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ference methods (GVI with Rényi’s α-divergence uncertainty quanti-

fier and the F-VI methods of [Li and Turner, 2016] and [Hernandez-

Lobato et al., 2016]). For F-VI methods, σ̂2 produces a substitution

effect because it directly affects the target about which uncertainty

is quantified. For GVI methods, uncertainty quantification and loss

are additively separated, which prevents this substitution effect. . . 155

vii



List of Figures

2.1 Traditional Bayesian updating applied under ε-contamination. n =

1000 observations generated from g(x) = 0.9N
(
x; 0, 12

)
+0.1N

(
x; 5, 32

)
with Bayesian model f(x;µ, σ2) = N

(
x;µ, σ2

)
under NIG prior π(µ, σ2) =

N
(
µ; 0, 10σ2

)
IG(σ2; 2, 2). Left: Histogram of the data, separat-

ing the 90% uncontaminated points from the 10% contaminated

points, with the Bayesian predictive overlayed. Right: Log-Density

plot comparing the log-density of g(x) with the traditional Bayes

predictive and a standard Gaussian. Note how the densities of the

Bayesian predictive and g(x) agree at the mean of the contamina-

tion. Bottom: Gaussian QQ plot comparing the observed quantiles

of the data with that of the fitted Bayesian model and standard Gaus-

sian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Influence Plots: The Fisher-Rao divergence between a posterior with

and without a new observation at varying posterior standard devi-

ations away from the previous posterior mean. Top: Bayesian in-

ference minimising the KLD, TVD, HD and αD. Bottom: Bayesian

inference minimising the KLD, βD and γD . . . . . . . . . . . . . . . 50

2.3 Posterior predictive distributions (smoothed from a sample) arising

from Bayesian minimum divergence estimation fitting a normal distri-

butionN (µ, σ2) to an ε-contaminated normal 0.9N (0, 1)+0.1N (5, 32)

(top left), a t-distribution t3 (top right) and the tracks1 dataset (bot-

tom left) using inference targeting minimising the KLD (red), HD

(blue), TVD (pink), αD (green), βD (orange) and the γD (light

blue). The bottom right plots the posterior predictive distributions

(smoothed from a sample) from alternative models using Bayes’ rule,

Normal (red), Student’s-t (blue), logNormal (green) and gamma (or-

ange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

viii



2.4 A data sets simulated from the heteroscedastic linear model y ∼
N
(
Xβ, σ(X1)2

)
, with σ(X1) = exp (2X1/3) and p = 1. . . . . . . . . 57

2.5 Left: One step ahead posterior predictions arising from Bayesian

minimum divergence estimation fitting AR models with the correctly

chosen lags to an AR(3) with no additional error (top), an AR(1)

with GARCH(1,1) errors, α = 0.99, ω = 2 (middle) and a AR(1)

with GARCH(1,1) errors, α = 0.75, ω = 1 (bottom) using infer-

ence targeting minimising the KLD (red), HD (blue), TVD (pink), αD

(green), βD (orange) and the γD (light blue). Right: the differ-

ence in one step ahead posterior squared prediction errors when us-

ing Bayes’ rule and minimising the HD. When the model is correctly

specified all of the methods appear to perform similarly. Under mis-

specification minimising the HD does a much better job of correctly

capturing the underlying dependence in the data. . . . . . . . . . . . 61

2.6 The loss functions of the KLD and TVD (left) and the HD and αD

(right) for different values of f(x; θ)/g(x). . . . . . . . . . . . . . . 66

3.1 Posterior predictive mass functions for one exchangeable observation

when fitting a Poisson likelihood (Poi), a two component mixture of

Poissons likelihood (Poi Mix) and a zero-inflated Poisson likelihood

(ZI Poi), constrained to fit within the neighbourhood N 0.1
TVD, to the

BioChemist dataset. Left: using Bayes’ rule (KLD-Bayes) updat-

ing. Right: using updating aimed at minimising the TVD (TVD-Bayes).102

3.2 Posterior predictive mass functions for one exchangeable observation

when fitting a Poisson likelihood (Poi), a two component mixture of

Poissons likelihood (Poi Mix) and a zero-inflated Poisson likelihood

(ZI Poi), constrained to fit within the neighbourhood N 0.2
TVD, to the

GrouseTicks dataset. Left: using Bayes’ rule (KLD-Bayes) up-

dating. Right: using updating aimed at minimising the TVD (TVD-

Bayes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3 Posterior predictive mass functions for one exchangeable observation

when fitting a Poisson likelihood (Poi), a two component mixture

of Poissons likelihood (Poi Mix), a zero-inflated Poisson likelihood

(ZI Poi) and a negative-binomial likelihood (NB), unconstrained a

priori, to the BioChemist dataset. Left: using Bayes’ rule (KLD-

Bayes) updating. Right: using updating aimed at minimising the

TVD (TVD-Bayes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

ix



3.4 Posterior predictive mass functions for one exchangeable observation

when fitting a Poisson likelihood (Poi), a two component mixture

of Poissons likelihood (Poi Mix), a zero-inflated Poisson likelihood

(ZI Poi) and a negative-binomial likelihood (NB), unconstrained a

priori, to the GrouseTicks dataset. Left: using Bayes’ rule (KLD-

Bayes) updating. Right: using updating aimed at minimising the

TVD (TVD-Bayes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5 Probability density function (pdf) and cumulative density function

(cdf) of a Gaussian f(x; θf ) = N
(
x;µf , σ

2
adjσ

2
f

)
and a Student’s-t

h(x; θh) = tν(x;µh, σ
2
h) random variable, with µ = 0 and σ2 = 1.

The parameters ν = 5 and σ2
adj = 1.16 where chosen such that the

two densities have the same median and quartiles which also ensured

that {f(x; θf ), h(x; θh)} ∈ N TVD
ε (defined in (3.12)) with ε = 0.043

for all µ = µf = µh and σ2 = σ2
f = σ2

h. The two likelihoods are

accurate within any sensible drawing accuracy. So requiring a DM to

distinguish between these two seems unreasonable. . . . . . . . . . . 108

3.6 Posterior predictive distributions and parameter posterior distribu-

tions for
(
µ, σ2

)
under Bayes’ rule updating (KLD-Bayes) (left) and

βD-Bayes (right) under the likelihood functions f(x; θf ) = N
(
x;µ, σ2

adjσ
2
)

(red) and h(x; θh) = tν(x;µ, σ2) blue where ν = 5 and σ2
adj = 1.16.

Both the parameter and predictive inference is stable across N TVD
ε

under the βD-Bayes and is not under Bayes’ rule (KLD-Bayes) . . . 109

3.7 Plots comparing the stability of Bayes’ rule and βD-Bayes for β =

1.125, 1.25, 1.5 inference for linear regression models under either

Gaussian or Student’s-t error distributions applied to the Energy

dataset. From left to right: L1 norm of the difference between the

posterior means for the regression coefficients θ, absolute difference

between the posterior mean estimates for the residual variances σ2,

absolute difference in predictive log-score applied to the training set,

absolute difference in predictive βD-score applied to the training set

β = 1.125, 1.25, 1.5. All averaged over 50 subsets of training points. 112

x



3.8 Plots comparing the stability of Bayes’ rule and βD-Bayes for β =

1.125, 1.25, 1.5 inference for linear regression models under either

Gaussian or Student’s-t error distributions applied to the Power

dataset. From left to right: L1 norm of the difference between the

posterior means for the regression coefficients θ, absolute difference

between the posterior mean estimates for the residual variances σ2,

absolute difference in predictive log-score applied to the training set,

absolute difference in predictive βD-score applied to the training set

β = 1.125, 1.25, 1.5. All averaged over 50 subsets of training points. 113

3.9 Plots comparing the stability of Bayes’ rule and βD-Bayes for β =

1.125, 1.25, 1.5 inference for linear regression models under either

Gaussian or Student’s-t error distributions applied to the Concrete

dataset. From left to right: L1 norm of the difference between the

posterior means for the regression coefficients θ, absolute difference

between the posterior mean estimates for the residual variances σ2,

absolute difference in predictive log-score applied to the training set,

absolute difference in predictive βD-score applied to the training set

β = 1.125, 1.25, 1.5. All averaged over 50 subsets of training points. 114

3.10 Plots comparing the stability of Bayes’ rule and βD-Bayes for β =

1.125, 1.25, 1.5 inference for linear regression models under either

Gaussian or Student’s-t error distributions applied to the Boston-

Housing dataset. From left to right: L1 norm of the difference

between the posterior means for the regression coefficients θ, abso-

lute difference between the posterior mean estimates for the residual

variances σ2, absolute difference in predictive log-score applied to the

training set, absolute difference in predictive βD-score applied to the

training set β = 1.125, 1.25, 1.5. All averaged over 50 subsets of

training points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.1 Black: Contours of a standard bivariate Gaussian with correlation

ρ = 0.9 drawn at density 0.01, 0.1 and 0.3. Red: corresponding

contours of the independent bivariate Gaussian minimising the KLD

associated with traditional VI . . . . . . . . . . . . . . . . . . . . . 122

4.2 A comparison of the sizes of the KLD with the D
(α)
A , D(β)

B , D(α)
AR and

D
(γ)
G between two bivariate NIG families with an = 512, bn = 543,

µn = (2.5, 2.5), Vn = diag(0.3, 2) and a0 = 500, b0 = 500, µ0 = (0, 0),

V0 = diag(25, 2) for various values of the divergence hyperparameters. 134

xi



4.3 Marginal VI and GVI posteriors for the θ1 coefficient of a Bayesian

linear model under the D(α)
A prior regulariser for different values of the

divergence hyperparameters. The boundedness of the D(α)
A causes GVI

to severely over-concentrate if α is not carefully specified. Prior Spec-

ification: σ2 ∼ IG(20, 50), θ1|σ2 ∼ N (0, 25σ2) and θ2|σ2 ∼ N (0, 25σ2). 134

4.4 Marginal VI and GVI posteriors for the θ1 coefficient of a Bayesian

linear model under the D(α)
AR, D(β)

B , D(γ)
G and 1

w
KLD prior regularisers for

different values of the divergence hyperparameters. Correlated covari-

ates cause dependency in the exact posterior of the coefficients θ, and

as a result VI underestimates marginal variances. GVI has the flexi-

bility to more accurately capture the exact marginal variances. Prior

Specification: σ2 ∼ IG(20, 50), θ1 ∼ N (0, 52) and θ2 ∼ N (0, 52). . . 136

4.5 Marginal VI and GVI posteriors for the θ1 coefficient of a Bayesian

linear model under different prior specifications and the using the
1
w

KLD as the uncertainty quantifying divergence for several values of

w. Prior specification: σ2 ∼ IG(3, 5). . . . . . . . . . . . . . . . . . . 137

4.6 Marginal VI and GVI posteriors for the θ1 coefficient of a Bayesian

linear model under different prior specifications and the using the

D
(α)
AR as the uncertainty quantifying divergence for several values of α.

Prior specification: σ2 ∼ IG(3, 5). . . . . . . . . . . . . . . . . . . . . 138

4.7 Marginal VI and GVI posteriors for the θ1 coefficient of a Bayesian

linear model under different prior specifications and using the D(β)
B as

the uncertainty quantifying divergence for several values of β. Prior

specification: σ2 ∼ IG(3, 5). . . . . . . . . . . . . . . . . . . . . . . . 139

4.8 Marginal VI and GVI posteriors for the θ1 coefficient of a Bayesian

linear model under different prior specifications and the using the

γD as the uncertainty quantifying divergence for several values of γ.

Prior specification: σ2 ∼ IG(3, 5). . . . . . . . . . . . . . . . . . . . . 140

xii



4.9 Marginal Exact, VI, D(α)
AR-VI [Li and Turner, 2016] and GVI using the

− log(f(xi; θ)) and D
(α)
AR prior regulariser posteriors for the coefficients

θ = (µ1, µ2) of a 2-component mixture model. Top: Case 1. The

exact posterior is bimodal as a result of label-switching. VI and GVI

are able to concentrate on one of the combinations of parameters min-

imising the loss. In contrast, D(α)
AR-VI is smoothing between the two

modes. Note in particular that the highest posterior mass is placed

at a locally (least) likely combination of µ1 and µ2. Bottom: Case

2. Here the two components are separated further. The right hand

plot shows the negative impact the D
(α)
AR-VI posterior approximation

has predictively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.10 Comparing test set performance on the BNN between F-VI, GVI with

alternative choices for D, and VI. Top row: Negative test log likeli-

hoods. Bottom row: Test RMSE. The lower the better. . . . . . . 151

4.11 Variational posterior q(M(θ, xi)|x) overM , the estimated mean of the

response variable, for VI, the D
(α)
A -VI method of Hernandez-Lobato

et al. [2016], the D(α)
AR-VI method of Li and Turner [2016] and GVI for

D =D
(α)
AR on three test points on the Boston data sets; based on 1,000

samples each. One can see that the posteriors over θ inherit the zero-

avoiding properties of their approximating divergence as expected.

Thus, they produce flatter variances. Note that the GVI methods

with more conservative uncertainty quantification also provide flatter

posterior variances over θ. . . . . . . . . . . . . . . . . . . . . . . . 153

4.12 Posterior predictives q(y|x) for VI, the D(α)
A -VI method of Hernandez-

Lobato et al. [2016], the D
(α)
AR-VI method of Li and Turner [2016]

and GVI for D =D
(α)
AR on three test points on the Boston data sets.

Notice that relative to standard VI, all F-VI posterior predictives

are more contracted. In contrast, GVI with a more conservative

uncertainty quantifier does what one would expect zero-avoiding F-

VI methods to do. Thus, while F-VI may provide flatter marginal

variances in the (variational) posterior for θ, this does not translate

into the predictive. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.13 Comparing performance of GVI with γD-loss function and KLD prior

regulariser and VI for DGPs with L layers. Top row: Negative test

log likelihoods. Bottom row: Test RMSE. The lower the better. . 158

xiii



5.1 Air pollution data: NOX pollution levels across the year at 4 of the

29 sites in London. Quarter hourly readings are averaged to pro-

duce daily pollution levels and week-day variations are taken out by

standardisation. Also marked is the congestion charge introduction,

17/02/2003 (solid vertical line). . . . . . . . . . . . . . . . . . . . . 165

5.2 Air pollution data: Most likely run-lengths at each time point t for

standard BOCPD run-length posterior. Also marked are the con-

gestion charge introduction, 17/02/2003 (solid vertical line) and the

retrospective MAP segmentations (crosses). . . . . . . . . . . . . . . 166

5.3 Exemplary contour plots of bivariate marginals for the approximation

q̂βp(θ;y(t−l):(t−1)) of Eq. (5.40) (dashed) and the target π(βp)(θ|y(t−l):(t−1))

(solid) estimated and smoothed from 95, 000 Hamiltonian Monte Carlo

samples for the βD-Bayes posterior for a BLR with d = 1, two regres-

sors, and βp = 1.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.4 Plot of the estimate k̂ [Yao et al., 2018a], quantifying the accuracy of

the variational approximation q̂βp to the exact posterior distribution

π(βp), for different values of βp applied to a BVAR model with response

dimension d and predictor dimension 2d for d = 5, 10, 15 and 25. The

grey dotted line depicts the threshold of k̂ < 0.5 demonstrating the

values of βp for which q̂βp can be considered ‘close enough’ to π(βp)

[Yao et al., 2018a]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.5 Visualisation for the initialisation of β. A threshold of σ = 2.75

standard deviations from the mean is chosen as the cut off to start

declaring outliers. Under the KLD-Bayes (β = 1) the influence curve

is always increasing. Increasing to β = 1.05 makes the βD-Bayes

influence curve concave, but the maximum point is much larger than

σ = 2.75. Increasing again β = 1.1 brings the maximal point closer

to σ = 2.75 and increasing further to β = 1.25 makes the maximal

influence point at σ = 2.75. Thus β = 1.25 would be chosen as the

initial value for β given a σ = 2.75 threshold for outliers. . . . . . . . 184

5.6 Maximum A Posteriori (MAP) segmentation and run-length distribu-

tions of the well-log data. Robust segmentation depicted using solid

lines, CPs additionally declared under standard BOCPD with dashed

lines. The corresponding run-length distributions for robust (middle)

and standard (bottom) BOCPD are shown in greyscale. The most

likely run-lengths are dashed. . . . . . . . . . . . . . . . . . . . . . . 187

xiv



5.7 Maximum A Posteriori (MAP) CPs of standard BOCPD and shown

as dashed vertical lines and RBOCPD show in soldi lines. True CPs

at t = 200, 400. In high dimensions it becomes increasingly likely

that the model’s tails are misspecified in at least one dimension. . . 188

5.8 Air pollution data: On-line model posteriors for three of the most

likely BVAR models (solid, dashed, dotted) and run-length posteriors

(plotted in greyscale) with most likely run-lengths dashed for stan-

dard BOCPD (top two panels) and the RBOCPD (bottom two pan-

els). Also marked are the congestion charge introduction, 17/02/2003

(solid vertical line) and the MAP segmentations (crosses) . . . . . . . 190

xv



Acknowledgments

Firstly and foremostly I must thank my supervisor Prof. Jim Q. Smith for mentoring

me throughout my PhD. I doubt whether many PhD. students are as lucky as I have

been to have a supervisor so caring and generous with their time. Our conversations

have always been entertaining and have inspired me to think deeply about the

philosophy of Bayesian statistics. I am also indebted to Prof. Chris Holmes at the

University of Oxford for his co-supervision. His paper on General Bayesian Updating

provided the spark that started this PhD thesis and I have, and will, always look

forward to our brainstorming session.

This PhD thesis would certainly not have progressed as far as it has done

without my collaborations with my brilliant colleague and friend Jeremias Knoblauch

and his supervisor Dr. Theo Damoulas. Their knowledge of applied problems and

desire for real world impact provided me with a platform to implement my ideas

and helped to convince me they might actually work.

Additionally I would like to thank Prof. Stephen Walker for hosting me for

an enjoyable and educational 3 months at the University of Texas at Austin, and for

his continued mentoring. Other thanks must be given to Prof. Simon French, who

supervised my masters thesis, encouraged me to pursue a PhD, and co-authored my

first publication, and to Prof. Christian Robert for providing interesting feedback

and discussion on early parts of this work, for encouraging another of my early

submissions and for acting as my internal examiner. I am also extremely grateful to

my external examiner, Dr. Danny Williamson, whose interest and thorough reading

of this thesis not only helped me to fix many typos and improve the presentation

of some key arguments, but offered interesting discussion in the viva and a different

xvi



perspective on some of the philosophical arguments that have ultimately enriched

the thesis greatly.

