.

Our analysis extends existing empirical tests by examining total changes in US research output, as well as changes for incumbents (which are the focus of Borjas and Doran 2012) and entrants to the fields of émigrés. Taking advantage of the fact that patents are a good measure of innovation in chemistry because chemical innovations are exceptionally suitable to patent protection (e.g., Cohen, Nelson, and Walsh 2000; Moser 2012), we focus on changes in chemical inventions. By comparison, the contributions of émigré physicists (including those who worked on the Manhattan Project) are difficult to capture empirically because they produced knowledge that was often classified and rarely patented.

---

1 With the outbreak of the war, refugees became subject to stringent affidavit requirements, including guarantees of substantial cash deposits in American banks. Barely 10 percent of Jews on waiting lists were able to qualify. In 1940, Washington further tightened its visa policy to avoid infiltration by “enemy agents” (Sachar 1992, p. 533).

2 When émigré scholars eventually managed to find positions, their transition was not easy: “In the Germanic tradition, they often appeared aloof and condescending, a style unfamiliar to the more democratic atmosphere of American campus life” (Sachar 1992, p. 499).

3 Even for chemistry our analysis is limited to patented inventions, and many innovations which benefited from the arrival of the émigrés may not have been patented. Moser (2005, 2012) addresses this challenge by collecting data on innovations with and without patents from catalogues for international technology fairs between 1851 and 1915. These data indicate that the share of chemical innovations which occurred inside the patent system increased substantially in response to improvements in analytic methods, which reduced the effectiveness of secrecy as an alternative mechanism to protect intellectual property and made it easier to codify chemical inventions (Moser 2012). For the late twentieth century, inventor surveys indicate that chemicals and pharmaceuticals are the only industries in which inventors consider patents to be the most effective mechanism to protect intellectual property (e.g., Cohen, Nelson, and Walsh 2000).
Difference-in-differences regressions compare changes in US patenting by US inventors in research fields of German Jewish émigrés with changes in US patenting by US inventors in fields of other German chemists. This approach allows us to control for a potential increase in US invention in fields where German chemists—who had dominated chemical research in the early twentieth century—were active inventors. Research fields are measured at the level of 166 United States Patent Office (USPTO) technology classes that include at least one patent by an academic chemist from Germany or Austria between 1920 and 1970. Baseline estimates indicate that the arrival of German Jewish émigrés led to a 31 percent increase in innovation after 1933 in the research fields of émigrés.

Baseline estimates may be biased if the United States attracted more productive scientists or if the émigrés were more likely to work in research fields in which US inventors would become more productive. Historical evidence, however, suggests that émigrés to the United States may have been negatively selected, because Britain, which was geographically and culturally closer to the German university system, was the first refuge for many émigrés (Ambrose 2001), and established universities, such as Oxford and Cambridge, offered employment opportunities to the most prominent dismissed German scientists.

Historical accounts also suggest that selection into research fields may have been negative because anti-Semitism in the United States restricted access to the most promising fields. For example, the US chemical firm Du Pont rejected the “father” of modern biochemistry Carl Neuberg, because he “looked” too Jewish (Sachar 1992, p. 495). According to Hounshell, hiring practices in Du Pont’s Chemical Department “were flawed in one important respect: A strong strain of anti-Semitism and sexism prevailed…” (Hounshell and Smith 1988, pp. 295–296). More generally, Deichmann (1999, p. 3) explains that “biochemists and physical chemists were accepted at American universities, whereas organic chemists were not.”

To examine whether OLS regressions over- or underestimate the émigrés’ effects, we implement an instrumental variable analysis, which exploits the dismissal of Jewish scientists by the Nazi government. On April 7, 1933—only 67 days after the Nazis assumed power in Germany—the Law for the Restoration of the Professional Civil Service required that “Civil servants who are not of Aryan descent are to be placed in retirement” (Gesetz 1933, paragraph 3):

\[ \text{At a stroke, every Jew in Germany employed by the government or by state-sponsored local institutions was ordered to be dismissed from his or her post. From university professor to local postmistress, they all had to go... Prominence and reputation shielded no one, as over 1,200 Jewish academics were summarily dismissed.} \]

— Ambrose (2001, p. 20)

4More generally, a Roy model of migration implies that more productive immigrants move to locations where returns to skills exceed returns in their home country (Borjas 1987).

5Arnold Weissberger, for example, moved to Rochester only after he could not secure a university position in Britain and was deemed “unsuitable for industry.” Another prominent scientist who worked with Weissberger at Kodak, Gertrud Kornfeld, had studied photochemistry and reaction kinetics as a postdoctoral fellow at the University of Berlin in 1933. Kornfeld first tried to find a position in England, and when this failed moved to Vienna on a fellowship of the American Association of University Women and from there to the United States (Deichmann 2005).
After the annexation of Austria in 1938, dismissals were extended to Austrian universities, so that the term “German scientists” in this paper includes chemists from both countries.

Instrumental variable regressions use the pre-1933 fields of dismissed chemists as an instrument for the fields of émigrés to the United States. Pre-1933 research fields were determined before the Nazis’ rise to power and did not depend on expectations about the types of research which would become productive in the United States after 1933. Consistent with historical accounts of negative selection, IV estimates imply a 71 percent increase in patenting, which implies that OLS (ordinary least squares) estimates underestimate, rather than overestimate, the true effects of the émigrés on US invention.

Results are robust to a broad range of alternative specifications, including count data models, regressions with citation-weighted patents as a quality-adjusted measure of patenting, and alternative definitions of the post period. The most significant decline in the estimated effects occurs when we control for class-specific linear pre-trends in patenting.

In the second part of the analysis, we investigate the mechanism by which the émigrés’ arrival encouraged innovation in the United States, using a new dataset on the patent histories of all US inventors in the 166 classes of chemical invention.6 This analysis indicates that the arrival of the émigrés encouraged US invention by helping to attract domestic inventors to the research fields of émigrés, rather than by increasing the productivity of incumbent US inventors. Moreover, data on the prior patent histories of entrants indicate that the majority of entrants to the fields of émigrés had never patented in the 166 classes in our data before, suggesting that the émigrés’ arrival affected an overall increase in invention, rather than a shift across fields.

The data also indicate that the effects of the émigrés on US invention may have been amplified and made more persistent through the networks of their co-inventors, which we identify from patent documents. Analyses of contemporary data indicate that researchers in the life sciences benefited greatly from collaborations with prominent scientists (Azoulay, Graff Zivin, and Wang 2010). In the case of German Jewish émigrés, co-inventors of émigrés became active patentees in the fields of émigrés especially after 1940, and continued patenting through the 1950s. These patterns suggest that a natural delay in the transmission of knowledge from émigré professors to their US collaborators influenced the timing of the increase in US invention. In addition to co-inventors of the émigré professors, co-inventors of co-inventors of the émigrés also increased substantially their inventive activity in émigré fields after 1933, and remained substantially more productive throughout the 1950s and 1960s.

Finally, in interpreting these results, it is important to keep in mind that we only observe a small, albeit exceptionally, prominent segment of the total flow of German Jewish immigrants to the United States. As a first step towards investigating the effects of this broader flow, we document the research activities of a group of more junior German chemists, who had not yet become professors at German universities. Patent data indicate that these more junior scientists were active in the research

---

6 This new dataset covers inventors on US patents between 1920 and 1970. For more recent US patent issues, between 1975 and 2010, Lai et al. (2011) have created data on inventor identity and networks of co-inventors.
fields of émigré professors, suggesting that the fields of émigré professors are a useful proxy for the fields of a broader movement of German Jewish émigrés.

I. The Data

To perform this analysis, we have collected new datasets to measure aggregate changes in US patenting across research fields and to investigate changes in research output at the level of individual US inventors. The first dataset measures changes in US patents per year across research fields which were differentially affected by the arrival of German Jewish chemists; these data include 1,365,689 US patents by US inventors between 1920 and 1970. Research fields are measured at the level of 166 United States Patent Office (USPTO) technology classes; 60 of these classes include patented inventions by German Jewish émigrés to the United States. The second dataset captures changes in patenting for individual US inventors across research fields with varying levels of exposure to the arrival of the German Jewish émigrés; these data allow us to examine changes in the productivity of incumbent US inventors and measure changes in entry across research fields.