I must also thank my friends and peers Giuseppe, Nathan, Joe, Paul and last

but not least Beniamino, for providing the company that is required to keep one sane

when undertaking a PhD. Lastly I must thank my parents, Tony and Sheila, without

whose constant prompting, I may never have even started writing this thesis.

xvii



Declarations

I declare that I have written and developed this PhD thesis entitled “Bayesian

Inference in the M-open world” completely by myself, under the supervision of

Prof. Jim Q. Smith and Prof. Chris Holmes, for the degree of Doctor of Philosophy

in Statistics. I have not used sources or means without declaration in the text. I also

confirm that this thesis has not been submitted for a degree at any other university.

During my PhD I have written the following articles, listed in order of writing:

1. “Subjective Bayesian updating” a self authored discussion piece on the

Read Journal of the Royal Statistical Society Series A (JRSSA) article “Be-

yond subjective and objective in statistics” [Gelman and Hennig, 2015]. Ad-

ditionally this appeared as part of some complied discussion pieces in “Some

discussions on the Read Paper Beyond subjective and objective in statistics by

A. Gelman and C. Hennig” [Celeux, Jewson, Josse, Marin, and Robert, 2017].

This article can be found at https://arxiv.org/abs/1705.03727.

2. “Principles of Bayesian Inference Using General Divergence Cri-

teria” [Jewson, Smith, and Holmes, 2018], in collaboration with my su-

pervisors Prof. Jim Q. Smith and Prof. Chris Holmes. This article has

been peer reviewed and published in a special edition of the journal ‘En-

tropy’ titled ‘Foundations of Statistics’. This article can be found at https:

//www.mdpi.com/1099-4300/20/6/442.

3. “Doubly Robust Bayesian Inference for Non-Stationary Streaming

Data with β-Divergences” [Knoblauch, Jewson, and Damoulas, 2018], in

collaboration with fellow PhD student Jeremias Knoblauch and his supervisor

xviii

https://arxiv.org/abs/1705.03727
https://www.mdpi.com/1099-4300/20/6/442
https://www.mdpi.com/1099-4300/20/6/442


Dr. Theo Damoulas. This article has been peer reviewed and published in the

32nd proceedings of the Advances in Neural Information Processing Systems

(NeurIPS). This article can be found at https://papers.nips.cc/paper/

7292-doubly-robust-bayesian-inference-for-non-stationary

-streaming-data-with-beta-divergences.pdf. The division of labour in

this project between myself and Jeremias was fairly clear. Together we decided

to investigate whether the methods discussed in Jewson et al. [2018] could

help rectify some of the problems with Knoblauch and Damoulas [2018]. I

conceptualised the algorithm (Sections 5.3 and 5.4), derived the variational

inference mechanism (Section 5.4.4) and proved the theorems in the paper

(Theorems 11 and 12). Jeremias implemented the algorithm and adapted it

to run in real time with real data (Section 5.4.6). He also produced all of the

results beyond toy examples (Section 5.5). I proposed the initialisations for

β and we worked together to derive the on-line optimisation for β (Section

5.4.6).

4. “Generalised Variational Inference” [Knoblauch, Jewson, and Damoulas,

2019], in collaboration with fellow PhD student Jeremias Knoblauch and his

supervisor Dr. Theo Damoulas. This article has been submitted to a peer

reviewed journal and at the time of writing is still under review. A preprint of

this article can be found at https://arxiv.org/pdf/1904.02063.pdf. The

division of labour between Jeremias and I was slightly less clear for this piece

of work. Our work with variational inference in Knoblauch et al. [2018] lead

us both independently to notice that the ELBO for variational inference was a

constrained optimisation of the general Bayesian objective function for Bayes’

rule (Section 4.2.2). Jeremias then proposed we extend this to attempt to

fix the issues associated with VI. We conceptualised the axioms together, but

Jeremias proved the theorems associated with these axioms (Section 4.3.2). I

conducted and analysed the toy experiments looking at the impact of chang-

ing the prior regularising divergence (Section 4.4.2) and the multi-modal la-

bel switching example demonstrating the importance of our axioms (Section

xix

https://papers.nips.cc/paper/7292-doubly-robust-bayesian-inference-for-non-stationary
https://papers.nips.cc/paper/7292-doubly-robust-bayesian-inference-for-non-stationary
-streaming-data-with-beta-divergences.pdf
https://arxiv.org/pdf/1904.02063.pdf


4.5.1). However Jeremias identified and analysed the problems F-VI has with

hyperparameetr optimisation (Section 4.8.1). I proved and analysed the theo-

rems providing an interpretation for GVI as a posterior approximation (Section

4.6). However, Jeremias derived the black box implementation of GVI (Section

4.7) and applied this to the Bayesian neural networks and the deep Gaussian

processes (Section 4.8).

Chapter 1 provides the necessary background for this thesis, often presented

with different notation form the literature (references are provided). Chapter 2 is

an extended version of the content of Jewson et al. [2018]. Chapters 4 and 5 are

extended versions of the content of Knoblauch et al. [2019] and Knoblauch et al.

[2018] respectively, where I particularly aim to focus on my contributions and how

I interpret my joint work with Jeremias. Chapter 3 has not been published at the

time of writing but constitutes work I have done on my own with my supervisors.

We intend to submit this for publication in the near future. Many of the figures and

text in this thesis have been taken from the aforementioned articles.

Celeux, Gilles and Jewson, Jack and Josse, Julie and Marin, Jean-Michel

and Robert, Christian P (2017). Some discussions on the Read Paper” Beyond

subjective and objective in statistics” by A. Gelman and C. Hennig. arXiv preprint

arXiv:1705.03727 , 1–5.

Jewson, Jack and Smith, Jim and Holmes, Chris (2018). Principles of

Bayesian inference using general divergence criteria. Entropy, 20, 6, 442–466.

Knoblauch, Jeremias and Jewson, Jack and Damoulas, Theodoros (2018).

Doubly Robust Bayesian Inference for Non-Stationary Streaming Data using β-

Divergences. Advances in Neural Information Processing Systems (NeurIPS), 64–75

Knoblauch, Jeremias and Jewson, Jack and Damoulas, Theodoros. (2019).

Generalized Variational Inference. arXiv preprint arXiv:1904.02063 , 1–61.

xx



Abstract

This thesis examines Bayesian inference and its suitability for modern sta-

tistical applications. Motivated by the vast quantities of data currently available

for analysis, we forgo the M -closed assumption that the model used for inference is

correctly specified and place ourselves in the more realistic M -open world. Here, we

assume that the model used for statistical inference is at best an approximation.

In the M -open world Bayes’ rule updating has been shown [Berk et al., 1966;

Bissiri et al., 2016] to learn about the model parameters minimising the log-score, or

equivalently the Kullback-Leibler divergence (KLD) to the data generating process

(DGP). It is also known that minimising the log-score puts great emphasis on cor-

rectly capturing the tails of the sample distribution of the data. We observe, that

this emphasis is so great, that the majority of the data can be ignored to sufficiently

account an outlier. This is purportedly desirable when inference is the goal of the

analysis. However, in Chapter 2 we show that when informed decision making via

the minimisation of expected losses is the goal of the statistical analysis, as it so

often is, Bayes’ rule inferences are less desirable. This motivates us to consider

minimising alternative divergences to the KLD.

Bayesian updating minimising alternative divergences to the KLD has briefly

been considered in the literature. However, those methods are neither sufficiently

well motivated or properly justified as a principled updating of beliefs. We are able

to use the foundations of general Bayesian inference (GBI) to produce belief updates

minimising any statistical divergence. This allows us to consider the divergence as

a subjective judgement and motivate several divergences from a decision making

xxi



perspective.

Chapter 3 extends the motivation for minimising divergences alternative to

the KLD. Here, we consider the model to be one among a equivalence class of belief

models all respecting the belief judgements the decision maker (DM) has been able to

make. It is therefore desirable for inference to be stable across this equivalence class.

This is a well studied problem with respect to the prior component of the Bayesian

analysis, but we believe we are one of the first to consider extending these result to

the likelihood model. We prove that, unlike Bayes’ rule updating, inference designed

at minimising the total-variation divergence (TVD), the Hellinger divergence (HD),

and the β-divergence (βD), are able to provide provably stable inferences.

Chapter 4 is inspired by the computation required to infer posteriors in

modern Bayesian inference. We derive a generalised optimisation problem defining

Bayesian inference. This is axiomatically motivated and contains Bayes’ rule infer-

ence, GBI and variational inference (VI) as special cases. This generalised Bayesian

inference problem is composed of three interpretable components: a loss function

defining the limiting parameter of interest for the analysis; a prior regularising di-

vergence describing how the posterior should quantify uncertainty; and a set of

admissible posterior densities to optimise over. Chapters 2 and 3 examined chang-

ing the target parameter of inference to deal with model misspecification. Chapter 4

then shows that changing the prior regularising divergence can resolve VI’s tendency

to allow posteriors to over-concentrate, we call these methods generalised variational

inference (GVI). We also show situations where methods failing to satisfy our axioms

produces undesirable and non-transparent inference. We show that GVI is able im-

prove upon state of the art performances for deep Gaussian processes and Bayesian

neural networks.

The final chapter considers the challenging and widely applicable problem of

detecting regime changes in multi-dimensional on-line streaming data, Bayesian on-

line changepoint detection (BOCPD). BOCPD must use simple computable models in

order to run in real time. The current methodology allows model misspecifications

and outliers associated with these simple models to cause the detection of spurious

xxii



changepoints (CP). We robustify this analysis using the βD. We are able to prove

results demonstrating that greater evidence is required in order to force the declara-

tion of a CP when using the βD instead of the KLD. Additionally, we deploy a type

of GVI algorithm to produces fast and accurate posterior inference that are suitable

for on-line application. Applying this robustified algorithm to data recording air

pollution in London finds a changepoint around the introduction of the congestion

charge but, unlike previous methods does not detect any further regime changes.
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Notation and Abbreviations

General Notation

π(·), π(·|x) are distributions for θ
π(·|·) denotes a posterior distribution conditional on some observables
g denotes the data generating process
f(·; ·) denotes the conditioning of a likelihood on its parameters or hy-

perparameters. Unless otherwise stated assume that all likelihood
functions and data generating processes are absolutely continuous
on their support

N (µ, σ2) denotes a univariate Gaussian distribution with mean µ and vari-
ance σ2

Np (µ,Σ) denotes a multivariate Gaussian distribution of dimension p ≥ 2
with mean vector µ and covariance matrix Σ

IG(a, b) denotes a inverse gamma distribution with shape a and scale b
G(a, b) denotes a gamma distribution with shape a and scale b

Divergence Abbreviations

D(p||q) A general divergence between p and q, assumed to be asymmetric
D(p, q) A symmetric divergence between p and q
KLD The Kullback-Leibler Divergence
TVD The Total Variation Divergence
HD The Hellinger Divergence
αβγD The αβγ-Divergence (referred to in text)
D

(α,β,r)
G The αβγ-Divergence (referred to in equations with parameters α,

β and γ)
αD The α-Divergence (referred to in text)
D

(α)
A The α-Divergence (referred to in equations with parameter α)

Rényi-αD The Rényi α-Divergence (referred to in text)
D

(α)
AR The Rényi α-Divergence (referred to in equations with parameter

α)
βD The β-Divergence (referred to in text)
D

(β)
B The β-Divergence (referred to in equations with parameter β)

γD The γ-Divergence (referred to in text)
D

(γ)
G The γ-Divergence (referred to in equations with parameter γ)
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General Abbreviations

IID Independently and Identically Distributed
DM The Decision Maker
DGP The Data Generating Process
M -closed The M -closed world
M -open The M -open world
GBI General Bayesian Inference
LLB Loss Likelihood Bootstrap
MLE Maximum Likelihood Estimate
MCMC Markov Chain Monte Carlo
MDE Minimum Divergence Estimation
MAP Maximum A Posteriori
BMA Bayesian Model Averaging
VI Variational Inference
ELBO Evidence Lower Bound
EP Expectation Propagation
F-VI Variational approximation to a posterior minimising divergence F

between the approximating family and the actual posterior
VAE Variational Auto-Encoder
GVI Generalised Variational Inference
MSE Mean Squared Error
RMSE Root Mean Squared Error
MedSE Median Squared Error
NIG Normal Inverse Gamma
BLR Bayesian Linear Regression
AR Auto-Regression
VAR Vector Auto-Regression
BVAR Bayesian Vector Auto-Regression
FDR False Discovery Rate
SGD Stochastic Gradient Descent
BNN Bayesian Neural Network
GP Gaussian Process
KDE Kernel Density Estimate
CP Changepoint
PPM Product Partition Model
BOCPD Bayesian On-line Changepoint Detection
RBOCPD Robust Bayesian On-line Changepoint Detection
NOX Nitrous Oxide
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Chapter 1

Introduction

This thesis adopts the Bayesian paradigm of statistical analysis. There have been

several fundamental developments of Bayesian statistics, the most notable of these

belong to De Finetti [1931], Savage [1972] and most recently to Bernardo and Smith

[2001]. Here, for simplicity we follow the methods as expressed in Bernardo and

Smith [2001] and use this as a springboard to redevelop some of their approach.

1.1 Bayesian Decision Making

According to Bernardo and Smith [2001], coherent and rational decision making

should take place via a Bayesian analysis. A decision problem consists of a set Θ of

possible decisions that could be made in the face of a set of possible outcomes/states

of the world Z. The decision maker’s (DM’s) uncertainty over the space of outcomes

should be characterised by a probability distribution, π, on Z. The consequences

(reward) of each possible outcome, z ∈ Z, given decision θ ∈ Θ should be charac-

terised using a loss (utility) function, ` : Z × Θ → R. The loss function and belief

distribution should then be combined to provide a preference ordering over decisions

based on each decision’s expected loss. The Bayes’ optimal decision (often called

the Bayes estimate) is the decision minimising this expected loss

θ̂ := arg min
θ∈Θ

Ez [`(z, θ)] . (1.1)

One popular procedure to help the DM frame their beliefs about the unknown out-

come, especially if this belief is going to be informed by some data x [O’Hagan,

2012], is to use Bayes’ rule. Bayes’ rule says that given initial/prior beliefs about z

characterised as probability distribution π(z), and a likelihood specifying the prob-

ability of observing data x under a particular state of the world z, p(x|z), then the
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updating of beliefs from before to after observing data x should follow

π(z|x) =
π(z)p(x|z)

p(x)
. (1.2)

In Eq. (1.2), π(z|x) is called the posterior belief or posterior density and the

normalising constant, often called the marginal likelihood or model evidence, is

p(x) =
∫
p(x|z)π(z)dz. In this way, Bayes’ rule can be used by a DM to combine

what they learn from the data with their beliefs prior to seeing the data in order to

calculate the expectation in Eq. (1.1).

1.1.1 Inferential Decision Problems

Next we present how Bernardo and Smith [2001] express statistical inference within

their framework, placing specific focus on the intrinsic relationship this has with the

Kullback-Leibler divergence and the log-score. We aim to augment this methodology

in later chapters of this thesis.

Bernardo and Smith [2001] frame statistical inference as a specific form of

the decision making problem. Here the decision θ to be made is the parameter of a

probability density f(·; θ) for future observable z. This setting is convenient as the

de Finetti representation theorem [De Finetti, 1931] states that under the assump-

tion of exchangeable observations (x, z) that there exists a parameter θ such that

f(x, z; θ) = f(z; θ)
∏n
i=1 f(xi; θ). Therefore this parameter θ provides conditional

independence between previously observed data x and future exchangeable obser-

vation z. Unless otherwise stated we assume that f(x; θ) is absolutely continuous

on the support X .

In this situation Bernardo and Smith [2001] argue that the loss function

associated with scoring probabilistic predictions (often called a ‘scoring rule’) should

be proper and local. A proper scoring rule results in the DM’s expected loss being

minimised when the DM truly quotes their beliefs, and a local scoring rule is one

where the score only depends on the quoted probability of the actual observed

outcome and nothing else. It was proved long ago that the only proper, local scoring

rule is the logarithmic scoring rule (log-score) [Good, 1952]:

Definition 1 (The logarithmic scoring rule (log-score) [Good, 1952]). For quoted

probability density f(·; θ) the log-score for a set of observations z in the support of

f , is

`(z, θ) = `(z, f(·; θ)) =
n∑
i=1

− log (f(zi; θ)) . (1.3)
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A quantity of interest for inferential decisions and the log-score is the ex-

pected extra loss when believing the data was distributed according to f(·; θ) when

it was actually distributed according to distribution g:

EZ∼g(·)[− log(f(z; θ))]− EZ∼g(·)[− log(g(z))] =: KLD(g||fθ), (1.4)

where KLD (g||fθ) is the Kullback-Leibler divergence from the model fθ to the data

generating density g. As a result, minimising the log-score in expectation over

observed data is equivalent to minimising the KLD to the data generating density g.

Definition 2 (The Kullback-Leibler Divergence (KLD) [Kullback and Leibler, 1951]).

The KLD between probability densities g(x) and f(x) is given by

KLD(g||f) =

∫
g(x) log

g(x)

f(x)
dx. (1.5)

As is well known but often forgotten, someone who seeks to produce predic-

tions minimising the log-score, or the KLD, will have to beware of approximating

the probability of an event by 0 [Bernardo and Smith, 2001], since if they are wrong,

they will incur an infinite loss.

This thesis focuses on the M -open world, where the density f(z; θ) will be

considered as misspecified. Precisely what this means is captured by the following

definition provided by Bernardo and Smith [2001].

Definition 3 (M -closed and M -open world [Bernardo and Smith, 2001]). The M -

closed world assumption assumes there exists θ0 such that the observed data was

generated from the model with parameter θ0, i.e.

x1:n = x1, . . . , xn ∼ fθ0 . (1.6)

On the other hand the M -open world assumes

x1:n = x1, . . . , xn ∼ g (1.7)

and that there may well not exist a θ0 such that g = fθ0

While Definition 3 presents the M -closed and M -open world from the point of

view of independently and identically distributed (IID) observations. Both regression

and time series models can also be formulated using such a framework. Here, the

observations are considered IID conditional on the value of some information, in

regression this is the value of the corresponding predictors of that observation while
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in time series this corresponds to the filtration of information prior the observation.

We elaborate on what exactly g might refer to in Section 1.1.2.

1.1.2 The M -open world

While Bernardo and Smith [2001] provide the recipe for coherent and rational de-

cision making in the face of uncertainty, they are quite explicit that their recipe is

prescriptive rather than descriptive. Bernardo and Smith [2001] describe how people

should make decision in an ideal world, not how people do make decisions in the

real world. One particular part of this recipe that we focus on in this thesis is the

DM’s ability to specify their beliefs in terms of a probability distribution. Bernardo

and Smith [2001] prescribe that this can be done by comparing a bet on the uncer-

tain outcome, with a bet against some objectively defined probability, for example a

roulette wheel or a coin flip. The prescription of Bernardo and Smith [2001] requires

that this comparison can be done exactly and for as many probability statements

that need to be elicited. When Bayes’ rule is being used, this elicitation must be

perfected for both the prior and the likelihood. In this thesis we will focus mainly

on the likelihood specification, obtained after such an elicitation.

In Goldstein [1990] the author identifies that in order to correctly condition

upon observed data in a Bayesian updating of beliefs, a model for the whole world

in which the observations occur must be constructed. This requires many more

probability specifications than any DM is ever going to be able to make, especially

when eliciting continuous densities. So from a practical point of view, in order to

implement a Bayesian analysis we must use some interpolating approximation of

what the DM believes were they to have time to express it. So the formal analysis

uses probabilistic densities that are not those the DM would use were they to have

the infinite time necessary to reflect on them. This defines the subjectivist opinion

of the M -open world - the model used for the belief updating is only ever feasibly

an approximation of the DM’s true beliefs.

Throughout this thesis I make the M -open world assumption. Within this

framework we acknowledge that any class of models is unlikely to capture either the

actual sampling distribution or exactly what the DM believes this to be. The model

is then at best an approximate description the DM’s beliefs, or of the underlying

real world process. The celebrated quote of George Box that

“All models are wrong but some are useful”

epitomises the aims of this thesis. We acknowledge that the model used for inference

is almost certainly misspecified relative to what we believe the data generating
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distribution really is, but proceed in the belief that we can still make use of a

misspecified model.

The data generating process

Often in this thesis we use the phrase the “data generating process” (DGP). The

data generating process is a widespread term in the literature and appears to suggest

that ‘Nature’ or ‘God’ is using a simulator to generate observations. While this may

fit nicely with many theoretical contributions, it becomes difficult to argue for in

reality.

In this thesis we consider the DGP to represent the DM’s true beliefs about

the sample distribution of the observations. As is discussed above, in order correctly

specify these the DM must posses the time and infinite introspection to consider all

of the information available to them/in the world in order to produce probability

specifications in the finest of details. As is pointed out by Goldstein [1990] this

requires many more probability specifications to be made at a much higher precision

than any DM is ever likely to be able to manage within time constraints of the

problem. Further to this while the DM was taking infinite time to consider their

beliefs they would surely be obtaining further information that may very well change

judgements they have already elicited. As a result these genuine beliefs must be

approximated. In the special case when the data is the result of a draw from a

known probability model - a common initial step in validating a methodology - then

this thoughtful analysis and“a data generating process” obviously coincide.

Henceforth we use “the data generating process” in this sense to align our

terminology as closely as possible with that in common usage. It is clearly debatable

whether such a distribution exists or could ever be obtained. However, we feel

considering the existence of such a distribution makes it more straightforward to

present ideas relating to the degree of concordance between the DM’s model and

their actual beliefs.

We note that this definition does not prohibit the existence of an objectively

defined data generating density encompassing all available information, but merely

outlines that in reality we accept that different parties have different information

and given finite time constraints and introspection prioritises different areas of the

specification, providing a range of ‘subjective’ beliefs.

1.1.3 M -open inference

Walker [2013] provides a principled justification for Bayes’ rule in the M -open world.

5



This requires the DM to think about the KLD minimising parameter. When the

model is correctly specified, the Bayesian learns about the parameter θ0 that gen-

erated the data. By definition any statistical divergence D(g||f) is minimised at 0

only when g = f . Therefore, in the M -closed world learning the parameter, θ0, is

equivalent to minimising D(g(·)||f(·; θ)), for any statistical divergence D(·||·). When

the model is considered to be incorrect, there is no longer any formal relationship

between the parameter θ and the data. The likelihood no longer represents the

probability of the observed data conditioned on the parameter and Bayes’ rule no

longer provides the correct way to update beliefs based on conditional probability.

Therefore, in order for M -open inference to be meaningful a divergence mea-

sure must be chosen and the parameter of interest can then defined as

θD = arg min
θ∈Θ

D(g(·)||f(·; θ)). (1.8)

Walker [2013] then states that once the parameter of interest has been defined as

the minimiser of some divergence, it is then possible for a DM to define their prior

beliefs about where this may lie. The DM’s final task is to ensure that their Bayesian

learning machine is learning about the same parameter with which they defined their

prior belief.

Recall that Bayesian updating, via Eq. (1.2), learns the parameters of the

model which minimises the KLD of the model from the data generating density [e.g.

Berk et al., 1966; Bissiri et al., 2016]. This enables the DM to continue to conduct

belief updating in a principled fashion. Provided they are interested in, and specify

prior beliefs about, the parameter θKL minimising the KLD of the model from the

data generating process, then they should continue to use the standard Bayesian

prior to posterior updating formula.

In summary, it is no longer possible or meaningful to learn about the pa-

rameter which generated the data in the M -open world. A statistical divergence

measure must instead be specified between the fitted model and the genuine one in

order to define the parameter targeted by the inference [Walker, 2013]. If a DM is

using Bayes’ rule then this divergence is the KLD

1.1.4 Current solutions to the M -open world

Once the DM acknowledges that they are in the M -open world, they have several

options currently available to them:

1. Proceed as though the model class does contain the true sample distribution

and conduct some suite of a posteriori sensitivity analyses.
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2. Modify the model class in order to improve its robustness properties.

3. Abandon the given parametric class and appeal to more data driven techniques.

4. Augment the model class with alternative plausible models and perform model

averaging.

Method 1 is how Box [1980] recommends approaching parametric model es-

timation and is the most popular approach amongst statisticians. Although it is

acknowledged that the model is only approximate, Bayesian inference is applied

as though the statistician believes the model to be correct. The results are then

checked to examine how sensitive these are to the approximations made. Authors

Berger et al. [1994] provide a thorough review while Watson et al. [2016] consider

this in a decision focused manner.

Method 2 corresponds to the classical robustness approach. Within this

approach, one model within the parametric class may be substituted for a model

providing heavier tails [O’Hagan, 1979; Berger et al., 1994]. Alternatively different

estimators, for example M-estimators [Huber and Ronchetti, 1981; Hampel et al.,

2011], see Greco et al. [2008] for a Bayesian analogue, are used instead of those

justified by the model class.

The third possibility is to abandon any parametric description of the proba-

bility space. Examples of this solution include, empirical likelihood methods [Owen,

1991]; a decision focused general Bayesian update [Bissiri et al., 2016]; Bayesian

non-parametric methods; or to appeal to statistical learning methods such as neural

networks or support vector machines. Such methods simply substitute the assump-

tions and structure associated with the model class, for a much broader class of

models. Thus, such non-parametric methods are not as free of misspecification

related worries as they may seem.

The fourth option embeds the elicited model f(·; θ) within a larger class

of models, M. Inference can then be conducted for all of these models and then

averaged. Particularly relevant to this thesis is Bayesian model averaging (BMA)

[Hoeting et al., 1999]. BMA averages the inferences from each models using weights

given by the Bayesian model posterior

π(Mi|x1:n) ∝ π(Mi)pMi(x) = π(M1)

∫
π(θ)

n∏
i=1

fM1(xi; θ)dθ, (1.9)

produced by combining the marginal likelihood of each model with a prior on the

model space. This is done in the hope that a larger class of models provides a more
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accurate representation of the DM’s uncertainty and thus has a greater chance of

containing the DGP.

In this sense BMA pretends that a M -open problem is M -closed. This can

be seen from the fact that BMA is known to converge on the model whose inference

are closest to the DGP in terms of KLD [see e.g. Rossell, 2018; Yao et al., 2018b]

and thus only one model is used asymptotically. This extended model class may

very well be able to get closer to the DGP but, for the reasons outlined above, in

practice any finite model class is never going to contain the DGP. As a result this

does not solve the problems of misspecification. Additionally BMA requires both

careful elicitation and expensive computations to be done for many further models

and thus may not be feasible in practice.

1.1.5 Bayes Linear methods

Here we provide a small exposition into Bayes line methods as they provides one of

a few Bayesian methods specifically designed to produce principled posterior beliefs

under the M -open world assumption and do not easily fit into the methods described

above. General Bayesian updating provides a further, more recent example of such

methodology and we introduce this at much greater length in Section 1.2.

Bayes linear methods [Goldstein, 1999] provide tools to move away from mak-

ing a full probability specification in a principled manner. They take expectations

as primitive rather than probabilities, in order to simplify the probability specifica-

tion required of the DM. When expectation is primitive the DM need only concern

themselves with the sub-collection of probabilities and expectations they consider

themselves to be able to specify [Goldstein et al., 2006]. These judgements can then

be updated coherently without the need for the implicit interpolation required to

specify a full likelihood model in order to update according to Eq. (1.2).

In addition to this argument, Goldstein et al. [2006] carefully points out

that there exists no result suggesting that conditioning as specified by Eq. (1.2)

is the correct way to update beliefs. Using Bayes’ rule describes now, how a DM’s

beliefs would change if they observed some data, but by the time this data has been

observed there is inevitably more information the DM would wish to incorporate

into their posterior belief, and Bayes’ rule provides no provision for this.

A particularly interesting use for Bayes linear methods inline with the themes

of this thesis was recently proposed by Williamson et al. [2015]. They observe that

while it is prudent to conduct Bayesian sensitivity analysis in the M -open world

to consider how model misspecification affects the inference, it is not clear how a

subjective Bayesian should use the results of a sensitivity analysis to update their
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beliefs. Williamson et al. [2015] demonstrate that Bayes linear methods provides

a principled tool to combine the results of several alternative analysis and produce

provably superior beliefs for the posterior expectations of interest. This approach

appears similar to that of BMA described above, but the Bayes linear approach is

specifically designed and motivated considering the M -open world. Additional work

generalising BMA to the M -open world can be found for example in Yao et al. [2018b]

and the reference within.

1.2 General Bayesian Updating

Next we examine the general Bayesian updating of Bissiri et al. [2016] as this pro-

vides an important methodological tool that we use to extend the foundations of

Bayesian inference beyond those discussed in Section 1.1.1.

The difficulties associated with specifying beliefs about the sample distribu-

tion of observed data x (see Section 1.1.3) motivate the general Bayesian updating

of Bissiri, Holmes, and Walker [2016]. Bissiri et al. [2016] consider only conducting

inference about the factors of the world/problem, θ, that matter to the DM and

enter into their loss function `(θ,x), the DM’s small world [Savage, 1972]. That is

to say unlike Bayes’ rule, θ need no longer be a parameter indexing a probability

density. They produce a general Bayesian update - a coherent method to produce a

posterior distribution over some quantity of interest without relying on a full model

for the observations.

Firstly consider the Bayes act associated with beliefs corresponding to the

data generating distribution G(·) and quantity of interest θ as

θ∗ = arg min
θ

Ez∼G[`(θ, z)] = arg min
θ

∫
`(θ, z)dG(z). (1.10)

We note that this no longer needs to be an inferential decision problem, θ

can be any quantity of interest. Rather than elicit a model representing the DM’s

beliefs over z, Bissiri et al. [2016] argue that given a prior, some data x and a loss

function connecting the parameter to the observations, an updating of beliefs about

θ must be possible in the absence of a model for the sampling distribution. They

suggest that the optimal posterior distribution resulting from such an updating of

beliefs should depend only on the prior and the information in the data through the

loss function. As a result the updating must have the form

π(θ|x) = ψ {`(θ,x), π(θ)} . (1.11)
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Additionally, they impose the following assumptions:

Assumption 1 : Coherence (Bayesian Additivity)

ψ [`(θ,x2), ψ {`(θ,x1), π(θ)}] = ψ {`(θ,x2) + `(θ,x1), π(θ)} , (1.12)

the posterior from part of the data becomes the prior for the rest.

Assumption 2: Invariance to a priori and a posteriori conditioning. For any

set A ⊂ Θ
ψ {`(θ,x), π(θ)}∫

A ψ {`(θ,x), π(θ)} dθ = ψ {`(θ,x), πA(θ)} (1.13)

where πA(θ) = π(θ)1(θ∈A)∫
A π(θ)dθ

. It does not matter if θ is restricted to be on A a

priori or a posteriori.

Assumption 3: Larger loss (lower evidence) should result in lower posterior

probability for a fixed prior. For A ⊂ Θ, `(θ,x) > `(θ,y) for θ ∈ A and

`(θ,x) = `(θ,y) for θ ∈ Θ \A, then∫
A
ψ {`(θ,x), π(θ)} dθ <

∫
A
ψ {`(θ,y), π(θ)} dθ. (1.14)

Assumption 4: No information provides no updating. If `(θ,x) is constant

then ψ {`(θ,x), π(θ)} = π(θ). If the sample provides no additional information

about θ then the posterior should be equal to the prior.

Assumption 5: Invariance of the loss to an additive constant. If ˜̀(θ,x) =

`(θ,x) + c for some constant c then

ψ
{

˜̀(θ,x), π(θ)
}

= ψ {`(θ,x), π(θ)} . (1.15)

The existence of an updating rule and the above axioms, allow Bissiri et al. [2016] to

construct a loss function L(q|π, `,x) that elicits an optimal updating of beliefs. In

the absence of a likelihood, Assumption 3 enforces that the optimal posterior should

be ‘close’ the data in the sense that it minimises the expected loss of the observed

data under the proposed posterior. Assumption 4 enforces that the optimal posterior

should also be close to the prior, where the closeness between two distributions for

θ can naturally be measured by a divergence D(·||·). Bissiri et al. [2016] prove that

KLD between posterior and prior is the only divergence which can guarantee that

Assumption 1 and 2 are always satisfied. Lastly Assumption 5 enforces that the
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measures of closeness to the observed data and closeness to the prior are combined

additively (We provide a proof for this result in Chapter 4, Theorem 9). Definition

4 defines the general Bayesian updating of beliefs and Theorem 1 demonstrates this

is the solution to an objective function satisfying the formulation of Bissiri et al.

[2016] and the above assumptions.

Definition 4 (The general Bayesian posterior). The general Bayesian posterior

given prior π(θ), data x and loss function `(·, ·) is

πGB(θ|x) ∝ π(θ) exp(−w`(θ,x)) (1.16)

where w > 0 is a calibration weight.

Theorem 1 (Derivation of the general Bayesian posterior). The general Bayesian

posterior defined in Eq. (1.16) is the solution to the following optimisation problem

arg min
q∈P

L(q|π, `,x) = arg min
q∈P

{
Eθ∼q(θ) [w`(θ;x)] + KLD(q(θ)||π(θ))

}
(1.17)

where P =
{
q(θ) :

∫
q(θ)dθ = 1

}
Proof. Rearranging the objective in Eq. (1.17) provides

arg min
q∈P

{
Eθ∼q(θ) [w`(θ;x)] + KLD(q(θ)||π(θ)

}
= arg min

q∈P

∫ {
w`(θ;x) + log

q(θ)

π(θ)

}
q(θ)dθ

= arg min
q∈P

∫ {
log

q(θ)

π(θ) exp (−w`(θ;x)

}
q(θ)dθ

= arg min
q∈P

∫ {
log

q(θ)
π(θ) exp(−w`(θ;x))

Z

}
q(θ)dθ

= arg min
q∈P

KLD

(
q(θ)||π(θ) exp (−w`(θ;x))

Z

)
(1.18)

Where Z =
∫
π(θ) exp (−w`(θ;x)) dθ ensures that Eq. (1.18) is the KLD between

two normalised densities. Lastly, by the definition of a divergence the KLD(p||q) is

uniquely minimised when p = q and as a result

π(θ|x) =
π(θ) exp (−w`(θ,x))∫
π(θ) exp (−w`(θ,x) dθ

(1.19)
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The posterior in equation (1.19) is not an approximation or a pseudo-posterior,

but rather a valid, coherent representation of subjective uncertainty in the minimiser

of the loss function in Eq. (1.10). Often `(θ,x) =
∑n

i=1 l(θ, xi) is the cumulative

loss of the current data set. Updating using the cumulative loss amounts to re-

placing integrating over the data generating distribution in equation (1.10), with an

empirical integration over the data whose distribution is G(z).

In the above formulation the loss function is calibrated against the prior, by

multiplying the loss by some positive constant w. While any probability density is

defined so that it integrates to 1, loss functions are characterised by their minimisers

and thus need only be defined up to a monotonic transformation. As a result loss

functions can be scaled to be arbitrarily large or small. For example `1(x, θ) = |x−θ|
and `2(x, θ) = 10|x−θ| can both be used to produce posterior distributions about the

location of the median but will produce very different quantifications of uncertainty

about the location of this median. Therefore, it is important that the weight the

loss function has in the updating process is calibrated against the prior such that

the posterior distributions resulting from the general Bayesian update provides a

meaningful quantification of uncertainty in the absence of a model. One approach to

do so is to match the width of the posteriors with those of the frequentists confidence

intervals Lyddon et al. [2018]; Syring and Martin [2019]. We discuss Lyddon et al.

[2018] in detail in Section 1.2.2 which also provides a Bayesian interpretation.

1.2.1 Recovering Bayes’ Rule

It is straightforward to see that if the log-score is used in the general Bayesian

update, the traditional Bayes’ rule update is recovered:

π(θ|x) ∝ π(θ) exp(−
n∑
i=1

− log(fθ(xi))) = π(θ)
n∏
i=1

fθ(xi). (1.20)

This echoes the well-known result that the Bayesian predictive distribution finds

the distribution that is closest to the DGP in terms of KLD [Berk et al., 1966].