A. Émigré and Other Chemistry Professors at German and Austrian Universities

To capture all 535 chemistry professors and postdoctoral fellows (privatdozent) at German and Austrian universities, we use data from faculty directories in the *Kalender der Deutschen Universitäten und Hochschulen* (1932/33, 1933) and *Kürschners Deutscher Gelehrtenkalender* (1931). Names of dismissed professors were drawn from the *List of Displaced German Scholars* (1936), which the UK-based Emergency Alliance of German Scholars Abroad created to help dismissed scientists find employment abroad. The *List* includes German chemistry professors, such as:


Additional data from Deichmann (2001); Kröner (1983); and Strauss et al. (1983) allow us to identify chemists who were dismissed from Austrian universities after the annexation of Austria in 1938, and chemists who had died before the *List* was published in 1937.

Overall, 93 chemists—17.4 percent of all German and Austrian professors in chemistry—were dismissed between 1933 and 1941. Eighty-seven percent of dismissed chemists were Jewish (Deichmann 2001); most of the remaining dismissed had a Jewish spouse. A small number of scientists who “based on their previous.

---

7Waldinger (2010, 2012, 2013) has used these data to measure the effects of dismissals on German universities. Dismissals had negative effects on PhD student outcomes (Waldinger 2010). Departments with dismissals also experienced large and persistent declines in research output (Waldinger 2013). This decline was driven by a fall in the quality of hires and not by localized productivity spillovers (Waldinger 2012).
political activities cannot guarantee that they have always unreservedly supported the national state,” (Gesetz §4), were dismissed as well.\footnote{Jewish professors who had been civil servants since 1914, fought in World War I, or lost a father or son in the war, were exempt in 1933, but were dismissed after 1935.}

To identify German Jewish émigrés to the United States, we have collected the employment histories for all dismissed scholars, as well as their birth and death years from the International Biographical Dictionary of Central European Émigrés 1933–1945 (Strauss et. al. 1983), and from obituaries in the New York Times. We count any dismissed scholar who was professionally active in the United States as a German Jewish émigré to the United States; this yields a total of 26 émigrés.\footnote{Of the remaining dismissed German chemists, 26 became professionally active in the United Kingdom; 6 in Latin America; 5 each in Palestine and Turkey; 4 each in Scandinavia and Switzerland; 3 each in France and Canada; and 2 in Belgium and the Netherlands.} Biographical information confirms anecdotal evidence that émigrés to the United States were younger than other dismissed scholars. In 1933, the average émigré chemist was 45.4 years old, compared to 49.3 years for dismissed professors.

### B. US Patents of Émigré and Other German Professors (1920–1970)

To identify the research fields of all German chemistry professors, we collect the US patents which were issued to each of the 535 German chemistry professors between 1920 and 1970 by searching USPTO patent documents through Google Patents (www.patents.google.com). For example, a search for “Arnold Weissberger” yields:

```
```

For each patent we compare the description of the invention, the date of the patent application, and the location of the patentee with the employment histories and the life-span of the German chemist to ensure that the patent is a match.\footnote{A search for common names like Hermann Fischer (a lecturer at the University of Berlin in 1933) yields patents by other inventors, which we eliminate by examining each patent. Hermann was the sixth most popular first name when Fischer was born and Fischer is the fourth most common last name in Germany today (Duden 2000 and www.beliebte-vornamen.de). Only eight dismissed professors have both a first and last name that is among the top 50 most common German names.}

This process yields a total of 946 US patents between 1920 and 1970, including 282 patents by 43 dismissed German chemists and 157 patents by 13 German Jewish émigrés to the United States. Until 1932, émigrés patented few inventions in the United States, with an average of 0.46 patents per year between 1920 and 1932 (Figure 1). After 1933, émigrés to the United States began to patent more in the United States. US patents of émigrés increase from less than five per year until 1940 to roughly ten patents per year until the early 1950s; in terms of application years, this implies an increase in patenting around 1937. Émigrés began to patent less in the mid-1950s, when the average émigré was approaching retirement. By comparison, US patents of other (non-émigré) German chemists began to increase in the 1920s, reaching more than 40 patents per year in 1934. US patents by other German
chemists declined after the United States entered World War II on December 11, 1941, and remained low in the immediate aftermath of the war, but recovered in the late 1950s.

US patents by dismissed German chemists increased from seven per year between the mid-1920s and 1942 to ten and above in the 1940s; similar to US patents of émigré chemists, US patents by dismissed chemists began to decline in the mid-1950s, when dismissed professors were roughly 70 years old (Figure 1).


C. Matching Patents with USPTO Classes

To measure the effects of the immigrant chemists across fields of US invention, we use the US patents of German chemists to identify their research fields, measured at the level of main classes within the USPTO system of classifying inventions. For example, Ernst Berl’s patent 2,000,815 on May 7, 1935, was assigned to class 205: “Electrolysis: Processes, Compositions Used Therein, and Methods of Preparing the Compositions.”

The US patents of German chemists span 166 USPTO classes, including 60 classes which include at least one patent by an émigré and 106 control classes which include patents by other German chemists, but not the émigrés. Forty-nine USPTO classes include pre-1933 patents by at least one dismissed chemist; we use these classes to instrument for the 60 classes which include patents by at least one émigré (Table 1).

D. US Patents by US Inventors per Class and Year

To measure changes in US invention across research fields that were differentially affected by the arrival of German Jewish émigrés, we collect all US patents in the

---

11 Class 205 is the primary class for this patent; 51 percent of patents are also assigned to a cross-reference class. We include both types of classes, but results are robust to limiting the sample to primary classes. See Lampe and Moser (2014) for additional detail on patenting in cross-reference subclasses as a measure of innovation.
166 classes with patents by German chemists between 1920 and 1970 from the USPTO database US Patent Master Classification File.¹² To separate US inventors from foreign inventors, we develop an algorithm to search for the inventors’ country of origin in the full text of all US patents issued between 1920 and 1970; we access text files of these patents through Patent Grant Optical Character Recognition (OCR) Text (1920–1979).¹³

The dependent variable measures the number of US patents that are issued to US inventors in a given class and year. To measure the émigrés’ effect on US inventors net of changes in the émigrés’ own patenting activity, we exclude patents by émigrés from counts of domestic US patents. Issue dates are available directly from the USPTO.¹⁴ For the 946 US patents of German and Austrian chemists, we also examine the full text of each patent document to collect both the application and issue year. These data indicate that on average patents are issued 3.3 years after the application, with a standard deviation of 2.0 years.

E. Individual-Level Patent Histories for US Patentees

To examine the mechanism by which the arrival of émigré scientists may have increased US invention, we collect a new dataset to measure changes in the number of active US inventors across fields and over time, and document their patent histories in the fields of German chemists. These data include unique identifiers for 964,526 inventors who are listed on the 1,365,689 US patents issued in the research fields of German chemists between 1920 and 1970, as well as information on the timing of their entry into patenting. This section presents a brief summary of the data collection; the online data Appendix includes a more detailed description.

First, we develop an algorithm to extract strings of data (which contain the names of the patentees) for all 1,365,689 US patents issued between 1920 and 1970 in the 166 classes with patents by German academic chemists. This algorithm uses regular expressions to identify strings of text automatically, using patterns of characters and words. See Aho (1990) for a detailed discussion of regular expressions.

Then we clean the inventor data by correcting more than 3,300 common OCR errors and removing more than 1,100 substrings which do not contain inventor names. For example, a common mistake in current OCR software is to misread letters, such as “H” as “I-I,” or to misspell names, such as “William” as “Williax.” We correct these misspellings by comparing the original images of patent documents with the information which is listed in Google’s OCR data, and create an algorithm that corrects these mistakes; this algorithm removes more than 3,300 common mistakes. We then append the algorithm to remove phrases (substrings) in Google’s OCR data that the algorithm assigns mistakenly to names. For example, misspellings of the

¹³ To assess measurement error as a result of OCR, we compare our search results with nationality data in the NBER patent data for years between 1963 and 1970, which are covered by both datasets (the NBER patent data is available at http://elsa.berkeley.edu/~bhhall). This comparison suggests that measurement error is relatively small. For example, 98 percent of patents which we assign to UK inventors are UK inventors in the NBER data.
¹⁵ The full text of patents is available in Google’s Patent Grant Optical Character Recognition (OCR) Text 1920–1979. Regular expressions are a mechanism to identify strings of text automatically, using patterns of characters and words. See Aho (1990) for a detailed discussion of regular expressions.
term “United States Patent Office” may be counted as part of a name by mistake. We examine the records for such misspellings and append the algorithm to remove 1,100 common errors of this type. We create another algorithm to separate co-inventors who are listed together on a patent document. This algorithm uses first names as an indicator for the beginning of the name of a separate inventor. It performs an automatic search for 3,439 common first names as listed in the US census of 1920 and in the US Social Security Records between 1900 and 1999 (see online data Appendix).

Finally, we create unique inventor identifiers to track the patenting history of US inventors, using Levenshtein distances to define when two names are different enough to be counted as separate inventors.\[^{16}\]

Levenshtein distances measure the minimum number of insertions, deletions, or substitutions that are necessary to make two strings of characters identical. This allows us to address minor remaining spelling errors, such as writing “Arnold Weissberger” with a missing r as “Arnold Weissberge.” To allow for the fact that more letters can be misspelled in longer names, we calculate a normalized Levenshtein distance by dividing the number of necessary changes by the total number of letters in an inventor name. For example, the absolute Levenshtein distance for the two spellings of Weissberger is 1, because 1 character has to be inserted to create a complete match; the normalized measure is 1/18, because 1 letter has to be changed relative to 18 letters in the first name plus the last name, plus 1 space. A match is defined as a character with a normalized Levenshtein measure below 0.2. We will use these data in Section III, to investigate the mechanism by which the German Jewish émigrés may have influenced US innovation. In Section II, we investigate whether the émigrés caused a significant increase in US innovation.

II. Effects of Émigrés on Domestic Invention in the United States

In the first step of the analysis, we compare changes in patenting by US inventors in research fields of German Jewish émigrés with changes in patenting in fields of other German chemists. Summary statistics suggest a significant increase in US patenting in fields which include at least one patent by an émigré. In USPTO classes with émigré patents, patents by US inventors nearly double after 1933, from 149.3 to 287.3 per class and year (column 2 of Table 1). By comparison, in USPTO classes with patents by other German chemists, patents by US inventors increase substantially less, from 218.4 to 248.6 per class and year (column 3 of Table 1).

Data on US patents per field and year indicate a disproportionate increase in US invention after 1933 in research fields of émigrés compared with fields of other German chemists \([Figure 2A]\). Lower patent counts in émigré fields before 1933 are consistent with historical accounts, which suggest that US universities were more likely to accept German Jewish émigrés in fields where US invention was weak (Deichmann 1999, p. 3). Separating fields of émigrés according to the number of émigré patents shows that fields with more émigré patents experienced a larger increase in US invention after 1933 \([Figure 2B]\). The following paragraphs present OLS and IV regressions to investigate these changes systematically.

\[^{16}\] We are grateful to Julian Reif, who developed a matching algorithm to implement the Levenshtein distance matching measure and made it available at: http://ideas.repec.org/c/boc/bocode/s457151.html.
A. OLS Estimates of Changes in Patents by US Inventors

Baseline OLS regressions estimate

\[ Patents_{c,t} = \alpha_0 + \beta \text{émigré class}_c \cdot \text{post}_t + \gamma'X_{c,t} \]

\[ + \delta_t + f_c + \epsilon_{c,t}, \]

where the dependent variable counts US patents by domestic inventors in technology class \( c \) and year \( t \) between 1920 and 1970. The indicator variable \( \text{émigré class}_c \) equals 1 if technology class \( c \) includes at least one patent between 1920 and 1970 by a German Jewish émigré to the United States; the indicator variable \( \text{post}_t \) equals 1 starting with the year when dismissals first occurred in Germany (1933) and in Austria (1938). \(^{17}\) USPTO technology classes which include patents by other Germany chemists but not the émigrés form the control group.

The vector \( X_{c,t} \) includes three controls for variation in patenting at the level of research fields and years. First, the variable \# of foreign patents measures the total number of US patents in class \( c \) and year \( t \) by foreign inventors from countries which did not receive any dismissed chemists. This helps control for unobservable factors, such as scientific breakthroughs, which may have increased patenting by US

\(^{17}\) As discussed above, Jewish professors were dismissed from Austrian universities after the annexation of Austria in 1938. Thus, the indicator variable \( \text{post}_t \) equals 1 for years after 1932 for classes with patents by émigrés from Germany and after 1937 for classes with patents by émigrés from Austria (but not Germany).
inventors independently of the arrival of the émigrés. Second, the variable \textit{class age} measures the number of years that have passed since the first patent was issued in technology class \( c \) and its square; this helps control for variation in the speed of invention across the life cycle of a technology. Third, the indicator variable \textit{patent pools} distinguishes technology classes in which competing firms agreed to pool their patents; it controls for a potential decline in innovation as a result of the formation of a patent pool (Lampe and Moser 2014).\footnote{New Deal policies, such as the National Industrial Recovery Act (1933–1935), which exempted the majority of US industries from antitrust regulation, created a favorable environment for pools and other types of cooperative agreements in the 1930s. Patent data for 20 industries that formed pools between 1930 and 1938 suggest that the creation of a pool led to a decline in innovation, which was particularly pronounced if the pool combined firms that had competed to improve substitute technologies before the pool had formed (Lampe and Moser 2014).}

Year fixed effects \( \delta \) control for unobservable variation in patenting over time which is common across technologies, and class fixed effects \( f \) control for unobservable variation in patenting across technologies which is constant over time.\footnote{Results are robust to additional controls for research fields in which domestic invention benefited from the ability to access foreign-owned invention as a result of the Trading-with-the-Enemy Act (TWEA). After World War I, domestic invention (measured by the number of US patents by domestic inventors) increased by 20 percent in USPTO subclasses of chemical inventions in which the TWEA allowed US firms to produce enemy-owned inventions (Moser and Voena 2012).}

OLS estimates imply that the arrival of émigré chemists increased US patenting by a minimum of 31 percent. In classes that include at least 1 émigré patent, domestic inventors produced 105.2 additional patents per year after 1933, compared with classes that include at least 1 patent by another German chemist (column 1 of Table \ref{tab:2}, significant at 1 percent). Controlling for the \# of foreign patents reduces the estimated effect to 91.7 additional patents per year; controlling for \textit{class age}
reduces the estimate to 84.8, and controlling for patent pools further reduces the estimate to 75.4 (columns 2–4 of Table 2, significant at 1 percent). Compared with a mean of 240.9 patents per class and year in classes with patents by other German chemists, the most conservative estimate of 75.4 implies a 31 percent increase in domestic patenting.

Additional specifications use variation in the count of émigré patents across USPTO classes to measure the intensity of exposure to the émigrés:

\[
(2) \quad \text{Patents by US inventors}_{c,t} = \alpha_0 + \beta \text{number émigré patents}_c \times \text{post}_t + \gamma' \mathbf{X}_{c,t} + \delta_t + f_c + \varepsilon_{c,t},
\]

where number émigré patents\(_c\) measures the number of émigré patents between 1920 and 1970 in class \(c\). Estimates of these regressions imply an increase in US invention by four patents per year for each additional émigré patent (column 8 of Table 2, significant at 5 percent).\(^{20}\)

Specifications which estimate effects separately according to the number of émigré patents confirm that émigré fields with more patents by émigrés experienced a larger increase in US invention after 1933.\(^{21}\) In classes with 1 patent by an émigré, US inventors patented 16.6 additional inventions per class and year after 1933 compared with fields by other German chemists, but the effect is not statistically significant (column 2 of online Appendix Table A1). In classes with two patents by émigrés, US inventors patented 95.4 additional inventions (column 2 of online

\(^{20}\)Results are robust to alternative definitions of the post period, including specifications that define post to begin in 1936 (reported below).