While Bissiri et al. [2016] provide the framework to update a probability belief

distribution using a loss function, they only consider the log-score in an inferential

scenario. This however serves to demonstrate that in the M -open world Bayes rule

is no longer updating conditional probabilities, instead it is providing the optimal

posterior according to the above assumptions and objective function.

12



1.2.2 Calibrating the loss

Even before the introduction of GBI, setting the calibration weight w 6= 1 has

been considered under the log-score. In this context the weight acts to temper the

likelihood in Bayes’ rule

π(θ|x) ∝ π(θ) exp

(
−w

n∑
i=1

− log (f(xi; θ))

)
= π(θ)

n∏
i=1

f(xi; θ)
w. (1.21)

Likelihood tempering has been mainly used in associated with Monte-Carlo

Methods [see e.g. Del Moral et al., 2006]. However, it has more recently started to

appear in the model misspecification literature. The argument for this is that Bayes’

rule only provides a valid quantification of posterior uncertainty if the model is

correctly specified for the sample distribution of the data [Holmes and Walker, 2017].

When the model is misspecified often Bayes’ rule learns too quickly [Grünwald, 2016;

Holmes and Walker, 2017; Miller and Dunson, 2018]. That is to say it concentrates

too quickly around the KLD minimising parameter. Posteriors over-concentrating

can cause a decrease in predictive performance and is often considered a robustness

issue associated with Bayes’ rule. This can be combated by setting w < 1. For a

thorough list of references see Holmes and Walker [2017].

When the loss function is not the log-score, the most compelling way to set

w comes from Lyddon et al. [2018]. They set w by matching the asymptotic infor-

mation in the GBI posterior with additive loss function w`(θ,x) = w
∑n

i=1 `(θ, xi),

with that of a sample from the ‘loss-likelihood bootstrap’ (LLB), a generalisation

of Bayesian-bootstrap [Rubin, 1981] to general loss functions. The loss-likelihood

bootstrap produces a sample of B parameter estimates using the following algo-

rithm:

Algorithm 1 (The loss-likelihood bootstrap (LLB) [Lyddon et al., 2018]). Initalise

number of samples B:

• For j = 1 : B

– Sample v1, . . . , vn ∼ Dirichlet (1, . . . , 1)

– Set θ(j) = arg minθ∈Θ

∑n
i=1 vi`(θ, xi)

• Output
(
θ(1), . . . , θ(B)

)
Lyddon et al. [2018] interpret the Dirichlet weights as being drawn from the

posterior predictive of the Bayesian non-parametric Dirichlet process model for the
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data generating density with hyperparameter α = 0. As a result in the absence of

a model Lyddon et al. [2018] argue the LLB provides principled uncertainty quan-

tification about the minimiser of
∫
`(θ, x)dG(x). This is further justified by the fact

that under `(θ, x) = − log f(x; θ) and the Jeffrey’s prior the asymptotic distribu-

tion of the LLB agree with the posterior produced by Bayes’ rule if the likelihood is

correctly specified. Moreover the optimisation done for each LLB iteration is inde-

pendent of any weight w multiplying the loss function `(θ, x). As a result the LLB

provides weight free uncertainty quantification. However the LLB does not leave

room to input prior information. Lyddon et al. [2018] therefore suggest using the

GBI posterior but setting w to match the asymptotic covariances of the GBI and

LLB distributions.

1.3 Divergence and Loss Functions

Although the log-score and the KLD are currently intrinsic to Bayesian inference,

there exist a multitude of other divergences, several of which can be conveniently

related to a loss function. This section reviews the definition of a divergence measure

and introduces several divergences of particular interest in this thesis.

1.3.1 Statistical Divergences

Throughout this section and the rest of the thesis we assume we have probability

spaces whose measures are absolutely continuous with respect to some base mea-

sure, the Lebesgue measure for continuous state spaces and the counting measure

for discrete spaces. As a result we are able to simplify the definitions of the di-

vergences below in terms of normalised probability densities. Cichocki and Amari

[2010] provide more general definitions. By default we assume we have absolutely

continuous densities here.

In the M -open world it is no longer possible for an estimated statistical model

to correctly capture the sample distribution of the data. As a result an important

concept when considering inference in the M -open world is measuring the discrepancy

between two distributions [see e.g. Walker, 2013]. Discrepancy measures of this kind

are called statistical divergences [see e.g. Amari, 1985].

Definition 5 (Statistical Divergences [Eguchi et al., 1985]). A statistical divergence

D(g||f) is a measure of discrepancy between two probability densities f and g with

the following two properties

1. D(g||f) ≥ 0, ∀f, g
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2. D(g||f) = 0 if and only if g = f

We note this definition is not sufficient for D(g||f) to be a metric. Diver-

gences are often asymmetrical and do not necessarily satisfy the triangle-inequality.

Arguably the most famous divergence is the Kullback-Leibler Divergence (KLD) in-

troduced in the seminal paper of Kullback and Leibler [1951] and appearing through-

out the statistics literature. This was defined above in Eq. (1.5). However, there

are many other families of divergences. One well-known family of divergences con-

taining the KLD are the Csiszár–Morimoto φ-divergence [Csiszár, 1964; Morimoto,

1963]

Definition 6 (φ-divergence [Csiszár, 1964; Morimoto, 1963]). A φ-divergence, gen-

erated by convex function φ(·) with φ(1) = 0 is

Dφ(g||f) =

∫
f(x)φ

(
g(x)

f(x)

)
dx. (1.22)

The restriction on φ to be convex and equal to 0 at 1 ensure these are proper

divergences. The KLD is recovered as a member of the φ-divergence family with

φ(t) = t log t. Other members of the φ-divergence family of particular interest here

are the Total-Variation (TVD), Hellinger (HD) and α-Divergence (αD).

Definition 7 (The Total-Variation Divergence (TVD)). A TVD is given by

TVD(g||f) = sup
A∈F
|g(A)− f(A)| = 1

2

∫
|g(x)− f(x)| dx. (1.23)

The TVD is a member of the φ-divergence family with φ(t) = 1
2 |t− 1|.

Definition 8 (The Hellinger Divergence (HD) [Hellinger, 1909]). A HD is given by

HD(g||f) =
1

2

∫ (√
g(x)−

√
f(x)

)2
dx

= 1−
∫ √

g(x)
√
f(x)dx. (1.24)

The HD is a member of the φ-divergence family with φ(t) = 1−
√
t.

Both the TVD and the HD are symmetric and satisfy the triangle inequality

and are therefore proper metrics.
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Definition 9 (The α-divergence (αD) [Chernoff et al., 1952; Liese and Vajda, 1987;

Amari, 1985]). The αD is defined as

D
(α)
A (g(x)||f(x)) =

1

α(1− α)

{
1−

∫
g(x)αf(x)1−αdx

}
, (1.25)

where α ∈ R \ {0, 1}. D
(α)
A is a member of the φ-divergence family with φ(t) =

t−tα
α(1−α) . When α = 1, D

(1)
A (g(x)||f(x)) = KLD(g(x)||f(x)) and when α = 0,

D
(0)
a (g(x)||f(x)) = KLD(f(x)||g(x)).

There are several parametrisations of the αD, for example the Amari notation

parametrised by αA with α = 1−αA
2 , or the Cressi-Read notation [Cressie and Read,

1984] with α = λ+ 1.

Another well-known family of divergences also containing the KLD are the

Bregman-divergences [Bregman, 1967].

Definition 10 (Bregman-divergences [Bregman, 1967]). A Bregman-divergence,

generated by strictly convex continuously differentiable function ψ(·) with first

derivative ∇ψ(·) is

Dψ(g||f) =

∫
[ψ(g(x))− ψ(f(x))− (g(x)− f(x))∇ψ (f(x))] dx. (1.26)

An important member of the Bregman divergence family for this thesis is

the β-Divergence (βD) [Basu et al., 1998; Mihoko and Eguchi, 2002].

Definition 11 (The β-divergence (D(β)
B ) [Basu et al., 1998; Mihoko and Eguchi,

2002]). The βD is defined as

D
(β)
B (g(x)||f(x)) (1.27)

=
1

β(β − 1)

∫
g(x)βdx+

1

β

∫
f(x)βdx− 1

β − 1

∫
g(x)f(x)β−1dx,

where β ∈ R \ {0, 1}. D
(β)
B is a member of the Bregman-divergence family with

ψ(t) = 1
β(β−1) t

β. When β = 1, D
(1)
B (g(x)||f(x)) = KLD(g(x)||f(x)).

The βD has often been referred to as the Density-Power Divergence (DPD)

in the statistics literature [Basu et al., 1998] where it is often parametrised as β =

βDPD + 1.

A third, less-known divergence family, containing the KLD and cases of φ-

and Bregman divergences of interest here, is the αβγ-divergence (αβγD) family

introduced in Cichocki and Amari [2010]. The αβγD family contains the KLD, the
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αD and the βD as well as the γ-divergence (γD) [Fujisawa and Eguchi, 2008] and

the Rényi α-divergence (Rényi-αD) [Rényi et al., 1961]

Definition 12 (The αβγ-divergence D(α,β,r)
G [Cichocki and Amari, 2010]). The αβγ-

divergence D
(α,β,r)
G Cichocki and Amari [2010] takes the form

D
(α,β,r)
G (g(x)||f(x))

=
1

α(β − 1)(α+ β − 1)r

[(
D̃

(α,β)
G (g(x))||f(x)) + 1

)r
− 1
]

(1.28)

where r > 0 and

D̃
(α,β)
G (g(x)||f(x))

=

∫ (
αg(x)α+β−1 + (β − 1)f(x)α+β−1 − (α+ β − 1)g(x)αf(x)β−1

)
dx

with α 6= 0, β 6= 1. When r = α = β = 1, D
(1,1,1)
G (g(x)||f(x)) = KLD(g(x)||f(x)).

This exposition is a summary of the excellent review conducted in Cichocki

and Amari [2010]. We note that the parametrizations of these divergences may vary

throughout the literature.

Remark 1 (The αD and βD as a members of the αβγD). The αD and the βD are

contained within the D
(α,β,r)
G :

• The αD is recovered from αβγD when r = 1 and β = 2− α.

• The βD is recovered from αβγD when r = α = 1.

Definition 13 (The Rényi α-divergence (D(α)
AR) [Rényi et al., 1961]). The Rényi

[Rényi et al., 1961] α-divergence is defined as

D
(α)
AR(g(x)||f(x)) =

1

α(α− 1)
log

(∫
g(x)αf(x)1−αdx

)
, (1.29)

where α ∈ R \ {0, 1}. D
(α)
AR is recovered from D

(α,β,r)
G in the limit as r → 0 and

β = 2 − α. When α = 1, D
(1)
AR(g(x)||f(x)) = KLD(g(x)||f(x)) while for α = 0,

D
(0)
AR(g(x)||f(x)) = KLD(f(x)||g(x)). Note that we use the scaled version of the

Rényi-αD proposed by Liese and Vajda [1987] and frequently used in the literature

[e.g. Cichocki and Amari, 2010]

In fact the Rényi-αD is an invertible function of the αD since

D
(α)
AR(g(x)||f(x)) =

1

α(α− 1)
log
(
1− α(1− α)D(α)

A (g(x)||f(x))
)
.
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Definition 14 (The γ-divergence (D(γ)
G ) Fujisawa and Eguchi [2008]). The γ-divergence

Fujisawa and Eguchi [2008] is defined as

D
(γ)
G (g(x)||f(x)) =

1

γ(γ − 1)
log

(∫
g(x)γdx

) (∫
f(x)γdx

)γ−1(∫
g(x)f(x)γdx

) 1
γ−1

, (1.30)

where γ ∈ R \ {0, 1}. D(γ)
G is recovered from D

(α,β,r)
G in the limit as r → 0, α = 1 and

β = γ. When γ = 1, D
(1)
G (g(x)||f(x)) = KLD(g(x)||f(x)).

The γD can be shown to be generated from the βD by applying the following

transformation

c0

∫
g(x)c1f(x)c2dx→ c0 log

∫
g(x)c1f(x)c2dx,

to all three terms of βD. The Rényi-αD can be shown to be generated by αD under

the same transformation of its two terms.

Remark 2 (Recovering the KLD). As is pointed out above, the parametrised di-

vergences αD, Rényi-αD, βD and γD all recover the KLD in the limit as α = β =

γ → 1. This can be shown using the ‘replica trick’:

lim
x→0

Zx − 1

x
= log(Z).

1.3.2 Loss functions

When attempting to estimate a model by minimising one of the above divergences

[Walker, 2013], D(g(x), f(x; θ)), one never has direct access to g(x). One does how-

ever usually have access to samples x1, . . . , xn assumed to have been ‘generated’ by

g. As a result, one can hope to measure closeness between f(·; θ) and the empirical

measure ĝn of the sample. Fortunately some divergences have a natural interpreta-

tion in terms of loss functions [e.g. Bernardo and Smith, 2001; Grünwald and Dawid,

2004; Dawid, 2007]. For these divergences, there exists a function ` : X ×F(Θ)→ R
mapping from the samples space X and the space of probability measures F(Θ) on

Θ into the real numbers such that one can write

D(g(x)||f(x; θ)) = Eg(x) [`(x, f(·; θ))]− Eg(x) [`(x, g)] . (1.31)

The loss function interpretation is then as follows: A divergence taking the form of

Eq. (1.31) is the excess expected penalty incurred for believing x was distributed
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according to f(·; θ) when it was actually distributed according to g. Section 1.1.1

showed that the KLD can be written in this form using the log-score. The ‘en-

tropy’ of the DGP g, Eg(x) [`(x, g)], is unaffected by f . Hence, finding f minimising

KLD(g||f(·; θ)) is equivalent to finding f minimising Eg(x) [− log f(x; θ)]. Lastly the

expectation under the data generating distribution g can be approximated by the

empirical distribution of the sample Eg(x) [− log f(x; θ)] ≈ Eĝn(x) [− log f(x; θ)] =
1
n

∑n
i=1− log f(xi; θ).

Not all divergence naturally take the form of Eq. (1.31). Another divergence

that does, and is of interest for this thesis is the βD.

D
(β)
B (g||f(·; θ)) =

1

β

∫
f(x; θ)βdx− 1

(β − 1)

∫
f(x; θ)β−1g(x)dx+

1

β(β − 1)

∫
g(x)βdx

= Eg(x)

[
1

β

∫
f(z; θ)βdz − 1

(β − 1)
f(x; θ)β−1

]
(1.32)

−Eg(x)

[
1

β

∫
g(z)βdz − 1

(β − 1)
g(x)β−1

]
.

So

`β(x, f(·; θ)) =
1

β

∫
f(z; θ)βdz − 1

(β − 1)
f(x; θ)β−1, (1.33)

which is available in closed form for many exponential families and only depends on

the form of f(x; θ).

1.3.3 Relationships between Divergences

Important throughout this thesis is going to be how the divergences introduced in

Section 1.3.1 relate to one an other for fixed g and f , and specifically how they relate

to the TVD. This section provides a summary of the well-known bounds currently

available in the literature. Pinsker’s inequality [Pinkser, 1964] is a well-known bound

relating the KLD and the TVD.

TVD(g, f) ≤
√

1

2
KLD(g||f) (1.34)

Much work has been put into finding so called reverse Pinsker’s inequalities. Defining

a = ess inf dFdG and b = ess sup dF
dG Sason and Verdu [2016]; Binette [2019] show that

KLD(g||f) ≤ Cg,fTVD(g, f), where Cg,f =

(
log(a)

a− 1
+

log(b)

1− b

)
(1.35)

provided a and b are well defined. However for two continuous densities with support

(−∞,∞) a and b are often not well defined, see Section 2.3.
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The Hellinger divergence can be shown to bound the TV-divergence both

above and below [Devroye and Gyorfi, 1985; Liese and Vajda, 1987]:

HD(g, f) ≤ TVD(g, f) ≤
√

HD(g, f)
√

2− HD(g, f) ≤
√

2HD(g, f). (1.36)

Lastly the αD is bounded above by the TVD ([Prop. 2.35 Liese and Vajda, 1987],[Cor.

1 Sason and Verdu, 2016])

α(1− α)dα(g, f) ≤ dTV (g, f). (1.37)

1.4 Summary

This introductory chapter has introduced the foundations of Bayesian inference

through the lens of decision theory and has identified the intrinsic link between

Bayes’ rule and the KLD. We have introduced the M -open world, where the model

used for inference is considered to be misspecified and outlined current approaches

to conduct statistical inference in this paradigm. We have specifically emphasised

general Bayesian updating, a principled, state of the art method to produce posterior

beliefs about the minimiser of a general loss function. Lastly we have introduced

several additional divergences to the KLD and presented some relationships between

these.

The following chapters will build upon the foundations laid here. Chapter

2 will use general Bayesian updating to conduct Bayesian parametric model infer-

ence aimed at minimising divergences alternative to the KLD. This is motivated by

a desire to produce inference that is useful for a general decision problem, instead

of solely for the sake of inference. Chapter 3 will extend the motivation behind

using these alternative divergences to consider how stable their inferences are to

the subjective choice of a likelihood model across an equivalence class. Chapter

4 tackles some of the computational issues of producing posterior inferences when

moving away from Bayes’ rule and embeds the methods discussed in Chapters 2 and

3 within a generalised inference framework. Lastly Chapter 5 uses the developments

of Chapters 2, 3 and 4 to produce an algorithm that conducts robust on-line change-

point detection. This algorithm is applied to a dataset recording air pollution levels

in London and is able to detect the introduction of the London congestion change

but ignore spurious changepoints resulting from model misspecification.
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Chapter 2

Principles of Bayesian Inference

Using General Divergence

Criteria

In this chapter we will discuss the merits of conducting traditional Bayesian infer-

ence in the M -open world. We will take a decision theoretic approach throughout,

assuming that the DM is performing inference in order to produce estimates of ex-

pected utility. Under this paradigm we establish that Bayes’ rule may not provide

a suitable method to adjust beliefs when observing data. We instead propose learn-

ing by minimising alternative divergence to the KLD. Several of the developments

proposed in this chapter have been published in Jewson, Smith, and Holmes [2018].