\(^{21}\)Among 60 émigré classes, 24 classes include one émigré patent, 10 classes include two émigré patents, and 26 classes include three or more émigré patents.
Appendix Table A1, significant at 1 percent). In classes with three or more patents by émigrés, US inventors patented 129.6 additional inventions (column 2 of online Appendix Table A1, significant at 1 percent).

B. Annual Coefficients for Years before and after 1933

To investigate the timing of the increase in US invention, we estimate the difference-in-differences coefficient $\beta_t$ separately for each year, allowing it to be different from zero before 1933,

\[
Patents \ by \ US \ inventors_{c,t} = \alpha_0 + \sum_{t=1920}^{1970} \beta_t \ \text{émigré class}_c \cdot \text{year}_t
\]

\[+ \gamma X_{c,t} + \delta_t + f_c + \varepsilon_{c,t},\]

where the variable \text{year}_t represents an indicator variable for each year between 1920 and 1970, and 1932 is the excluded category.

Estimates of annual coefficients indicate that the observed increase in patenting cannot be explained by differential pretrends. Annual coefficients are close to zero before 1933 and increase to the highest level in the 1950s and early 1960s (Figure 3).\(^22\) These results, which are consistent with a protracted adjustment process (Sachar 1992), indicate that unobservable factors which preceded the arrival of the émigrés are unlikely to have been the driving force behind the increase in US patenting. An additional set of regressions controls for class-specific linear pretrends in patenting

\[
Patents \ by \ US \ inventors_{c,t} = \alpha_0 + \sum_{t=1933}^{1970} \beta_t \ \text{émigré class}_c \cdot \text{year}_t
\]

\[+ \eta_c \cdot t + \gamma X_{c,t} + \delta_t + f_c + \nu_c,t,\]

where we allow time trends \(t\) to differ for each of the 166 classes \(\eta_c\) (by including the interaction term \(\eta_c \cdot t\)), and the variable \text{year}_t represents an indicator variable for each year between 1933 and 1970). Controlling for linear pretrends leaves the point estimates substantially unchanged but makes them less precise over time, so that many of the annual coefficients are no longer statistically significant (Figure A1). An \(F\)-test statistic of 3.26, however, rejects the joint hypothesis that all annual coefficients are equal to zero with a \(p\)-value below 0.0001.

C. Pre-1933 Fields of Dismissed as an Instrument—First Stage

Baseline OLS estimates may, however, be biased, if the United States attracted the most productive émigrés, or if émigré scientists were attracted to more productive

\(^{22}\) Figure 3 is the regression analog of Figure 2A, which plots the difference between average patents per year in classes with and without émigré patents (Figure 2A). Differences between the two figures are driven primarily by the inclusion of class fixed effects.
fields once they had arrived in the United States. In fact, patent data indicate that USPTO classes with émigré patents were on average four years younger than classes without émigré patents. In 1932, 84.6 years had passed since the first patent grant in the average émigré class, compared with 88.7 years for other classes. A test for the equality of means rejects equality with a $p$-value of 0.085 (columns 2 and 3 of Table 1). Invention in younger research fields may have increased independently of the émigrés.

To address endogeneity, we use the pre-1933 patents of dismissed chemists to instrument for the 1920–1970 patents of émigrés to the United States. This approach exploits the fact that the research decisions of German Jewish chemists prior to their dismissal are unlikely to have depended on their expectations about the types of research that would become more productive in the United States after 1933.

To examine whether the pre-1933 patents of dismissed chemists are a valid instrument, we compare pre-1933 characteristics of classes with and without pre-1933 patents of dismissed chemists. First, dismissed chemists may have worked in younger fields that experienced a more rapid increase in patenting after 1933. The data, however, reveal no statistically significant differences for classes with and without pre-1933 patents of dismissed chemists (at an average age of 87.4 years compared with 87.3 in 1932, with a $p$-value of 0.929 for the equality of means test: columns 4 and 5 of Table 1). A related concern is that dismissed chemists may have worked in more productive fields before 1933. To investigate this issue, we compare counts

Figure 3. Year-Specific OLS Estimates US Patents per Year in Research Fields of Émigrés

Notes: Coefficients $\beta_t$ and 95 percent confidence interval in the regression $Patents_{c,t} = \alpha_0 + \sum_{t=1920}^{1970} \beta_t \cdot émigré \ clas_t \cdot year_t + \gamma \cdot X_{c,t} + \delta + f_c + \epsilon_{c,t}$, where the dependent variable measures US patents issued to US inventors per class and year, and the variable émigré clas equals 1 for research fields of émigrés. The variable year, represents an indicator variable for each year between 1920 and 1970, and 1932 is the excluded category. The control group consists of research fields of other German chemists, defined at the level of 106 USPTO classes which include at least one patent between 1920 and 1970 by another German chemist but include no patents by émigrés. Patents by émigré chemists are excluded from the counts of US inventors. Standard errors are clustered at the level of research fields.
of US patents by foreign inventors in classes with and without pre-1932 patents of dismissed chemists. This comparison also reveals no significant differences. If anything, classes with pre-1933 patents of dismissed chemists attracted slightly fewer foreign patentees until 1933, but this difference is not statistically significant (with 0.70 versus 1.01 US patents by foreign inventors and a \( p \)-value of 0.216).

First-stage regressions estimate

\[
\text{Émigré clas} \times \text{post} = \zeta_0 + \phi \text{ pre-1933 dismissed class} \times \text{post} + \theta'X_{c,t} + \lambda_t + \mu_c + \upsilon_{c,t}. \tag{5}
\]

A coefficient of 0.339 for the variable \( \text{pre-1933 dismissed clas} \times \text{post} \), and an \( F \)-statistic on the excluded instrument of 18.25 (column 2 of Table 3) confirms that pre-1933 fields of dismissed chemists are a strong predictor for fields of émigrés. An analogous first-stage regression uses the number of pre-1933 patents by dismissed chemists in class \( c \) as an instrument for the number of patents by émigrés in class \( c \). For this regression, the coefficient is 1.303, and the \( F \)-statistic on the instrument is 8.99 (column 4 of Table 3).

### Table 3—First Stage and Reduced Form

<table>
<thead>
<tr>
<th></th>
<th>( \text{Émigré class} \times \text{post} )</th>
<th>( \text{Number émigré patents} \times \text{post} )</th>
<th>Reduced form</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{Dismissed class} \times \text{post} )</td>
<td>0.370*** (0.081)</td>
<td>1.384*** (0.442)</td>
<td>80.821*** (23.155)</td>
</tr>
<tr>
<td>( \text{Number dismissed patents} \times \text{post} )</td>
<td>0.339*** (0.079)</td>
<td>1.303*** (0.435)</td>
<td>57.752*** (19.436)</td>
</tr>
<tr>
<td>Number foreign patents</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Quadratic class age</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Patent pools</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Class fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>8,466</td>
<td>8,466</td>
<td>8,466</td>
</tr>
<tr>
<td>( R^2 )</td>
<td>0.801</td>
<td>0.770</td>
<td>0.779</td>
</tr>
<tr>
<td>( F )-statistic</td>
<td>20.80</td>
<td>9.79</td>
<td>6.339</td>
</tr>
</tbody>
</table>

**Notes:** Dependent variables are \( \text{émigré class} \times \text{post} \) (columns 1–2), \( \text{number of émigré patents} \times \text{post} \) (columns 3–4), and \( \text{patents per class and year} \) by US inventors (columns 5–8). In first-stage regressions (columns 1–4), the dependent variables are \( \text{Émigré class} \times \text{post} \) (columns 1 and 2) and \( \text{Number émigré patents} \times \text{post} \) (columns 3 and 4). \( \text{Émigré class} \) equals 1 for classes which include at least one US patent by an émigré. \( \text{Number émigré patents} \) measures the number of US patents by émigrés in class \( c \). \( \text{Dismissed class} \) equals 1 for classes which include at least one pre-1933 US patent by a dismissed chemist. \( \text{Number dismissed patents} \) indicates the number of pre-1933 US patents by dismissed chemists in each class. The dummy variable \( \text{Post} \) equals 1 for years after the dismissals. \( \text{Number of foreign patents} \) counts US patents by foreign nationals in class \( c \) and year \( t \). \( \text{Quadratic class age} \) is the second-degree polynomial for years since the first patent in class \( c \). The indicator variable \( \text{patent pools} \) equals 1 for classes affected by a patent pool. In reduced-form regressions (columns 5–8) the dependent variable measures patents by US inventors per USPTO class and year, excluding patents by émigrés.