This chapter is organised as follows: Section 2.1 demonstrates the lack of

robustness provided by Bayes’ rule when the observed data contains outliers. Sec-

tion 2.2 outlines our opinion that this is the fault of the belief updating mechanism

rather than the specific model used for inference. Section 2.3 identifies that the

lack of robustness from Bayes’ rule is a result of the motivation for Bayes’ rule as

solving an inferential decision problem. Instead, we motivate M -open inference as

desirable if it is useful for a general decision problem. This in turn motivates min-

imising alternative divergences to the KLD. Section 2.4 reviews existing literature

minimising divergence alternative to the KLD and illustrates the flaws in their justi-

fication in the M -open world. Section 2.5 uses general Bayesian updating to provide

a principled justification for a belief update minimising any divergence. Section 2.6

considers several divergences that could be used for inference, motivating them by

their ability to produce accurate estimates of expected utilities. Lastly, Section 2.7

illustrates the impact changing the divergence can have in the M -open world, whilst
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also demonstrating their performance is not much worse than Bayes’ rule in the

M -closed world.

2.1 Bayes’ rule in the M -open world

In the M -closed world, where the fitted model class is implicitly assumed to con-

tain the sample distribution from which the data came, Bayesian updating is highly

compelling. However, modern statisticians are increasingly acknowledging that their

inference is taking place in the M -open world [Bernardo and Smith, 2001]. Re-

markably, as we pointed out in Chapter 1, in the M -open world standard Bayesian

updating can be seen as a method which learns a model by minimising the KLD

from the model from which the data were sampled [Berk et al., 1966; Bissiri et al.,

2016]. Therefore traditional Bayesian updating turns out to still be a well principled

method for belief updating provided the decision maker (DM) concerns themselves

with the parameters of the model that are closest to the data as measured by KLD

[Walker, 2013].

Viewed conversely, Walker [2013] identified that in order to do principled

inference, a DM must aim to produce predictions that are closest to the DGP in terms

of KLD. However as is well known - but also often forgotten - correctly capturing

the tail characteristics of the sample distribution will be of up-most importance to

the DM if they aim to minimise the KLD [Bernardo and Smith, 2001]. Minimising

the KLD (g||fθ) is equivalent to minimising

Eg(x) [− log f(x; θ)] ≈ 1

n

n∑
i=1

− log f(xi; θ), (2.1)

see Section 1.3.2. Now limf(x;θ)→0− log f(x; θ) =∞ so assigning low probability to

any observation will incur a large penalty according to the KLD.

This phenomenon is particularly evident when the DGP has heavier tails than

the model, a phenomenon commonly caused by, but not limited to, the presence of

outliers in the dataset. Outliers are observations that appear inconsistent with the

rest of the data, which is equivalent to saying they occur in the tails of a distribution

fitted to the rest of the data, i.e. unlikely given the rest of the data. In order to

illustrate this consider a simple motivating example.
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Example (ε-contamination). For ε ∈ (0, 0.5)

g(x) = (1− ε)N
(
x;µu, σ

2
u

)
+ εN

(
x;µc, σ

2
c

)
f(x;µ, σ2) = N

(
x;µ, σ2

)
,

where θ = (µ, σ2) are the model parameters and (ε, µu, σ
2
u, µc, σ

2
c ) are fixed features

of the DGP.

Here the model has the flexibility to match at least (1 − ε) × 100% of the

data but the remaining ε × 100% corresponds to an outlying sub-population. Fig.

2.1 shows a histogram of n = 1000 observations from g(x) with (ε = 0.1, µu =

0, σ2
u = 12, µc = 5, σ2

c = 32) along with the traditional Bayesian predictive distribu-

tion under model f(x;µ, σ2) using Normal-Inverse-Gamma (NIG) prior, π(µ, σ2) =

N
(
µ;µ0, v0σ

2
)
IG(σ2; a0, b0), with hyperparameters (a0 = 3, b0 = 2, µ0 = 0, v0 =

10).

Fig. 2.1 demonstrates how the tail observations resulting from the ε-contamination

force the Bayesian predictive’s variance to increase and its mean to shift towards

the right-hand tail, away from 90% of the data. In fact the log-density plots shows

that the Bayesian predictive and data generating models agree at the mean of the

contaminant population suggesting that Bayes’ rule is solely concerned with cap-

turing the outlying contamination at the expense of matching to the majority of

observations.

This example may seem contrived but we simply aim for this to act as a car-

icature of situations that often arise in real world applications. All that is required

for an ε-contamination is that there is some unmodelled sub-population of the data

who behave differently. One might argue this sub-population is easy to spot in our

caricature. However, the ability to discern the contaminating population becomes

increasingly difficult as the dimension of the sample space increases to those encoun-

tered in real, high-dimensional problems. See Section 2.7.5 and 5.5.2 for a further

discussion on this.

In the seminal book of Huber [2011] robustness is defined as “an insensitivity

to small deviations from the assumption”. This simple example goes to show that

the usual Bayesian belief adjustment using Bayes’ rule is non-robust in this sense.

2.2 The Model

In Section 1.1.4 we discussed current approaches to dealing with the lack of robust-

ness in M -open Bayesian inference. Although alternatives 2 and 3 can be shown to
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Figure 2.1: Traditional Bayesian updating applied under ε-contamination.
n = 1000 observations generated from g(x) = 0.9N

(
x; 0, 12

)
+ 0.1N

(
x; 5, 32

)
with Bayesian model f(x;µ, σ2) = N

(
x;µ, σ2

)
under NIG prior π(µ, σ2) =

N
(
µ; 0, 10σ2

)
IG(σ2; 2, 2). Left: Histogram of the data, separating the 90% un-

contaminated points from the 10% contaminated points, with the Bayesian
predictive overlayed. Right: Log-Density plot comparing the log-density of g(x)
with the traditional Bayes predictive and a standard Gaussian. Note how the densi-
ties of the Bayesian predictive and g(x) agree at the mean of the contamination.
Bottom: Gaussian QQ plot comparing the observed quantiles of the data with that
of the fitted Bayesian model and standard Gaussian

be very powerful in certain scenarios, it is our opinion that these will not in general

be entirely satisfactory. In an applied statistical problem the model(s) represents

the DM’s best guess for the sample distribution of the data. The model provides the

only opportunity to input not only structural, but quantitative expert judgements

about the domain, something that is often critical to a successful analysis - see Lazer

et al. [2014] for example. The model provides an interpretable and transparent ex-

planation about how different factors might be related to each other. This type of

evidence is often essential when advising on decisions to policy makers. Often, sim-
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ple assumptions play important roles in providing interpretability to the model and

in particular preventing it from over fitting to any non-generic features contained in

any one data set.

For the above reasons an unambiguous statement of a model, however simple,

is in our opinion an essential element for much of applied statistics. In light of this,

statistical methodology should also be sufficiently flexible to cope with the fact that

the DM’s model is inevitably an approximation both of their beliefs and the real

world process. Currently, standard Bayesian statistics sometimes struggles to do

this well. We argue below that this is because it implicitly minimises the KLD to

the underlying process. Namely we believe a lack of robustness is the fault of the

current Bayesian updating machinery rather than any one particular model.

2.3 Inferential Procedure or Decision Problem

Throughout this chapter we assume that inference is being done in order to facilitate

principled decision making. That is to say that the goal of the Bayesian analysis

is to learn posterior (predictive) distributions for some future uncertain quantity

in order to take the optimal decision whose consequences (utility) depend on this

future uncertainty.

This is the situation considered by the foundations of Bayesian statistics,

but this is all too often forgotten. In this situation desirable inferences are going

to be those that provide accurate estimates of the expected utilities associated with

each possible decision. We call this our principle of M -open inference for decision

making. We argue that inferential procedures, at least for the purposes discussed in

this thesis, should be designed in the knowledge that the posterior judgements will

eventually be used to minimise an expected loss. In the M -closed world we can be

assured that Bayes’ rule will be targeting the distribution that generated that data

and as a result the expected loss estimates we produce will be accurate (at least

asymptotically). We show here that in the M -open world it is no longer clear that

this is happening.

The log-score, which Bayes’ rule is minimising, is supposedly motivated as

reflecting the fact that the “tails of the distribution are, generally speaking, ex-

tremely important in pure inference problems...” [Bernardo and Smith, 2001, Ch.

2, p. 76]. Exactly what is meant by a pure inference problem is hard to interpret. It

suggests that inference is only being done to best estimate the DGP and with no use

for this estimate of the DGP in mind. In such situations, the properties of propriety

and locality (Section 1.1.1) associated with the log-score may well be all a DM cares
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about. However, such situations are surely only hypothetical. If there is no use in

mind for inference then why is it being done in the first place? We interpret the fact

that the log-score is supposedly optimal for inference problems as a consequence of

the intimate link between the log-score and Bayes’ rule inference, outlined in Section

1.2.1. If one truly believe the probabilities specified by their likelihood and prior at

the instant the updating takes place then Bayes’ rule is probabilistically the correct

way to update.

Clearly there do exist decision problems where the tails of the fitted prob-

ability distribution are important. Particularly, in situations where the losses are

unbounded, for example in gambling and odds setting scenarios, correctly capturing

tail behaviour will be essential. However, many loss functions connected to real

decisions may be less concerned with how the fitted model approximated the tails of

the observed data. Bernardo and Smith [2001] proceed to point out that “...this is

in contrast to many practical decision problems where the form of the utility (loss)

function often makes the solution robust with respect to changes in the tails of

the distribution assumed”. For entirely reasonable practical reasons these rare tail

events are precisely ones which the DM will find hard to accurately elicit [O’Hagan

et al., 2006], see Winkler and Murphy [1968] for a demonstration of this in the con-

text of forecasting the probability of precipitation. As will be demonstrated next,

inferential procedures assuming an unbounded loss function such as the log-score

associated with the KLD, provide no guarantees about performance in more general

decision making scenarios.

One guarantee that a (predictive) distribution provides accurate estimates

of a bounded expected loss is provided by the TVD. If TVD(g, f) ≤ ε then for any

loss function bounded between 0 and 1, the expected loss Ez∼g
[
`
(
z, θ∗f

)]
under g

of making decision θ∗f , the optimal decision believing the data was distributed ac-

cording to f , is at most 2ε greater than the expected loss incurred from making the

optimal decision under g, Ez∼g
[
`
(
z, θ∗g

)]
(see Smith [2010] for example). Therefore

if the predictive distribution is close to the DGP in terms of TVD then the conse-

quences of the model misspecification in terms of the expected loss of the decision

made is small. This result suggests that when informed decision making is the goal

of the statistical analysis, closeness in terms of TVD ought to be the canonical cri-

teria the DM demands. We note that the assumption of a bounded loss function

is not that strong. As Watson et al. [2016] correctly point out, it is almost always

possible to bound any ‘real-world’ loss function, for example using some arbitrary

maximum or minimum, and actually that any method using MCMC to sample from

the posterior/predictive must be assuming a bounded loss function
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The KLD forms an upper bound on the TVD through Pinsker’s inequality

Pinkser [1964] (see Section 1.3.3). As a result if the KLD between the DGP and the

fitted model is small, then we can be sure the TVD will be. The reverse Pinsker’s

inequality (Section 1.3.3) provides an upper bound for the KLD in terms of the TVD

but this bound depends on a further multiplier Cg,f . Without greater knowledge

about the unknown density of the DGP, g, and how it is approximated by fθ, we

cannot be sure of the size of the Cg,f , with it very possibly being infinite.

As a result there are situations where the TVD is very small but the KLD is

very large. Specifically this occurs when dF
dG is very small, which is a consequence of

the tails of F being lighter than the tails of G, as in ε-contamination example. In

this scenario, a predictive distribution whose associated optimal decisions achieve

a close to optimal expected loss estimate (as the distribution is close in TVD) will

receive very little posterior mass when using Bayes’ rule. This is clearly undesirable

in a decision making context.

It is well known that when the KLD is large, which is almost inevitable in

high dimensional problems, the KLD minimising models can give a very poor ap-

proximation when our main interest is in getting the central part of the posterior

model uncertainty well estimated. This is a direct consequence of the KLD giving

overarching priority to correctly specifying the tails of the generating sample dis-

tribution. As a result in the M -open world when decision making with respect to a

bounded utility function is the goal of the analysis, Bayes’ rule is no longer neces-

sarily the best way to update beliefs. The log-score provides a poor surrogate for

the actual loss functions at hand!

2.3.1 Moving away from KL-divergence in the M-open world

Once the consequences of using Bayes’ rule to solve decision problems in the M -

open world is understood, we believe that DMs may reasonably desire alternative

options for parameter updating that are as well principled as Bayes rule, but place

less importance on tail misspecification and are more focused towards their decision

problem. In this new era of “big data” it becomes increasingly likely that the model

used for inference is misspecified, especially in the tails of the process - see Section

2.7.5. We believe many DMs would consider it desirable for models that approximate

the distribution of the majority of the data not to be disregarded because they poorly

fit a few outlying observations.

By fitting model parameter in a way that can be non-robust, the DM is having

to combine their best guess belief model with something that will be robust to the

parameter fitting. The DM must seek the best representation of their beliefs about
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a process in order to make future predictions. However under traditional Bayesian

updating they must also give consideration to how robust these beliefs are. This

seems an unfair task to ask of the DM. We therefore propose to decouple what the

DM believes about the DGP, from how the DM wishes the model to be fitted. To

enact this we add the following option to the list of solutions to the M -open world

(Section 1.1.4):

5. Acknowledge that the model class is only approximate, but is the best available,

and seek to infer the model parameters in a way that are most useful to the

decision maker.

Option 5 suggests that the DM may actually want to explicitly target a more robust

divergence than the KLD when conducting inference, a framework commonly known

as Minimum Divergence Estimation (MDE), see Basu et al. [2011]. Minimum diver-

gence estimation is of course a well-developed field by frequentists, with Bayesian

contributions coming more recently. However when the realistic assumption of being

in the M -open world is considered the currently proposed Bayesian minimum diver-

gence posteriors fail to fully comply with the principled justification and motivation

required to produce a coherent updating of beliefs. A Bayesian cannot therefore

make principled inference using currently proposed methods in the M -open setting,

except in a way that Miller and Dunson [2018] describe as “tend(ing) to be either

limited in scope, computationally prohibitive, or lacking a clear justification”. In

order to make principled inference it appears as though the DM must currently

concern themselves with minimising the KLD.

However in this chapter we remove this reliance upon the KLD by provid-

ing a justification for Bayesian updating minimising alternative divergences, both

theoretically and ideologically. Our updating of beliefs does not produce an approx-

imate or pseudo posterior, but uses general Bayesian updating [Bissiri et al., 2016]

to produce the coherent posterior beliefs of a decision maker who wishes to produce

predictions from a model that provide an explanation of the data that is as good

as possible in terms of some pre-specified divergence measure. By doing this the

principled statistical practice of fitting model parameters to produce predictions is

adhered to, but the parameter fitting is done so acknowledging the M -open nature

of the problem.

Another principled alternative to traditional Bayesian updating when it is

difficult to fully specify a model for the DGP is Bayes linear methods [Goldstein,

1999]. These only require the subjective specifications of expectations and covari-

ances for various quantities the DM is well informed about and interested in in order
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to do inference. Our alternative approach - which provides outputs more familiar to

the typical Bayesian - instead chooses a more robust divergence. Using this diver-

gence instead of the KLD provides a different approach which updates beliefs whilst

being robust to routine assumptions and so makes a full probability specification a

much less strenuous task. Chapter 3 will aim to be more precise about this claim.

2.4 Existing Bayesian Minimum Divergence estimation

Here we review some of the literature associated with minimum divergence estima-

tion. Minimum divergence estimation (MDE) considers making inference about the

parameters θ of a parametric model {f(x; θ) : θ ∈ Θ} by minimising the divergence

between f(x; θ) and the data generating distribution of the observed data. By its

very nature MDE has in the past often been addressed from a frequentist standpoint.

MDE can be split into two categories, those that conduct inference by minimising

local proper scores and those that conduct inference by minimising a member of the

class of disparities. Local proper scoring rules depend only on the likelihood of the

observed data under the model and are designed to be minimised at the DM’s true

beliefs (the DGP). These include the Tsallis (or βD-loss) [Basu et al., 1998], the

Hyvarinen loss [Hyvärinen, 2005] and more recently the γD-loss [Hung et al., 2018].

Dawid et al. [2016] provide general theory for proper scoring rule inference.

Alternatively, disparity based methods first build a non-parametric density

estimate gn(x) of the DGP from the data (often a Kernel Density Estimate (KDE)),

and then conduct inference by minimising the divergence between the model and

the estimate gn(x). Beran [1977] proposes using the HD in order to discover robust

parameter estimates. They observe that when the data is distributed according to

one member of the model class, g(x) = f(x; θ0), the HD between the model and

a data generating process is approximately equal to the KLD between the model

a data generating process, when n is large. Therefore the minimum HD estimate

(MHDE) is asymptotically equivalent to the MLE, the estimate achieved by minimis-

ing the KLD. By the same argument Beran [1977] propose that the MHDE will also

be asymptotically efficient. Additionally, Kuchibhotla and Basu [2015] considers

the αD and the generalised-KLD. Results regarding the robustness and efficiencies

of general discrepancy measures can be found in Lindsay [1994]; Basu and Lindsay

[1994]; Kuchibhotla and Basu [2015, 2016]. Basu et al. [2011] provides a compre-

hensive review of minimum divergence estimation.

The frequentist literature in this area is vast. In this thesis we choose to focus

on the Bayesian contributions. These have been limited but come first from Hooker

29



and Vidyashankar [2014] and more recently from Ghosh and Basu [2016] and Ghosh

and Basu [2017]. Authors Hooker and Vidyashankar [2014] use the approximate

equality between the KLD and the HD to produce a more robust posterior distribu-

tion over the model parameters, a direct Bayesian analogue to the MHDE. Ghosh

and Basu [2016] considers the Bayesian analogue to Basu et al. [1998] minimising the

proper Tsallis score associated with the βD in order to produce a ‘pseudo-posterior’

that does not require a density estimate. Ghosh and Basu [2017] demonstrate ex-

ponential converge results illustrating that this posterior is asymptotically optimal

in exactly the same exponential rate as the traditional Bayesian posterior when the

model is correct [Barron, 1988].