*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.

D. Reduced-Form Estimates for Pre-1933 Fields of Dismissed Chemists

Similar to data for patents per year in émigré fields, data for fields with pre-1933 patents by dismissed chemists also indicate a disproportionate increase after 1933 in
by the mid-1950s, US inventors produced more patents in fields with pre-1933 patents by dismissed German Jewish chemists.

To analyze whether patenting by US inventors in pre-1933 fields of dismissed chemists increased after 1933 compared with fields of other German chemists, we estimate the reduced form

\[
\text{Examples by US inventors}_{c,t} = \alpha_0 + \beta \text{pre}-1933 \text{ dismissed class}_c \cdot \text{post}_t \\
+ \gamma \mathbf{X}_{c,t} + \delta_t + f_c + \varepsilon_{c,t},
\]

where the indicator variable \( \text{pre}-1933 \text{ dismissed class}_c \) equals 1 for technology classes \( c \) which include at least one pre-1933 patent by a dismissed German chemist.

In USPTO technology classes which include at least one pre-1933 patent by a dismissed chemist, US inventors produce 57.8 additional patents per year after 1933 (column 6 of Table 3, significant at 1 percent). Compared with an average of 240.9 patents per class and year between 1920 and 1970 in fields of other (non-émigré) German chemists, this implies a 24 percent increase in domestic patenting. Analogous reduced-form estimates imply that US inventors produced 22.3 additional patents per class and year for each additional patent by dismissed German chemists (column 8 of Table 3, significant at 1 percent).

Specifications that separately estimate effects according to the number of pre-1933 patents by dismissed chemists confirm that fields with more pre-1933 patents by
dismissed chemists experienced a larger increase in US invention after 1933. In classes with one pre-1933 patent by a dismissed chemist, US inventors patented an additional 28.6 inventions per class and year after 1933 compared with fields by other German chemists, but the effect is not statistically significant (column 4 of online Appendix Table A1). In classes with two pre-1933 patents by dismissed chemists, US inventors patented an additional 97.3 inventions (column 4 of online Appendix Table A1, significant at 1 percent). In classes with three or more pre-1933 patents by dismissed chemists, US inventors patented an additional 98.1 inventions (column 4 of online Appendix Table A1, significant at 1 percent).

To investigate the sensitivity of the reduced-form results to differential pretrends, we estimate an additional set of regressions that control for linear class-specific pretrends:

\[
\text{Patents by US inventors}_{c,t} = \alpha_0 + \sum_{1933}^{1970} \beta_t \text{pre-1933 dismissed class}_c \cdot \text{year}_t + \eta_c \cdot t + \gamma' \mathbf{X}_{c,t} + \delta_t + f_c + \varepsilon_{c,t}.
\]

Time-varying estimates with linear pretrends track estimates without pretrends albeit at a lower level and with standard errors which increase as we move away from the preperiod (Figure A2), suggesting that the baseline estimates may overestimate the true effects of immigration. An F-test statistic of 2.37 rejects the joint hypothesis that all coefficients are equal to zero with a p-value equal to 0.0001.

E. Instrumental Variables Estimates

IV regressions which use pre-1933 dismissed class as an instrument for émigré class imply that US inventors produce 170.1 additional patents per class and year in fields of émigrés compared with fields of other German chemists (column 2 of Table 4, significant at 1 percent). Compared with a mean of 240.9 patents per class and year between 1920 and 1970 in fields of other German chemists, this implies an increase in US patenting of 71 percent.

IV regressions proxy for the effects of knowledge that dismissed German chemists had acquired in Germany and brought to the United States. More precisely, the local average treatment effect (LATE) of the IV regressions (Imbens and Angrist 1994) estimates the increase in patenting by US inventors for classes in which émigrés to the United States patented because dismissed chemists had patented in the same classes before 1933. In addition to the fact that the IV estimates a LATE, some of the difference between the OLS and IV estimates may reflect measurement error, which attenuates the OLS estimates. The large difference between OLS and IV estimates is also consistent with historical accounts of negative selection at the level of individual scientists and fields (e.g., Deichmann 1999).

Regressions which use the number of pre-1933 patents by dismissed chemists as an instrument for the number of émigré patents indicate that US inventors produced

---

23 Among 48 classes with pre-1933 patents by dismissed chemists, 27 classes include one pre-1933 patent by a dismissed chemist, 9 classes include two pre-1933 patents by a dismissed chemist, and 12 classes include three or more pre-1933 patents by a dismissed chemist.
17.1 additional patents per year for each additional émigré patent (column 4 of Table 4, significant at 5 percent).

**F. Robustness Checks**

Results are robust to a broad range of alternative specifications, including count data models, regressions with citation-weighted patents as a quality-adjusted measure of patenting, and alternative definitions of the post period.

The first robustness check estimates the main specifications as Poisson regressions with conditional fixed effects to address the count data characteristic of patents. They yield comparable or larger estimates than OLS. Poisson estimates for the difference-in-differences estimator émigré class · post imply a 44 percent increase in US patenting in fields of émigrés (column 1 of online Appendix Table A2, significant at 1 percent), compared with 31 percent in OLS. For each additional émigré patent, US patenting increased by 6 percent (column 2 of online Appendix Table A2, not statistically significant).

Poisson estimates for the reduced form imply a 49 percent increase in US patenting in pre-1933 research fields of dismissed chemists (column 3 of online Appendix Table A2, significant at 1 percent). For each additional pre-1933 patent of a dismissed chemist, domestic patenting increased by 39 percent (column 4 of online Appendix Table A2, significant at 1 percent).

An additional test accounts for differences in the quality of patents using data from Lampe and Moser (2014) on counts of later patents that cite each patent as
relevant prior art.\(^{24}\) In this test, the dependent variable \textit{citation-weighted patents by US inventors}, \(c,t\) measures the number of times a patent issued in year \(t\) and class \(c\) was cited in patents issued between 1921 and 1979:

\[
(8) \quad \text{Citation-weighted patents by US inventors}, c,t = \alpha_0 + \beta \text{émigré class}, c \cdot \text{post}, t + \gamma X_{c,t} + \delta_t + f_c + \varepsilon_{c,t}.
\]

OLS estimates imply an increase of 211.8 citation-weighted patents per class and year after 1933 in research fields of émigrés (column 5 of online Appendix Table A2, significant at 1 percent). Compared with a mean of 616.2 citation-weighted patents per class and year in the control, this implies a 34 percent increase, slightly above the baseline estimate of 31 percent for raw patents. For each additional patent by an émigré, US inventors produce 12.7 additional citation-weighted patents after 1933 (column 6 of online Appendix Table A2, significant at 1 percent).

Instrumental variable regressions indicate that US inventors produced an additional 412.2 citation-weighted patents per year after 1933 in classes with émigré patents (column of online Appendix Table A2, significant at 10 percent). Compared with a mean of 616.2 citation-weighted patents per class and year in the control group, this implies a 67 percent increase. Analogous regressions, which measure the number of émigré patents, indicate that US inventors produced 50.5 additional citation-weighted patents after 1933 for each additional émigré patent (column 8 of online Appendix Table A2, significant at 10 percent).