2.4.1 Why the current justification is not enough

Bayesian methods are traditionally motivated by Bayes’ rule, principled belief up-

dating and conditional probability. Following this, both Hooker and Vidyashankar

[2014] and Ghosh and Basu [2016] seek to justify their ‘pseudo’ or ‘approximate’

posteriors by asserting that they approximate what might be obtained using Bayes’

rule, but are more robust to the existence of outliers in finite samples.

The asymptotic approximation of the HD and the KLD when the data comes

from the model is used by Hooker and Vidyashankar [2014] to justify replacing the

KLD by the HD to produce posteriors of the form

π(θ|x) ∝ π(θ) exp(−nHD(gn, f(·; θ))), (2.2)

where gn is an estimate of the data generating density g. Firstly define the KLD

minimising parameter as

θ̂KLD = arg min
θ∈Θ

KLD(gn(x), f(·; θ)). (2.3)

This asymptotic equivalence between the KLD and HD can be seen by taking Taylor

expansions of the two divergences about the KLD minimising parameter. For the

KLD we then have that

KLD(gn(x)||f(x; θ
′
)) = AKLD −BKLD − CKLD + · · · , (2.4)
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where

AKLD :=

∫
gn(x) log

(
gn(x)

f(x; θ̂KLD)

)
dx, BKLD := (θ

′ − θ̂KLD)

∫ ∇θf(x; θ̂KLD)

f(x; θ̂KLD)
gn(x)dx

CKLD :=
(θ
′ − θ̂KLD)2

2

∫ (∇2
θf(x; θ̂KLD)

f(x; θ̂KLD)
− (∇θf(x; θ̂KLD))2

f(x; θ̂KLD)2

)
gn(x)dx.

While, for the HD we have that

4HD(gn(x), f(x; θ
′
)) = AHD −BHD − CHD + · · · , (2.5)

where

AHD := 4

∫ 1−

√
f(x; θ̂KLD)√
gn(x)

 gn(x)dx

BHD := (θ
′ − θ̂KLD)

∫
2

∇θf(x; θ̂KLD)√
f(x; θ̂KLD)

√
gn(x)

gn(x)dx

CHD :=
(θ
′ − θ̂KLD)2

2

∫ 2
∇2
θf(x; θ̂KLD)√

f(x; θ̂KLD)
√
gn(x)

− (∇θf(x; θ̂KLD))2√
gn(x)(f(x; θ̂KLD))3/2

 gn(x)dx.

Now following the same arguments as used in Hooker and Vidyashankar [2014]: The

terms AKLD and AHD do not depend on θ
′

and the terms BKLD and BHD must be 0

as by definition ∇θf(x; θ̂KLD) = ∇θ log f(x; θ̂KLD) = 0. Now if gn(x) is consistent for

g = f(·; θ̂KLD) = f(·; θ0) then the left hand term in the integrals of CKLD and CHD

Eq. (2.4) and (2.5) will be 0, and the right hand terms are equivalent in the limit as

n→∞. This second order equivalence was noted by Beran [1977] as demonstrating

the frequentist efficiency of a minimum HD estimate.

However when θ̂KLD 6= θ0 is not the data generating parameter because the

model class is misspecified, and if gn(x) is still converging to g(x) 6= f(x; θ0) as

n→∞ then terms CKLD and CHD in Eq. (2.4) and (2.5) will be different. Specifically,√
f(θ; θ̂KLD)

√
gn(x) will no longer converge to gn(x) as n→∞. In this setting the

current literature gives no foundational reasoning why updating using the Hellinger

divergence constitutes a principled updating of beliefs.

The ‘pseudo-posterior’ of Ghosh and Basu [2016], obtained instead by sub-

stituting the βD into Eq. (2.2), is justified either using the exponential converge

results, which similar to above relies on the M -closed assumption that the model is

correctly specified, or as the traditional posterior originating from an alternative be-
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lief model f̃(x; θ) ∝ exp
(
nD(β)

B (g||f(·; θ))
)
. However, this alternative model will not

even correspond to the DM’s approximate beliefs about the data generating process

and in fact may well not even be normalisable. There is therefore, a lack of formal

justification for a DM to update beliefs using Bayes rule on this object.

In the next sections we seek to unify these approaches under a principled and

coherent updating regime, that does not merely seek to approximate some Bayes’

rule inference but is principled and desirable when acknowledging the M -open world.

2.5 Principled Bayesian minimum divergence estima-

tion

We next take a foundational approach to theoretically justify an updating of beliefs

targeting the parameters minimising any statistical divergence between the model

and the data generating density. Consider the general inference problem of wanting

to estimate the parameters θ of the parametric model {f(·; θ) : θ ∈ Θ}. The

model here can be considered as the DM’s best guess at the DGP. We consider

it important to continue to use a model even after the acknowledging that it is

inevitably misspecified for the reasons outlined in Section 2.2. Following Bernardo

and Smith [2001] and Walker [2013] we consider fitting these parameters in a decision

theoretic manner, by minimising some divergence function. We specifically restrict

ourselves to divergences that can be written in terms of expected losses as in Eq.

(1.31). These divergence functions naturally admit a loss function that can be

used to quantify how well a model fits data (see Section 1.3.2). The corresponding

inferential goal is to solve the decision problem

θ∗ = arg min
θ
D(g(·)||f(·; θ)) = arg min

θ

∫
`D(x, f(·; θ))dG(x). (2.6)

Here the entropy term in the definition of the divergence is removed from the min-

imisation because it does not depend on θ. In the formulation of Walker [2013]

this divergence was the KLD in order to justify the continued use of Bayes’ rule

under model misspecification. However, such a justification and the continued use

of Bayes’ rule forces the Bayesian into concerns associated with non-robustness.

Alternatively, demanding a solution to equation (2.6) is analogous to the

approach taken by Bissiri et al. [2016], outlined in Chapter 1, when producing their

general Bayesian update. The only difference now is that the loss function depends

on the parameter through a model so is a scoring rule. By minimising a combination

of the expected loss of the data under the posterior and the KLD between the prior
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and the posterior, Bissiri et al. [2016] come up with an optimal updating of beliefs for

any decision problem. As a result general Bayesian updating provides a coherent

updating of beliefs that target the parameters minimising the general divergence

D(·||·) as

π(D)(θ|x) = arg min
q∈P

{
Eθ∼q(θ)

[
w

n∑
i=1

`D(xi, f(·; θ))
]

+ KLD(q(θ)||π(D)(θ))

}
(2.7)

∝ π(D)(θ) exp(−w
n∑
i=1

`D(xi, f(·; θ))). (2.8)

The calibration weight w [Bissiri et al., 2016] is discussed further in Section 2.5.1.

In order to stay consistent with Walker [2013], we use the notation π(D) to indicate

that the prior and posterior belief distributions correspond to beliefs about the

parameter minimising divergence D(·||·). An example of how this distinction might

manifest itself is as follows: minimising the KLD compared with one of the more

robust divergences we consider later makes observing a large variance more likely

as a small proportion of observations can drastically inflate the predictive variance,

e.g. see Fig. 2.1. Thus the corresponding prior should have a longer right tail.

Directly eliciting beliefs according to the geometries of different divergences

will be very difficult, even for those with a high level of mathematical training.

However, this distinction is necessary in the M -open world as the DM can not possibly

express beliefs about the data-generating parameter as they know this does not exist.

The chosen divergences relates the parameters of the model to the observations and

thus allows the DM to think about their parameter in terms of observables for which

they can conceivably have beliefs about [Gelman et al., 2017; Goldstein and Wooff,

2007; Williamson et al., 2015]. In practise however, the DM is likely to do so only

using only some vague, high-level notion of closeness between the model and the

DGP, rather than the explicit form of some divergence. As a result, we argue it

may actually be easier to consider beliefs about the parameters minimising some of

the more robust divergences introduced below than the KLD consider by Bayes’ rule

updating under missepcification which defines close by accuracy of tail specification.

This thesis generally focuses on likelihoods rather than priors and as a result we do

not consider this point further. Though whether there are divergences that simplify

prior elicitation is an interesting areas for future research.

Additionally, Eq. (2.7) illustrates that although changing the loss functions

allows these generalised minimum divergence posteriors to learn about the parame-

ters of the model minimising a divergence different from the KLD to the DGP, they
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are still derived by also seeking to minimise the KLD of the prior from the poste-

rior[Bissiri et al., 2016]. This ensures the posterior in Eq. (2.8) is still coherent. In

Chapter 4 we go further and explore changing this divergence also.

Applying the general Bayesian update in an inferential scenario like this,

provides a compromise between purely loss based general Bayesian inference and

traditional Bayesian updating using Bayes’ rule. General Bayesian updating as pre-

sented by Bissiri et al. [2016] produces posterior beliefs directly about the minimiser

of the loss function connecting the decision to the data. In this case θ is not the

parameter indexing a likelihood but some value directly relevant to the decision

problem at hand. On the other hand, traditional Bayesian updating is undertak-

ing an inference problem completely independently to any actual decision problem.

Bayes’ rule simply aims to produce the best characterisation of the DGP, where best

is canonically defined in terms of the KLD.

Our approach introduced here is still concerned with estimating model pa-

rameters based on how well the model’s predictions reflect the DGP. However, the

criteria for closeness between predictions and reality can be chosen with the knowl-

edge that the resulting inferences will be used to inform a decision problem. As a

result, the minimum divergence posteriors can be seen as producing inferences that

will be suitable for a broad range of loss functions. Unlike in the original general

Bayesian update, the DM is no longer required to precisely define the loss function as-

sociated with their decision problem at the inference stage. They need only consider

broadly how robust to tail misspecifications they want their inference to be in order

to define the target divergence (see Section 2.6.7). The general Bayesian updating

proposed above allows the goals of the statistical analysis to be coupled together

with the parameter updating, something not previously possible under traditional

Bayesian statistics.

Considering the realistic M -open nature of the model class provides a further

justification for a middle ground between purely loss-based general Bayes and Bayes’

rule. The original general Bayesian update, assumes absolutely no information about

the DGP when simply using a loss function to produce posterior beliefs. In contrast

using Bayes rule traditionally1 assumes the DGP is known precisely. As we point

out, it is actually more likely that the decision maker is able to express informative

but not exact beliefs about the DGP and therefore a half-way-house between these

two is appropriate in reality.

The loss function associated with minimising the βD is given in Eq. (1.33)

1Prior to the interpretation provided by Walker [2013] explained in section 1.1.3

34



while the loss function associated with the HD is found by observing that

HD(g, f(·; θ)) = 1−
∫ √

f(x; θ)
√
g(x)dx (2.9)

= Eg [`H(x, f(·))]− Eg [`H(x, g(·; θ))] (2.10)

where

`H(x, f(·; θ)) = −
√
f(x; θ)√
g(x)

(2.11)

Plugging Eq. (2.11) and (1.33) into Eq. (2.8) produce the general Bayesian poste-

riors minimising the HD and βD as

πH(θ|x) ∝ πH(θ) exp

(
n∑
i=1

√
f(xi; θ)√
gn(xi)

)
(2.12)

π
(β)
B (θ|x) ∝ π(β)

B (θ) exp

(
n∑
i=1

{
1

β − 1
f(xi; θ)

β−1 − 1

β

∫
f(y; θ)βdy

})
. (2.13)

Equation (2.12) introduces gn(·) to estimate the data generating density g (see

Section 2.6.8 for more on this). As a result, the general Bayesian updating is being

conducted using an empirical loss function,

ˆ̀
H(x, f(·; θ)) = −

√
f(x; θ)√
gn(x)

, (2.14)

which approximates the true loss function required to minimise the Hellinger diver-

gence between the model and the data generating process `H in Eq. (2.11).

Equation (2.13) is exactly the distribution resulting from the robust param-

eter update of Ghosh and Basu [2016] (with their α = β − 1), while equation (2.12)

is similar to the posterior produced by Hooker and Vidyashankar [2014] except the

divergence function has been decomposed into its score and entropy term here. This

demonstrates that the posteriors above are not pseudo posteriors - as Ghosh and

Basu [2016] suggests - or approximations of posteriors - as Hooker and Vidyashankar

[2014] suggests - they provide a principled method for the DM to update their prior

beliefs about the parameter minimising an alternative divergence to the KLD.

As well as being philosophically appealing, we can be reassured that these

generalised model posteriors posses similarly convenient mathematical properties to

the traditional Bayes’ rule posterior. Chernozhukov and Hong [2003]; Lyddon et al.

[2018] provide regularity conditions under which the general Bayesian posterior (Eq.
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(1.16)) for general loss function `(x, θ) is asymptotically normal. They show that

√
n
(
θ − θ̂n

)
→ z

′
, (2.15)

where convergence is in distribution, z
′ ∼ N

(
0, 1

wJ (θ∗)−1
)

and

θ∗ = arg min
θ∈Θ

∫
`(θ, x)dG(x), θ̂n = arg min

θ∈Θ

1

n

n∑
i=1

`(θ, xi) (2.16)

J(θ) =

∫
∇2
θ`(θ, x)dG(x), Ĵ(θ) =

1

n

n∑
i=1

∇2
θ`(θ, xi), (2.17)

where G(·) is the data generating distribution and ∇2
θ is the second derivative with

respect to θ. This agrees with the posterior asymptotic normality results presented

in Hooker and Vidyashankar [2014] (who restrict g = fθ0) and Ghosh and Basu

[2016] for the HD and βD loss functions respectively, who also note that the result

still holds when J (θ∗) is replaced by the empirical Ĵ
(
θ̂n

)
. We note that the result

for the HD requires some conditions on the density estimate used. Additionally Basu

et al. [2011] prove consistency of the empirical divergence minimiser θ̂n to the exact

divergence minimiser to θ∗.

One convenient consequence of these results is that if by chance we are in

the M -closed world, i.e. there exists θ0 such that g(x) = f(x; θ0), then property ii)

in Definition 5 of a statistical divergence ensures that D(q||f(·; θ)) must be uniquely

minimised at g = f(·; θ0). As a result, in this case the general Bayesian posterior (Eq.

(2.8)) will still be learning about the data generating parameter θ0. We examine

the frequentist efficiency in this scenario in Section 2.7.4.

2.5.1 Calibration

The two posteriors in equations (2.12) and (2.13) can be seen as using the canonical

form of the HD and βD loss function and setting the general Bayesian calibration

weight w = 1. Unlike probability distributions, loss functions are invariant to a

linear change in scale. Increasing the weight on the loss function, w`D(θ, x), does

not change the loss minimising parameter but will cause the posterior in Eq. (2.8) to

concentrate further and receive less influence from the prior. The converse happens

when decreasing w. As a result w needs to be set to calibrate the loss function.

One solution to this is to argue that w = 1 is correct here. The posteriors

above both use well-defined models and the canonical form of well-defined diver-

gence functions and as a result there is no arbitrariness in the size of the loss.
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This is further demonstrated by the fact that Bayes’ rule corresponds to using the

canonical form of the KLD and a probability model with weight w = 1. When the

model is correct, this causes the posterior variance of these alternative methods to

be increased for finite data samples relative to the traditional Bayesian posterior.

This is to be expected. Zellner [1988] showed that Bayes’ rule processes information

optimally when the model is correctly specified and therefore produces the most

precise posterior distributions. The posterior is simply a subjective reflection of the

DM’s uncertainty after seeing the data, and if they believe their model is incorrect

and therefore target a more robust divergence, they are likely to have greater poste-

rior uncertainty than if they naively believe their model to be correct and proceed

accordingly.

This argument however relies on the existence of canonical forms of diver-

gences. In practice these do not exist. For example the HD has a multiplying

constant of 1 when viewed in isolation but has 1
0.5(1−0.5) = 4 when viewed as a

member of the αD family with α = 0.5.

The loss-likelihood bootstrap (LLB) method of Lyddon et al. [2018] described

in Section 1.2.2 provides a more principled procedure to set w. This matches the

asymptotic information in the general Bayesian posterior for a given loss function

with the asymptotic information in a sample from the LLB. The LLB is interpreted

by Lyddon et al. [2018] as producing a non-parametric, Dirichlet process estimate

of the DGP. This can then be repeatedly sampled from, and these samples used to

minimise the loss function. This produces a sample of parameter values quantifying

uncertainty about the minimiser of the loss. As a result, the LLB is motivated by

Lyddon et al. [2018] as a principled quantification of uncertainty in the absence of a

model for the DGP. As the only operation involving the loss is minimisation, the LLB

is invariant to a scalar weighting of the loss unlike the general Bayesian posterior.

However, the general Bayesian posterior depends on a prior distribution where the

LLB does not. As a result, w is set to match the asymptotic information in both

methods, where the prior has little influence, but the general Bayesian posterior is

preferred for finite n. For the next two chapters we use this method of Lyddon et al.

[2018] to set w for the minimum divergence posterior.

However, we note that the approach of Lyddon et al. [2018] is designed

for general loss functions rather than model based divergence loss functions. In

the presence of a model, one desirable property for minimum divergence Bayesian

updating might be that if the model is correct then the posterior agrees with the

posterior obtained using Bayes’ rule. In fact this is similar to the justification

provided for the update of Hooker and Vidyashankar [2014]. This can be shown not
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to be the case when using the LLB and therefore provides an area of further research

for tailoring the selection of w to loss functions depending upon a likelihood model.

2.5.2 The likelihood principle and Bayesian additivity

Authors Hooker and Vidyashankar [2014] identify that their posterior distribution

minimising the Hellinger divergence, Eq. (2.12), no longer satisfies Bayesian ad-

ditivity. That is to say that the posteriors would look different if the sample was

used as a whole to update the posterior, or if the updating happens incrementally

on subsets of the observations. This is because the posterior now depends on the

estimate of the data generating density, which depends in a non-additive way on

the data. This constitutes a departure from the likelihood principle underpinning

traditional Bayesian statistics. The likelihood principle says that the likelihood is

sufficient for the data. When the model is perfectly specified this is a sensible prin-

ciple, the likelihood of the observed data under the correct model represents all the

information in the data. However, in the M -open world the likelihood principle is

no longer a reasonable requirement. When the model is only considered as an ap-

proximation of the DGP, it is reasonable to suspect that the data contains more (or

less) information than is represented in the likelihood of an incorrect model. When

the model is correct we can reasonably expect a sample from the fitted model to

resemble the observed data. When the model is misspecified this is no longer the

case.