In the baseline, we define the \textit{post} period to begin in 1933 to exploit the exogenous timing of dismissals. Émigrés, however, may have become active in the United States with some delay; to address this issue, we check that the estimates are not driven by an increase in US patenting that occurs too early to reflect an effect of the émigrés. To perform this test, we reestimate the main specifications with alternative definitions of the \textit{post} period, beginning in 1936 and 1940.\(^{25}\)

OLS estimates, in which the \textit{post} period begins in 1936, indicate that US inventors produced 74.9 additional patents per year after 1936 in fields of émigrés compared with fields of other German chemists (column 1 of online Appendix Table A3, significant at 1 percent). Analogous IV estimates imply that US inventors produced 152.2 additional patents per year after 1936 (column 5 of online Appendix Table A3, significant at 5 percent). Thus, both OLS and IV estimates are similar to the main estimates, suggesting that the results are not driven by the definition of the \textit{post} period. Equivalent analyses in which \textit{post} begins in 1940 confirm these findings.\(^{26}\)

---

\(^{24}\)Citations are the standard approach to control for the quality of patented inventions. For example, Trajtenberg (1990) documented that citations are correlated with the estimated social surplus that 456 improvements in CAT scanners created over time. Hall, Jaffe, and Trajtenberg (2000) show that citation-weighted patent stocks are more highly correlated with market value (measured by Tobin’s \(q\)) than patent stocks. Moser, Ohmstedt, and Rhode (2013) find that citations are positively correlated with the size of patented improvements in hybrid corn.

\(^{25}\)For classes treated by Austrian émigrés only, the \textit{post} period begins with the annexation of Austria in 1938, and in 1940 for the second robustness check.

\(^{26}\)Defining the \textit{post} period to begin in 1940, the OLS coefficient on \(\text{émigré class} \cdot \text{post}, t\) is 73.160 with a standard error of 18.908 (\(p\)-value < 0.001). The IV coefficient is 131.836 with a standard error of 57.652 (\(p\)-value = 0.023). The OLS coefficient on \(\text{number émigré patents} \cdot \text{post}, t\) is 3.991 with a standard error of 1.956 (\(p\)-value = 0.043). The IV coefficient is equal to 17.136 with a standard error equal to 6.909 (\(p\)-value = 0.014).
III. Investigating the Mechanism Using Inventor-Level Data

To investigate the mechanism by which the arrival of German Jewish émigrés increased US innovation, we perform additional tests using a new inventor-level dataset of changes in US patenting. Specifically, we examine changes in the productivity of incumbent US inventors, as well as changes in entry by new patentees across fields of chemistry. We also investigate networks of co-inventors, which may have amplified the effects of German Jewish émigrés, and document the arrival of other German chemists, which indicates that the emigration of German chemistry professors was part of a broader movement of scientists to the United States.

A. Effects on Incumbent US Inventors

To investigate the émigrés’ effects on incumbent US inventors, we examine changes in patenting for 210,410 US inventors who had patented at least one invention before 1933 in a research field of German chemists.

Summary statistics indicate a decline in patenting for incumbent inventors regardless of their exposure to the arrival of the émigrés. Since 75 percent of incumbent inventors only had one patent, the probability of patenting drops mechanically after 1933, but there is no significant difference for incumbents who were more or less exposed to the émigrés. Incumbent inventors who patented the majority of their inventions in émigré fields patented at least one invention per year with a probability of 0.015 after 1933 compared with 0.097 before 1933 (column 4 of Table 5). By comparison, incumbent inventors who patented mostly in fields of other German chemists patented at least one invention per year with a probability of 0.013 after 1933 compared with 0.098 before 1933 (column 2 of Table 5).

OLS and IV regressions estimate the differential effects of the émigrés on incumbent inventors, depending on the share of the incumbent’s patents in research fields of émigrés

\[ \text{Patenting}_{i,t} = \alpha + \beta \text{share of patents in émigré classes}_i \cdot \text{Post}_t + \gamma' \mathbf{Z}_{i,t} + \delta_t + f_i + \varepsilon_{i,t}, \]

where the dependent variable equals 1 if the incumbent US inventor \( i \) patented at least one invention in year \( t \), and 0 otherwise. The coefficient \( \beta \) measures the change in the probability of patenting after 1933 for inventors who have a higher share of their patents in fields of émigrés. The variables in vector \( \mathbf{Z}_{i,t} \) control for variation in productivity over the life cycle of an inventor; specifically, we control for changes in productivity relative to the year of an inventor’s first patent, by measuring how many years the inventor is still away from his first patent, and how many years have passed since the inventor’s first patent. Both variables enter linearly and as a quadratic. The variable \( f_i \) represents a full set of fixed effects for each of the 210,410 incumbent US inventors to control for characteristics of the inventors (e.g., their inherent ability) which do not vary over time. Year fixed effects \( \delta_t \) control for changes in the probability of patenting over time (e.g., as a result of changes in patent policies or industry-level productivity shocks) that influence all inventors. Standard errors are
OLS estimates indicate that incumbent inventors who had a 10 percent larger share of their patents in émigré classes became 0.07 percentage points less likely to patent an invention after 1932 (column 2 of Table 6, significant at 1 percent). Regressions without controls for productivity across the inventor’s patenting career imply an increase of 0.02 percentage points (column 1 of Table 6, significant at 5 percent).27 Instrumental variable regressions use the share of an inventor’s pre-1933 patents in fields with pre-1933 patents of dismissed chemists (interacted with a post-dismissal dummy) as an instrument for the share of the inventor’s overall patents in research fields of émigrés (interacted with a post-dismissal dummy). Thus, first-stage regressions estimate

\[ \text{Share in émigré classes}_i \cdot \text{post}_t = \phi \cdot \text{pre-1933 share in classes with pre-1933 patents of dismissed}_i \cdot \text{post}_t + \theta' \mathbf{Z}_{i,t} + \lambda_t + \mu_i + \nu_{i,t}. \]

A coefficient of 0.402 for the variable pre-1933 share in classes with pre-1933 patents of dismissed\(_i \times \text{post}_t\) and an \(F\)-statistic on the excluded instrument of 21.65 in the first-stage regression (column 2 of Table 7, significant at 1 percent) confirm

\[ \text{Notes: Data include 210,410 US patentees with at least one patent between 1920 and 1932. We constructed data on patents per year of these patentees through a search algorithm, which identified patents by individual inventors per class and year, using Google’s Patent Grant Optical Character Recognition (OCR) Text (1920–1979) database. The online Appendix includes a detailed description of the search algorithm and the process of data cleaning.} \]

<table>
<thead>
<tr>
<th>Total inventors active before 1933</th>
<th>All inventors</th>
<th>Fraction of patents in research fields of émigrés</th>
<th>Fraction of pre-1933 patents in research fields of dismissed chemists</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>&lt; 50% (2)</td>
<td>50% (3)</td>
</tr>
<tr>
<td>Total inventors active before 1933</td>
<td>210,410</td>
<td>144,647</td>
<td>7,842</td>
</tr>
<tr>
<td>Annual probability of patenting 1920–1970</td>
<td>0.035</td>
<td>0.034</td>
<td>0.050</td>
</tr>
<tr>
<td>Annual probability of patenting 1920–1932</td>
<td>0.098</td>
<td>0.098</td>
<td>0.120</td>
</tr>
<tr>
<td>Annual probability of patenting 1933–1970</td>
<td>0.014</td>
<td>0.013</td>
<td>0.026</td>
</tr>
<tr>
<td>Patents per inventor and year 1920–1970</td>
<td>0.043</td>
<td>0.042</td>
<td>0.055</td>
</tr>
<tr>
<td>Patents per inventor and year 1920–1932</td>
<td>0.112</td>
<td>0.111</td>
<td>0.132</td>
</tr>
<tr>
<td>Patents per inventor and year 1933–1970</td>
<td>0.020</td>
<td>0.018</td>
<td>0.029</td>
</tr>
</tbody>
</table>

27 Only 0.5 percent of inventors produce more than one patent in a given year, 3.0 percent produce one patent, and 96.5 percent produce no patents. Reflecting this data structure, estimates of the intensive margin are similar to estimates of the extensive margin (online Appendix Table A4).
that an inventor’s pre-1933 share in pre-1933 classes of dismissed chemists is a good predictor for the inventor’s share in émigré classes.

Reduced-form estimates indicate that researchers who have an additional 10 percent of their pre-1933 patents in pre-1933 fields of dismissed chemists were 0.09 percentage points less likely to patent after 1933 (column 4 of Table 7, significant at 1 percent). Instrumental variable estimates imply that chemists who had an additional 10 percent of their patents in fields of émigrés were 0.22 percentage points less likely to patent after 1933 (column 4 of Table 6, significant at 1 percent), confirming that effects on incumbent inventors cannot explain the observed overall increase in patenting.

We also examine raw data on changes in inventive output after 1933 for three groups of inventors who were more or less exposed to the arrival of the émigrés (Figure 5).28 Since incumbent inventors are defined as inventors who have produced at least one patent before 1933, and 75 percent of incumbents only have one patent, patent counts drop mechanically after 1933. Comparing the probability of patenting for incumbents who were differentially exposed to the arrival of émigrés, however, indicates no differential change in patenting. There is no noticeable difference in the probability of patenting after 1933 for incumbents with more than half of their patents in fields of émigrés compared with incumbents with fewer than half of their patents in fields of émigrés (Figure 5). Equivalent comparisons for incumbents with different shares of their pre-1933 patents in pre-1933 fields of dismissed German chemists (Figure 6) also indicate no differential change.29

28 As a group, incumbent inventors with 50 percent of their patents in émigré fields are more productive, by construction, than inventors with either fewer or more than 50 percent of their patents in émigré fields, because the group of inventors with 50 percent of their patents is restricted to inventors with at least two patents.

29 Analogous comparisons for alternative divisions of the sample (e.g., 25 percent in émigré fields versus 75 percent in émigré fields) confirm these results.
In sum, the data indicate that knowledge spillovers from the émigrés to incumbent inventors are unlikely to have been the driving factor behind the substantial increase in US patenting after 1933 in research fields of émigrés. These results are consistent with evidence from publications data, which suggest that incumbent US mathematicians did not benefit from the arrival of Soviet émigrés (Borjas and Doran 2012).30

30Borjas and Doran (2012) find that the arrival of Soviet mathematicians who emigrated to the United States after the collapse of the Soviet Union crowded out publications in top journals by incumbent US mathematicians. For chemistry, physics, and mathematics, Waldinger (2012) shows that there was no significant effect of the dismissals of Jewish professors on publications by other German professors who stayed in Germany, even though the dismissals had significant negative effects on PhD students in mathematics (Waldinger 2010).
B. Effects on Entry into Research Fields of Émigrés

An alternative mechanism, by which the arrival of highly skilled émigrés may have encouraged innovation, is by encouraging US scientists to switch into fields of émigrés or by attracting a new group of US scientists to the fields of émigrés.\footnote{Borjas and Doran (forthcoming) document that US mathematicians switched away from the research fields of Soviet mathematicians to avoid direct competition.} To investigate this mechanism, we use a researcher’s first patent in a USPTO class to measure the researcher’s year of entry into a new field, and compare changes in the rate of entry after 1933 for fields of émigrés and fields of other German chemists. To distinguish entry by new inventors from entry by inventors who had already been active in other fields of chemistry, we also separate entrants with and without prior patents in the 166 research fields in our data.

Summary statistics indicate a substantial increase in entry by domestic US scientists to fields of émigrés after 1932. Until 1932, 116.1 US researchers per class and year entered the fields of émigrés, compared with 175.1 US researchers in fields of other German chemists. After 1933, 179.3 US researchers per class and year entered the fields of émigrés, compared with 162.8 in fields of other German chemists (columns 2 and 3 of panel A of Table 8 and Figure 7). Similarly, the data indicate a substantial increase in entry by US scientists who had never patented in any of the 166 classes before. Until 1932, 92.0 new US researchers per class and year entered the fields of émigrés, compared with 143.8 new researchers in fields of other German chemists. After 1932, 112.1 new researchers per class and year entered the fields of émigrés, compared with 109.0 in fields of other German chemists (columns 2 and 3 of panel B of Table 8).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{Patenting per Year by Incumbent Inventors in Pre-1932 Fields of Dismissed Chemists Compared with Fields of Other German Chemists}
\end{figure}

\textit{Notes:} Probability of patenting by incumbents measures the average probability of patenting per year by 210,410 inventors who patented at least one invention before 1933. Share of patents in pre-1933 fields of dismissed chemists measures the share of pre-1933 patents (1920–1932) by an individual inventor that are in a class with at least one pre-1933 patent by a dismissed chemist.
To investigate changes in entry by US patentees, OLS regressions estimate

\[ \text{Entry}_{c,t} = \alpha_0 + \beta \text{émigré class}_c \cdot \text{post}_t + \gamma' \mathbf{X}_{c,t} + \delta_t + f_c + \varepsilon_{c,t}, \]  

where the dependent variable counts new researchers per class and year, measured by a researcher’s first patent in class \( c \). As above, \( \text{émigré class}_c \cdot \text{post}_t \) equals 1 after the dismissals for class \( c \) if it includes at least one patent by an émigré; the vector \( \mathbf{X}_{c,t} \) includes controls for variation in patenting at the level of classes and years, as defined for equation (1); \( \delta_t \) are year fixed effects and \( f_c \) are class fixed effects.

OLS estimates indicate that an additional 58.2 US researchers entered the fields of émigrés per class and year after the dismissals (column 2 of Table 9, significant at 1 percent). Compared with an average of 165.9 entrants to fields of other German chemists, this implies 35 percent additional entrants for fields of émigrés.

Separating entry of new inventors from entry of inventors who had already been active in other fields of chemistry, we find that new inventors accounted for three-quarters of additional entrants into émigré fields after the dismissals. Estimates for the dependent variable \( \text{entrants into patenting} \) indicate that the number of new patentees in émigré classes—without prior patents in any of the 166 classes—increased by 44.0 entrants per class and year (column 4 of Table 9, significant at 1 percent).
We perform a more detailed analysis which separates entrants into research fields of émigrés who had previously patented in other fields into three groups: inventors with prior patents in other émigré classes only, inventors with prior patents in non-émigré classes only, and inventors with prior patents in both other émigré classes and non-émigré classes. The majority of entrants who had previously patented in other fields had patented in both non-émigré classes and other émigré classes before they began to patent in an émigré class (panel A of online Appendix Figure A3). Relatively few entrants had either patented exclusively in other émigré classes or in non-émigré classes, suggesting that non-émigré classes are an appropriate control.32

To further examine whether classes with patents by non-émigré German chemists are a good control, we compare patterns of switching between émigré and non-émigré classes. Controlling for the total number of pre-1933 patents, nearly the same numbers of patentees switched from émigré into non-émigré classes and from non-émigré into émigré classes. Most importantly, there is no evidence for a differential change after 1933 (online Appendix Figure A4).

To address the potential concern that entry into research fields of émigrés may be endogenous, we use the pre-1933 research fields of dismissed chemists as an instrument for the fields of émigrés. By construction, first-stage regressions for this specification are identical to a first-stage regression for the baseline, and confirm

---

32 The corresponding analysis for entrants into fields of other German chemists similarly indicates that most entrants with previous patents (in any field) had patented in both émigré and other non-émigré classes before they began to patent in a specific non-émigré class (panel B of online Appendix Figure A3).
that the pre-1933 fields of dismissed chemists are a good predictor of the fields of émigrés, with an $F$-statistic on the excluded instrument of 18.3 (column 2 of Table 3). Summary statistics indicate that pre-1933 fields of dismissed chemists attracted fewer entrants before 1933. After 1933, entry into pre-1933 fields of dismissed chemists increased relative to other fields (Table 8 and Figure 8).