Bayesian additivity (defined as coherence by Bissiri et al. [2016]) is a central

principle of the general Bayesian update. It was the demand for coherence that

motivated the KLD as the divergence used to penalise the posterior to prior diver-

gence. Which in turn, elicited the form of the general Bayesian update Eq. (2.8).

We argue such a demand does not prohibit the use of the HD loss function. The

general Bayesian posterior minimising the Hellinger divergence, Eq. (2.12), com-

bines the loss function for each observation in an additive way, which is consistent

with the additivity demanded by Bissiri et al. [2016], but a different density esti-

mate is produced when the data is considered as a whole or in parts. This causes

the empirical loss function, ˆ̀
H(x, f(·; θ)) in Eq. (2.14), used for the updating to

be different when the data arrives incrementally, as opposed to one go. If the data

generating density, g(x), were available then the exact loss function associated with

minimising the Hellinger divergence, ˆ̀
H(x, f(·; θ)) in Eq. (2.11), could be calculated

and the Bayesian update would be additive. However because an approximation of

the loss function associated with the Hellinger divergence is used, additivity must

be sacrificed.
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In contrast the posterior of Ghosh and Basu [2016], Eq. (2.13), does not

require a density estimate and is thus able to produce an additive belief update.

However, the likelihood is also no longer considered to be sufficient for the data.

The posterior also depends on the integral, 1
β

∫
f(z; θ)βdz.

When using an alternative divergence to the KLD in order to conduct a

Bayesian updating, it is necessary for additional information to the ‘local’ informa-

tion provided by the likelihood of the observed data to be incorporated into the

loss function. For the HD this information comes from the data by way of a density

estimate, while for the βD this comes from the model through 1
β

∫
f(z; θ)βdz.

2.5.3 Subjectivity

Demonstrating that principled inference can be made using alternative divergence

measures than the KLD, enables us to consider the selection of the divergence used

for updating to be a subjective judgement made by the DM, alongside the prior and

model, to help tailor the inference to the specific problem. Celeux et al. [2017] ob-

served that while Gelman and Hennig [2015] advocate greater freedom for subjective

judgements to impact statistical methodology, they fail to consider the possibility

of subjective Bayesian parameter updating. In the utopic M -closed world Bayes’

rule and the log-score provide objectively the correct way to update probability

beliefs, given that the DM believes all of the judgements made by their prior at

the time the updating takes place. This thesis in general focuses on the likelihood

aspect of the Bayesian updating and thus we make the very liberal assumption of a

correctly specified prior for simplicity. In the more realistic M -open world we have

argued above that this is no longer so clear. Very few problems seek answers that

are connected with a specific dataset or model, they seek answers about the real

world process underpinning these. Authors Goldstein et al. [2006], focusing on belief

statements, demonstrate that subjective judgements help to generalise conclusions

from the model and the data to the real world process. In a similar spirit we argue

that carefully selecting an appropriate divergence measure and documenting the

reasons for doing this provides a further way of introducing subjective judgement

into a statistical analysis.

2.5.4 A decision theoretic view of probabilities

The minimum divergence general Bayesian updating introduced in this section en-

ables us to produce a completely different interpretation for the likelihood in a

Bayesian analysis. Under Bayes’ rule the likelihood is the probability of observing
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the data under certain parametric conditions. This requires the DM who elicits this

likelihood to consider every aspect of the world in which the data was generated,

making many more judgements than they can possibly be expected to have the in-

trospection to make [Goldstein, 1990]. We discussed how this inevitably leads to

misspecifications in Section 1.1.2.

In contrast, in this general Bayesian minimum divergence paradigm the like-

lihood no longer need be considered in such a strict generative sense. The DM almost

certainly does not believe the data was generated from their model. Instead, the

likelihood is combined with a loss function allowing us to interpret the likelihood

predictively. Rather than considering the probability of generating the observed

data under given parametric conditions, we can asses the loss/reward the DM would

have received had they used the same parametric conditions to produce a predictive

distribution for the observed the data.

Interpreting the likelihood predictively using a loss function then allows for

much greater flexibility and subjectivity when conducting inference. Not only can

the loss function be changed to allow the DM greater control over how their inferences

are designed to fit the data, e.g. favouring correctly modelling most observations

and ignoring the fact that an outlier was poorly modelled, but the DM can also

now only consider scoring predictions on margins of the observation space they are

interested in. Rather than producing a joint likelihood for every dimension of the

observed data, the DM can now view their likelihood predictively and just score it on

the margins that are important for them to predict. This constitutes an important

area of further research, possibly providing a powerful dimension reduction tool to

help robustify high-dimensional analyses.

2.5.5 Posterior prediction and the model

Often when performing parametric model inference the values of the parameters

are not necessarily of interest to the DM. These are often just artificial constructs

to separate past data from future data. In these situations the DM is usually in-

terested in the distribution of future observations given the past data. Given the

acknowledgement that the model is misspecified it is not exactly clear what form

this distribution should take. One candidate that we consider in this thesis for the

general Bayesian minimum divergence paradigm is

f(y|x) =

∫
f(y; θ)π(D)(θ|x)dθ. (2.18)

40



When D = KLD this is the familiar posterior predictive. However, even when using

a different divergence, we still use the model likelihood to produce predictions. This

is justified following the “all models are wrong but some are useful” assumption

discussed in Section 2.2. Although the model is not a correct representation of our

beliefs, we continue to use the model in the belief that it captures some important

structural components of the DM’s beliefs that they surely want to impact both

updating and future prediction. However, unlike in the M -closed world the DM is

not compelled by the rules of conditional probability to use this. Seeing the data for

example could well provide information that would alter the form for which the DM

might want to predict and thus the proposal above is considered a default plug-in

with more careful thought about the distribution possibly required.

However, we explicitly do not attempt to interpret the minimum divergence

general Bayesian posteriors, Eq. (2.8), as conducting Bayes’ rule updating on a ro-

bustified belief model f̃(x; θ) ∝ exp (−`D(x, f(·; θ))) [Ghosh and Basu, 2017]. If this

were interpreted as an alternative belief model then predictions should be produced

using the alternative belief model f̃(y; θ), which in many cases will not correspond

to a normalised probability density, rather than the original model f(y; θ).

The separation of loss function used for inference and the model used for

prediction in Eq. (2.18) allows us to produce inference that is insensitive to outliers

without having a model which generates outliers [O’Hagan, 1979].

2.6 Possible Divergences to consider

Section 1.3 introduced several well-known families of divergences and their corre-

sponding loss function interpretations, where available. Here we motivate some of

these for use in inference. We do not claim this list is exhaustive but merely con-

tains ones we have considered and experimented with for inference. Throughout, we

seek to motivate these in a decision theoretic sense based on their ability to produce

accurate estimates of expected utility.

2.6.1 Total-Variation Divergence (TVD)

General Bayesian updating targeting the minimisation of the TVD can be produced

using loss function

`TV (x, f(·; θ)) =
1

2

∣∣∣∣1− f(x; θ)

gn(x)

∣∣∣∣ . (2.19)

Notice, similarly to Eq. (2.14), Eq. (2.19) also requires an estimate of the data gen-

erating density gn and is thus an empirical approximation to the loss function min-
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imising the TVD. Our principle of M -open inference suggests that under a bounded

utility function TVD provides the canonical criteria for inference, see Section 2.3.

Unlike the log-score, Eq. (2.19) is bounded as f(x; θ)→ 0. Authors Hooker

and Vidyashankar [2014] identify some drawbacks of having a bounded score func-

tion. The score function being upper bounded means that there is some limit to

the score that can be incurred in the tails of the posterior distribution. Under the

log-score, as f(x; θ)→ 0, − log(f(x; θ))→∞ and as a result in this region

π(θ|x) ∝ π(θ) exp (− log(f(x; θ)))→ 0. (2.20)

Now under a bounded loss function we have that for fixed gn(x), f(x; θ) → 0

`(x, θ)→ B <∞ and as a result in this region

π(θ|x) ∝ π(θ) exp (−w`(x, θ))→ π(θ). (2.21)

Therefore the tails of the posterior will be equivalent to the tails of the prior. As

a result the DM is required to think more carefully about their prior distribution.

In fact, when changing the divergence targeted by inference the DM actually has a

completely different prior to construct, see the discussion in Section 2.5 Not only are

improper priors prohibited, but more data is required to move away from a poorly

specified prior. This can be somewhat mitigated by an appropriately chosen cali-

bration weight, see Tables 2.5 and 2.6. However the loss function is not monotonic

or strictly convex which we believe harms the finite sample efficiency when the DGP

is within the chosen model class, see Table 2.5 and discussion.

2.6.2 Hellinger Divergence (HD)

As was mention in Section 1.3, Devroye and Gyorfi [1985]; Liese and Vajda [1987]

observed, that the HD can be used to bound the TVD both above and below. As a

result, the HD and the TVD are geometrically equivalent. Thus, if one of them is

small, the other is small and similarly if one of them is large the other is also. So if

one distribution is close to another in terms of TVD, then the two distributions will

be close in terms of HD as well. Authors Beran [1977] first noted that minimising the

HD gave a robust alternative to minimising the KLD, while Hooker and Vidyashankar

[2014] proposed a Bayesian alternative (Eq. (2.12)) that has been discussed at length

above. While Hooker and Vidyashankar [2014] motivated their posterior through

asymptotic approximations, identifying the geometric equivalence between the HD

and TVD proposes further justification for a robust Bayesian updating of beliefs

similar to that of Hooker and Vidyashankar [2014]. Specifically, if being close in
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terms of TVD is the ultimate robust goal, then being close in HD will guarantee

closeness in TVD. The HD can therefore serve as a proxy for TVD that retains

some desirable properties of the KLD: it is possible to compute the HD between

many known families [Smith, 1995] and the score associated with the HD has a

similar strictly convex shape, this is discussed further in Section 2.7.4. A posterior

targeting the HD does suffer from the same drawbacks associated with having a

bounded scoring function that are mentioned at the end of the previous section and

requires an estimate of the data generating density. Lastly along with TVD, the HD

is also a metric.

2.6.3 α-Divergence (αD)

The HD and KLD can be smoothed between by αD. Setting α = 1 corresponds to

a KLD limiting case (see Definition 9, Remark 1) while subbing α = 0.5 into Eq.

(2.22) recovers 4 times the HD in Eq. (2.11). We think of these as two extremes

of efficiency and robustness within the αD family with which a DM would want to

conduct inference between. The parameter α thus controls this trade-off. The loss

function used to target minimising the αD is

`
(α)
A (x, f(·; θ)) =

1

α(1− α)
gn(x)α−1f(x; θ)1−α. (2.22)

It was demonstrated in [Prop. 2.35 Liese and Vajda, 1987],[Cor. 1 Sason and

Verdu, 2016] that for α ∈ (0, 1) the αD can be bounded above by TVD, see Eq.

(1.37). Therefore, similarly to the HD if the TVD is small then the αD will be

small (provided α 6= {0, 1}). So a predictive distribution that is close to the data

generating density in terms of TVD will receive high posterior mass under an update

targeting the αD. Cichocki et al. [2011] provide intuition about how the parameter α

impact the influence each observation x has on the inference about f(·; θ) when the

data comes from g(x). They consider influence to be how the observations impact

the estimating equation of θ, this is a frequentist setting but the intuition remains

useful here. α > 1, down-weights x with small g(x)/f(x; θ).

α < 1, down-weights x with large g(x)/f(x; θ).
(2.23)

The size of g(x)/f(x; θ) for an observation x defines how outlying (large values) or

inlying (small values) the observation is. Choosing α < 1 ensures outliers relative

to the model have little influence on the inference. We can project these notions of
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influence into the Bayesian paradigm using the influence plots described in Section

2.6.7 (see Figure 2.2). Once again the loss function is bounded in θ for α < 1 and

an estimate of the data generating density is required to operationalise this loss

function.

2.6.4 β-Divergence (βD)

Another one parameter divergence family containing the KLD is the βD family.

Eq. 2.13 above presents the posterior targeting minimising the βD. Both Basu

et al. [1998] and Dawid et al. [2016] noticed that inference can be made using

the βD without requiring a density estimate. This was used in Ghosh and Basu

[2016] to produce a robust posterior distribution that did not require an estimate

of the data generating density, which has been extensively discussed in previous

sections. Cichocki et al. [2011] again uses estimating equations to asses the impact

observations can have on the βD.β > 1, down weights x where f(x; θ) is small.

β < 1, down weights x where f(x; θ) is large.
(2.24)

Taking β > 1 results in the influence of observations that have low predicted proba-

bility f(x; θ) under the model being down-weighted. When minimising the KLD at

β = 1, as is done by Bayes’ rule, the influence of an observation x is inversely related

to its probability under the model. Raising β above 1 will decrease the influence of

the smaller values of f(x; θ), robustifying the inference to tail specification. How-

ever this results in a decrease in efficiency relative to methods minimising the KLD

[Ghosh and Basu, 2017]. We provide an illustration of this phenomenon suitable for

the Bayesian paradigm via the influence curves in Figure 2.2.

Next we provide some motivation for learning using the βD in a decision

making setting by showing that under certain conditions the βD can be bounded

above by the TVD.

Bounding the βD using the TVD

We are not aware of any previous results relating Bregman divergences to the TVD.

Below we prove that the TVD can be used to form an upper bound on the βD under

certain conditions. We make no assertions that this bound is at all tight but argue

it allows us to identify when closeness in terms of TVD will guarantee closeness in

the βD. The following theorem requires that we can bound the essential supremum
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(ess sup) of densities g and f . Given base measure2 µ, M is the essential supremum

of density f(x), ess sup f(x) = M , if the set defined by f−1((M,∞)), with (M,∞)

the open interval between M and infinity, has measure 0, i.e. µ
(
f−1((M,∞))

)
= 0.

Theorem 2. Suppose the densities g and f satisfy the following, ess sup g = Mg,

ess sup f = Mf , and that there exists M ≥ max(Mg,Mf ) then for 1 < β < 2 we

have that

D
(β)
B (g||f) ≤

(
Mβ−1

β − 1

)
TVD(g, f). (2.25)

Proof. Firstly this proof makes use of the following identity for the TVD. Defining

A− = {x : g(x) < f(x)} and A+ = {x : g(x) ≥ f(x)} the TVD can be rewritten as

TVD(g, f) =

∫
A−

(f(x)− g(x)) dx =

∫
A+

(g(x)− f(x)) dx. (2.26)

Now the βD can be rearranged to give

(β − 1)βD(β)
B (g||f) (2.27)

= (β − 1)

∫
f(x)β−1 (f(x)− g(x)) dx+

∫ (
g(x)β−1 − f(x)β−1

)
g(x)dx

= (β − 1)

∫
A−

f(x)β−1 (f(x)− g(x)) dx+

∫
A−

(
g(x)β−1 − f(x)β−1

)
g(x)dx

+(β − 1)

∫
A+

f(x)β−1 (f(x)− g(x)) dx+

∫
A+

(
g(x)β−1 − f(x)β−1

)
g(x)dx

≤ (β − 1)

∫
A−

f(x)β−1 (f(x)− g(x)) dx+

∫
A+

(
g(x)β−1 − f(x)β−1

)
g(x)dx,

as on A+ we know that (f(x) − g(x)) < 0 and on A− g(x) < f(x) ⇒ gβ−1(x) <

fβ−1(x) for 1 ≤ β ≤ 2. Since f ≤M ,∫
A−

f(x)β−1 (f(x)− g(x)) dx ≤Mβ−1

∫
A−

(f(x)− g(x)) dx ≤Mβ−1
TVD(f, g).

On A+ we have that g(x) > f(x) which implies that f(x)
g(x) < 1 and that when

2we discussed in Section 1.3.1 that this is assumed to be the Lebesgue measure for continuous
random variables and the counting measures for discrete random variables.
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1 < β < 2, f(x)
g(x)

β−1
> f(x)

g(x) so

∫
A+

(
g(x)β−1 − f(x)β−1

)
g(x)dx =

∫
A+

g(x)β−1

(
1−

(
f(x)

g(x)

)β−1
)
g(x)dx

≤
∫
A+

g(x)β−1

(
1−

(
f(x)

g(x)

))
g(x)dx (2.28)

=

∫
A+

g(x)β−1 (g(x)− f(x)) dx (2.29)

≤Mβ−1
TVD(f, g), (2.30)

since g ≤M we have that. Folding the two bounds together leaves

(β − 1)βD(β)
B (g||f) ≤ (β − 1)Mβ−1

TVD(f, g) +Mβ−1
TVD(f, g),

which rearranged proves the theorem.

The implications of Theorem 2 are as follows. Provided
(
Mβ−1

β−1

)
does not get

too small, we can be confident that the predictive distributions that are close to the

data generating density in terms of TVD, and thus produce accurate estimates of

bounded expected losses, will receive high posterior mass under an update targeting

the βD. We discuss when
(
Mβ−1

β−1

)
might becomes too small in Section 2.7.5

2.6.5 γ-Divergence (γD)

Another divergence eliciting a loss function that does not require an estimate of the

data generating density is the γD. Now, the γD as it is introduced in Eq. (1.30)

does not naturally allow for the interpretation provided by Eq. (1.31)

D
(γ)
G (g||f(·; θ)) =

1

γ
log

∫
f(x; θ)γdx− 1

(γ − 1)
log

∫
f(x; θ)γ−1g(x)dx

+
1

γ(γ − 1)
log

∫
g(x)γdx

=
1

γ
log

∫
f(x; θ)γdx− 1

(γ − 1)
logEg(x)

[
f(x; θ)γ−1

]
(2.31)

+
1

γ(γ − 1)
log

∫
g(x)γdx
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However minimising the D
(γ)
G for θ allows us to ignore the entropy term and is

therefore equivalent to minimising

1

γ
log

∫
f(x; θ)γdx− 1

(γ − 1)
logEg(x)

[
f(x; θ)γ−1

]
= log

(∫
f(x; θ)γdx

) 1
γ(

Eg(x) [f(x; θ)γ−1]
) 1

(γ−1)

(2.32)

Viewing inference on θ purely as optimisation, one can apply any monotonic trans-

form to a Eq. (2.32) without changing the location of its minimiser. The func-

tion γ exp(x) is monotonically increasing on R for γ > 0. Similarly, the function

h(x) = x1−γ is monotonic on R+ and decreasing (increasing) for γ > 1 (γ < 1). The

multiplier 1
γ−1 is negative when γ < 1 and ensures that h(x) = x1−γ is increasing in

x. As a result, (for γ > 0) minimising Eq. (2.32) is equivalent to minimising,

− γ

γ − 1

Eg(x)

[
f(x; θ)γ−1

]
(∫
f(x; θ)γdx

) γ−1
γ

≈ − γ

γ − 1

1

n

n∑
i=1

f(xi; θ)
γ−1(∫

f(z; θ)γdz
) γ−1

γ

(2.33)

with x1, . . . , xn ∼ g(·). Eq. (2.33) provides γ times the loss function of Futami et al.