Instrumental variable estimates indicate that entry into the fields of émigrés increased by 142.1 researchers per class and year after the dismissals (column 6 of Table 9, significant at 1 percent); entry by patentees without prior patents in the 166 classes increased by 109.5 patentees per class and year (column 8 of Table 9, significant at 1 percent). These results imply that about three-quarters of the new researchers who entered the fields of émigrés had no prior patents in the 166 classes. Thus, entry data indicate that the émigrés’ effect on US patenting was driven primarily by their ability to attract a new group of domestic inventors to their fields.

C. Co-Inventors and Co-Inventors of Co-Inventors

To further investigate the mechanism by which émigrés encouraged US innovation, we collect data on all co-inventors of the émigrés from joint US patents. Specifically, the impact of the émigrés may have been amplified and made more persistent through their collaborators. Overall, 47 co-inventors were granted at least one patent with one of the émigrés. Between 1920 and 1970, co-inventors patented 576 inventions in the 166 classes; 134 of them were joint patents with émigrés.
Scientists who became co-inventors of émigrés after the dismissal became disproportionately more likely to patent in émigré fields, not only in joint patents but also in their independent work. Before 1933, inventors who later became co-inventors of émigrés patented eight inventions. These patents were equally distributed across fields with and without émigré patents; four patents were exclusively assigned to émigré fields, and four patents were exclusively assigned to other fields. After 1933, co-inventors patented a total of 568 inventions, including 469 patents (83 percent) that were exclusively assigned to émigré fields (panel A of Table 10), 24 patents (4 percent) that were exclusively assigned to other fields, and 75 patents (13 percent) that were assigned to both.

Confirming the time patterns of the main estimates (Figure 3), co-inventors’ patenting activity in émigré fields increased most dramatically after 1940, from less than 10 to more than 20 patents per year, and remained high until the second half of the 1950s (Figure 9). Even in the 1960s, the number of patents in émigré fields remained above 10 in the early part of the decade and increased to 18 patents in 1967. Co-inventors’ patents that were assigned to both émigré and other fields began to increase in 1940, albeit at lower levels, and continued to increase until the late 1960s.

We also identify the co-inventors of co-inventors of the émigrés. Overall, 154 co-inventors of co-inventors patented at least one invention jointly with a co-inventor of an émigré. Between 1920 and 1970, co-inventors of co-inventors patented 1,660 inventions in the 166 classes; 177 inventions were jointly patented with co-inventors of émigrés. Similar to first-degree co-inventors, co-inventors of co-inventors became disproportionately more likely to patent in émigré fields. Before 1933, co-inventors of co-inventors patented 131 inventions, including 48 patents
(37 percent) that were exclusively assigned to émigré fields (panel B of Table 10); 59 patents (45 percent) that were exclusively assigned to other fields; and 24 patents (18 percent) that were assigned to both. After 1933, co-inventors of co-inventors patented a total of 1,529 inventions, including 1,103 patents (72 percent) that were exclusively assigned to émigré fields (panel B of Table 10); 162 patents (11 percent) that were exclusively assigned to other fields; and 264 patents (17 percent) that were assigned to both.

These data suggest that the émigrés’ effect on their collaborators may have been a significant channel by which the arrival of émigré chemists increased US invention. Collaborators of émigrés switched into research fields of émigrés after 1933, and continued to patent at higher levels throughout the 1950s. These patterns are even more pronounced when we consider networks of collaboration more broadly by including co-inventors of co-inventors.

D. Other, More Junior German Émigré Chemists

While our main tests are limited to examining the effects of émigré professors on US innovation, émigré professors may have been only the tip of the iceberg of a broader movement of scientists, which also included junior, and less prominent, German chemists. As a first step towards investigating this phenomenon, we collect data on younger German chemists who emigrated from Nazi Germany. Strauss et al. (1983) reports the names of 62 German chemists who were at least 18 years old in 1933—but did not hold a faculty position at the time of the dismissals. These individuals included university students and research assistants, as well as a small number of young industrial chemists who had worked at companies such as Hoffmann-La Roche, Hoechst, and Schering. Thirty-four of them moved to the United States after 1933. The average age of the junior émigrés was 30 in 1933, compared with an average age of 45 years for professors.

Patent data indicate that these junior chemists were active inventors in the same fields as émigré professors. Junior émigrés patented 175 inventions in the United States between 1920 and 1970 in the 166 classes of invention in our data; nearly all
of these patents (169 of 175 patents) were issued after 1933. Of the junior émigrés post-1933 patents, 113 (67 percent) were issued in classes with patents by senior émigrés; 34 patents (20 percent) were assigned to both émigré classes and classes with patents by other German chemists. Only 22 patents (13 percent) were assigned to classes that include only patents by other German chemists but not by émigré professors (Table 11). These statistics suggest that the research fields of prominent émigré professors, which we can capture with existing records, may be a proxy for the research fields of a broader, largely unobservable flow of German Jewish scientists, who may have contributed to the observed increase in US invention.

### IV. Conclusions

Historical accounts suggest that German Jewish émigrés revolutionized US science and innovation, but empirical evidence has been scarce. This paper presents the first systematic analysis of the émigrés’ effects on US innovation. Baseline estimates compare changes in patenting by US inventors after 1933 in chemistry for research fields of German émigrés with fields of other German chemists. This analysis indicates that US invention increased by 31 percent after 1933 in fields of German émigrés. A potential threat to the empirical approach is that émigrés may have chosen to work in fields in which US invention became more productive after 1933, after they had moved to the United States. To address this issue, we use the pre-1933 fields of dismissed German chemists as an instrument for the fields of émigrés to the United States. Consistent with historical accounts that émigrés to the United States may have been negatively selected, and that they were more likely to
work in less productive research fields in the United States, estimates from instrumental variable regressions exceed estimates from OLS.

To investigate the mechanism by which the arrival of German Jewish émigré scientists encouraged US innovation, we have collected a new inventor-level dataset of changes in US patenting. These data indicate that the arrival of German Jewish émigrés increased US invention by attracting a new group of domestic US inventors to the fields of émigrés, rather than by increasing the productivity of incumbent US scientists. Our findings of limited positive effects on incumbents are consistent with results from publications data for mathematics (Borjas and Doran 2012), which suggest that the arrival of a new group of highly skilled scientists may crowd out publications by incumbents. Analyzing patents instead of publications, however, allows us to investigate effects on incumbents in a setting that is less affected by capacity constraints, and estimate the overall effects of high-skilled immigrants on innovation.

The data also indicate that networks of co-inventors may have helped to amplify the émigrés’ effects on US innovation. US inventors who collaborated with émigré professors began to patent at substantially higher levels in the 1940s and continued to be exceptionally productive in the 1950s. These patterns suggest that émigré professors helped to increase US invention in the long run, by training a new group of younger US scientists, who then continued to train other scientists.

Importantly, our analysis is limited to investigating changes in US invention in the research fields of a small, albeit prominent, group of German Jewish émigré professors. Comparisons with patent data for a younger group of less prominent German Jewish scientists indicate that the fields of émigré professors may be a good proxy for the fields of a broader flow of German Jewish émigrés, which caused the observed increase in US invention.

## REFERENCES


<table>
<thead>
<tr>
<th></th>
<th>Patents assigned only to 60 émigré classes</th>
<th>Patents assigned only to 106 non-émigré classes</th>
<th>Patents assigned to both émigré and non-émigré classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1920–1932</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1933–1970</td>
<td>113</td>
<td>22</td>
<td>34</td>
</tr>
<tr>
<td>1920–1970</td>
<td>119</td>
<td>22</td>
<td>34</td>
</tr>
</tbody>
</table>

Notes: Data include young émigré chemists as listed in Strauss et al. (1983). Data on 1920–1970 patents were collected from Google Patents (www.patents.google.com).