[2017]; Hung et al. [2018].

Substituting Eq. (2.33) into Eq. (1.31) results in an scalar multiple of the

alternative definition of the γ-divergence used in Hung et al. [2018].

γ

(γ − 1)

{
Ig,γ(θ)

1
γ − If,γ(θ)

1−γ
γ

∫
g(x)f(x; θ)γ−1dx

}
, (2.34)

where If,γ(θ) =
∫
f(x;θ)γdx. This divergence appears to be different from D

(γ)
G as

defined by Cichocki and Amari [2010], but the above derivation shows that both

versions will be minimised for the same value of θ.

The γD loss function in Eq. (2.33) is very similar to the βD loss used

to produce the posterior in Eq. (2.13). Both raise the likelihood to the power

greater than 0 and then correct for this using the integral of the likelihood to a

similar power, the βD does this additively while the γD does this multiplicatively.

The multiplicative nature of the γD score and the fact that it is always positive is

appealing for computational reasons, see Section 4.8.2. As yet we have not proven

any relationship between the γD and the TVD. However, Hung et al. [2018] show

that under a linear ε-contamination minimising the γD can estimate the parameters

of the uncontaminated model with negligible bias.
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2.6.6 The Divergence Hyperparameters

The hyperparameters α, β or γ control the trade-off between robustness and ef-

ficiency and selecting these hyperparameters is part of the subjective judgement

associated with selecting that divergence. These values can be considered as a sort

of meta-prior on the confidence the DM has in their model. This being the case we

feel that to ask for multiple hyperparameter to be set by the DM is perhaps over

ambitious. For this reason we have neglected to mention any 2 parameter diver-

gence families for example the αβ-divergence [Cichocki et al., 2011]. We discuss the

setting of these divergence hyperparameters further in Section 2.7.5. The influence

curves introduced in the next section provide a way to understand the impact of

selecting a particular divergence and its hyperparameter.

Once we consider the divergence and its associated hyperparameters as part

of the subjective specification of the analysis, one can then consider investigating

the sensitivity of the analysis to this exact specification. When moving into the

M -open world there is no notion of the correct divergence, or the correct value of

any hyperparameters associated with the target divergence. However, the difference

between two analyses with different divergences or hyperparameters can be very

informative about the relationship between the likelihood model under considera-

tion and the sample distribution of the data. For example, if traditional Bayesian

inference using the KLD produces very different inferences to those using the robust

HD or TVD for example, then this is informative about a lack of tail correspondence

between the model and the sample distribution of the data. On the other hand

agreement between the inference minimising different divergences can reassure the

DM that their model sufficiently captures the DGP. Additionally, considering the

stability of inference minimising the αD or βD to the value of the α or β can be

very informative about the location of outliers. If α (β) is set sufficiently lower

(higher) than 1 to ignore all outliers then decreasing (increasing) it further should

only affect the inference by sacrificing a small amount of efficiency with no further

robustness gained. The framework of Williamson et al. [2015] provides a possible

approach to formalise these ideas above and use such alternative analyses to improve

a DM’s belief specification.

2.6.7 Influence curves

Here we introduce an important tool for understanding the role the target diver-

gence has on the inference problem, the influence curve. To gain intuition about

why these alternative divergences are able to produce robust inference we need to
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assess the relative impact any observation could have on a posterior. To do this we

deploy a technique from the Bayesian outlier detection literature. Bayesian outlier

detection methods aim to identify observations that have too great an influence on

the posterior. This can be done by measuring the divergence between the posterior

with and without each observation [Peng and Dey, 1995; Kurtek and Bharath, 2015].

That is to say define the influence of observation xi on the posterior as

I(xi) := D
(
π(θ|x1:n)||π(θ|x1:n\i

)
(2.35)

for some divergence D. Peng and Dey [1995] consider φ-divergence (Definition 6),

while Kurtek and Bharath [2015] use the non-parametric Fisher-Rao metric

DFR (g, f) = arccos

{∫ √
g
√
fdµ

}
(2.36)

The square-root ensures the densities live on the “positive orthant of a Hilbert

sphere” which in turn allows for the analytic computation of geodesic distances

between the densities. Here we consider the Fisher-Rao metric for its appealing

geometric interpretation and the fact that it is symmetric. We also note that the

Fisher-Rao metric is an invertible transformation of the HD. A further advantage of

these methods is their computational efficiency; sampling only from the full posterior

is enough to produce a Monte-Carlo estimate of the influence for each observation.

We extend the use of these influence functions, to produce an influence curve.

Rather than looking at the influence of observed data points, we evaluate the influ-

ence of any potential future observation to produce an influence curve

I(z) := D (π(θ|x1:n, z)||π(θ|x1:n)) (2.37)

We produce influence curves for all of the divergences we considered for inference in

the previous section and explain what these tell us about the subjective selection of

that divergence.

The influence curves in Figure 2.2 demonstrate the influence one observation

m posterior standard deviations away from the posterior mean have on a posterior

produced fitting the model N (µ, σ2) to n = 1000 observations from N (0, 1). The

KLD has a strictly increasing influence function in the number of posterior standard

deviations from the mean. This demonstrates the fact that tail observations have

large influence over the posterior. As a result the KLD is suitable if tails are impor-

tant to the decision problem at hand, but increasing influence characterises a lack of

robustness when tails are not important. Alternatively all of the robust divergence
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Figure 2.2: Influence Plots: The Fisher-Rao divergence between a posterior with
and without a new observation at varying posterior standard deviations away from
the previous posterior mean. Top: Bayesian inference minimising the KLD, TVD,
HD and αD. Bottom: Bayesian inference minimising the KLD, βD and γD

measures listed above have concave influence functions. The influence of an obser-

vation increases as it moves away from the mean, mimicking the behaviour under

the KLD initially, but then decreases as the observation is increasingly declared an

outlier. The curves for the αD, βD and γD show that changing the divergence

parameter allows a practitioner to change at what point observations are declared

as outliers and thus control the level of robustness to tail observations. For smaller

α (bigger β and γ) the influence functions start to decrease closer to the posterior

mean characterising greater robustness to the tail specification of the model.

The influence curves for the αD and βD provide a Bayesian analogy to the

frequentist measure of influence based on the estimating equation analysis discussed
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in Sections 2.6.3 and 2.6.4. What is not obvious from these influence curves is the

fact the βD is down-weighting the influence of each observation based solely on the

magnitude of its predicted likelihood f(x; θ), while the αD (and HD) is able to do

so based on the ratio of f(x; θ)/gn(x). As a result, these influence curves for the

βD and a given β are dependent on the variance and dimension of the observation

space. While, the αD is able to down-weight influence at a constant rate independent

of the dimension and variance of the observation space. Increasing the dimension

and/or variance, makes f(x; θ) small causing the βD to down-weight the influence

of observations more. In contrast, as the variance and dimension increase gn(x) will

also decrease allowing the ratio of f(x; θ)/gn(x) to be maintained. This is examined

further at the end of Section 2.7.4.

2.6.8 Density estimation

As has been mentioned before, for the TVD, HD and αD, it is not possible to exactly

calculate the loss function associated with any value of θ and x because the data

generating density g(x) will not be available. In this case, a density estimate of g(x)

is required to produce an empirical loss function. The Bayesian can consider the

density estimate as providing additional information to the likelihood from the data

(see Section 2.5.2’s discussion on the likelihood principle), and can thus consider

their general Bayesian posterior inferences to be made conditional upon the density

estimate as well as the data. The general Bayesian update is a valid update for

any loss function, and therefore conditioning on the density estimate as well as the

data still provides a valid posterior. However, how well this empirical loss function

approximates the exact loss function associated with each divergence is of interest.

The exact loss function is of course the loss function the DM would prefer to use

having made the subjective judgement to minimise that divergence. If the density

estimate is consistent to the data generating process, then provided the sample size

is large the density estimate will converge to the data generating density, and the

empirical loss function will then correctly approximate the loss function associated

with that divergence. It is this fact that ensures the consistency of the posterior

estimates of the minimum Hellinger posterior Hooker and Vidyashankar [2014].

Authors Hooker and Vidyashankar [2014] use a fixed width kernel density

estimate (FKDE) to estimate the underlying data generating density and in our

examples in Section 2.7 we adopt this practice using a Radial Basis Function (RBF)

kernel for simplicity and convenience. These off-the-shelf methods are shown to

work remarkably well for the low-dimensional problems considered here. However we

note that applying such techniques to medium and high-dimensional problems is not
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so straightforward. For example, Silverman [1986] identifies practical drawbacks of

FKDEs, including their inability to correctly capture the tails of the data generating

process whilst not over smoothing the centre, as well as the number of data points

required to fit these accurately in medium to high dimensions. In addition to this

Tamura and Boos [1986] observe that the variance of the FKDE when using a density

kernel in high dimensions lead to asymptotic bias in the estimate that is larger

than O
(
n−1/2

)
. Alternatives include using a kernel with better mean-squared error

properties (Epanechnikov [1969], Rosenblatt et al. [1976]), variable width adaptive

KDEs [Abramson, 1982], which Hwang et al. [1994] show to be promising in high

dimensions, piecewise-constant (alternatively tree based) density estimation [Ram

and Gray, 2011; Lu et al., 2013] which are also promising in high dimensions, or

a fully Bayesian Gaussian process as is recommended in Li and Dunson [2016].

In general we note that medium and high-dimensional density estimation is an

active and important area of research. Developments in this field will further help

facilitate the implementation of some of these robust methods to medium and high

dimensional applications

2.7 Illustrations

In this section we aim to illustrate some of the qualitative features associated with

conducting inference targeting the minimisation of the different divergences iden-

tified in Section 2.6. Throughout these experiments stan [Carpenter et al., 2016],

implementing the No-U-Turn sampler [Hoffman and Gelman, 2014], is used to pro-

duce fast and efficient samples from the general Bayesian posteriors of interest. We

demonstrate the impact model misspecifications can have on a traditional Bayesian

analysis for simple inference, regression and time series analysis, and that superior

robustness can be obtained by minimising alternative divergences to the KLD. In

Section 2.7.4 we also show that when the observed data is in fact generated from the

model, these methods can be shown not to lose too much precision. At this stage

we have deliberately restricted ourselves to simple demonstrations designed to pro-

vide a transparent illustration of the impact that changing the divergence measure

can have on inferential conclusions. However we discuss how robust methodology

becomes more important as problems and models become more complex and high

dimensional and thus encourage practitioners to experiment with this methodol-

ogy in practice. In Chapter 4 and 5 we investigate the performance of some of

these divergence measures for more complicated real world examples. For all of the
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experiments in this section we set w according to Lyddon et al. [2018]3

2.7.1 M-open robustness

Simple inference

The experiments below demonstrate the robustness of the general Bayesian update

targeting KLD (red), HD (blue), TVD (pink), αD (green), βD (orange) and the γD

(light blue). In the future these may be referred to as KLD-Bayes, HD-Bayes, TVD-

Bayes, αD-Bayes, βD-Bayes and γD-Bayes respectively. For illustrative purposes

we have fixed α = 0.75 for the αD-Bayes and β = γ = 1.5 for the βD-Bayes and

the γD-Bayes.

Firstly we consider again the ε-contamination example (p. 23). Figure 2.1

demonstrated that Bayes’ rule was very non-robust to ε-contamination. Figure

2.3 plots the posterior predictive originating from fitting the same normal model

f(·; θ) = N (µ, σ2) but using the robust divergences mention in the previous sec-

tions. Additionally, Figure 2.3 investigates the performance of the same model on

a dataset consisting of n = 1000 simulations from a Student’s t-distribution with

degrees of freedom 3 and the real data set, tracks1, taken as the first variable from

the ‘Geographical Original of Music Data Set’45 [Zhou et al., 2014]. This dataset

contains information about n = 1059 music tracks with the aim to determine if 68

audio features can be used to predict the country of origin of the artist. Here we con-

sider simply learning the data-generating density of the first variable, where a KDE

of the data appeared to be approximately normally distributed. Prior distributions

σ2 ∼ IG(0.001, 0.001) and µ|σ2 ∼ N (0, 102σ2) were used for all examples.

In contrast to Figure 2.1, the top left of Figure 2.3 shows that for the ε-

contamination example the Bayesian inference targeting minimising the HD, βD

and γD appears to correctly capture the distribution for 90% of the data. Their

ability to down-weight the influence of outlying observations enables them to al-

most entirely ignore the outlying contamination. Minimising the TVD and αD fit

marginally larger variances demonstrating that these methods give more influence

to outlying observations but they still capture the distribution for the majority of

the observations much more closely the the Bayes’ rule predictive does.

The Student’s t-distribution has consistently heavier tails than the normal

3For the TVD loss we use the absolute approximation |x− a| ≈ 2
k
log(1 + exp(k(x− a)))− x−

2
k
log(2) [Schmidt et al., 2007] with k = 1000 to ensure stability of the gradients and Hessians when

estimating w.
4downloaded from https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
5the data set was transformed by adding min(tracks1) + 0.001 to every value in order to make

the data strictly positive so the gamma and log-Normal distributions could be applied
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Figure 2.3: Posterior predictive distributions (smoothed from a sample) arising from
Bayesian minimum divergence estimation fitting a normal distribution N (µ, σ2) to
an ε-contaminated normal 0.9N (0, 1)+0.1N (5, 32) (top left), a t-distribution t3 (top
right) and the tracks1 dataset (bottom left) using inference targeting minimising the
KLD (red), HD (blue), TVD (pink), αD (green), βD (orange) and the γD (light blue).
The bottom right plots the posterior predictive distributions (smoothed from a
sample) from alternative models using Bayes’ rule, Normal (red), Student’s-t (blue),
logNormal (green) and gamma (orange).

distribution. Thus the top right hand plot of Figure 2.3 more clearly demonstrates

the importance placed on tail misspecification by each method. The Bayes’ rule

predictive fits the largest variance to correctly capture these tails, the αD is able to

fit a slightly smaller variance because of its bounded nature. However the variance

of the αD predictive is still larger than that of the other methods because it gives

greater influence to observations further from mean as depicted in Figure 2.2. Lastly

targeting the minimisation of the HD, TVD, βD and γD places the least weight on

tail misspecification and therefore these methods are able to fit a smaller variance

and produce a predictives more closely resembling the data generating process for

the majority of the data. A similar phenomenon is observed for the ‘tracks’ data.

Here there is an ordering from βD, γD, TVD, HD, αD and KLD on both bias towards

the right tail and on the size of the predictive variance, in response to the slight
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positive skew of the histogram of the data. Here it is clear to see that the TVD,

HD, βD and γD produce much better fits of the majority of the data than the

other methods do. Lastly, the bottom right plot demonstrates how several possible

alternative models to the Gaussian perform on the ‘tracks1’ data set when updating

using Bayes’ rule. This shows that a Gaussian distribution was actually the best fit

for the bulk of the data, and the poor fit achieved is down to the importance placed

on tail misspecification by the estimating procedure rather than the model selected.

In order to demonstrate the improved fit of the minimum divergence meth-

ods in the context of a decision problem, consider classifying individuals as regular,

if they lie between the 10% and 90% quantiles and irregular if they are outside this

region. We use the 0-1 classification loss, where 0 loss is obtained for correctly clas-

sifying an observation and a loss of 1 is obtained for an incorrect classification, to

compare the performance of the predictive distributions produced using the KLD,

HD, TVD, αD, βD, γD from the optimal classification under the known DGP for the

ε-contamination and Student’s-t data. We use sampling from the model to estimate

the 10% and 90% quantiles from the ε-contamination while these are available ana-

lytically for the Student’s-t distribution. Table 2.1 presents the sum of the absolute

difference between the optimal classification loss knowing g and the classification

loss incurred under the KLD-Bayes, HD-Bayes, TVD-Bayes, αD-Bayes, βD-Bayes,

γD-Bayes. For both the ε-contamination and the Student’s-t datasets the KLD

performs the worst with the alternative divergence methods all performing much

better.

Table 2.1: Sum of the absolute difference between optimal 0-1 classification as ‘reg-
ular’ (between 10% and 90% quantile) or ‘irregular’ (outside 10% and 90% quantile)
under known DGP and 0-1 classification produced under the KLD-Bayes, HD-Bayes,
TVD-Bayes, αD-Bayes, βD-Bayes, γD-Bayes for the ε-contamination and Student’s-
t datasets fo size n = 1000.

KLD HD TVD αD βD γD

ε-cont 111 58 54 47 73 74
Stu-t 90 8 18 27 16 20

2.7.2 Regression under heteroscedasticity

In addition to the simple inference examples above we consider how changing the

divergence can affect inference in a regression example. From the previous examples

we can see that when the tails of the model are misspecified the KLD minimising

predictive distribution inflates the variance of the fitted model to ensure no obser-
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vations are predicted with low probability. Further, we suspect that placing large

weight on tail observations, which occur with low probability, will cause large vari-

ance across repeat sampling. This may explain why frequentist parameter estimates

in linear regression under heteroscedasticity errors have larger variance. We seek

to demonstrate these claims here and investigate whether the alternative methods

mentioned above can improve this performance.

The alternative Bayesian minimum divergence methods place less weight on

tail observations. These have been shown to be able to produce inferences with

a smaller predictive variance and should also result in smaller estimation variance

across repeat sampling. While repeat sampling and estimation variance are not

problems in the Bayesian paradigm, these results do show that traditional Bayesian

inference can be somewhat imprecise when the tails are misspecified. This is clearly

undesirable when conditioning on observed data. We note that similar results have

been observed in the context of Bayesian variable selection by Rossell and Rubio

[2018]

In order to demonstrate this we simulated n = 200 data points with N = 50

repeats from the following heteroscedastic linear model

y ∼ N
(
Xβ, σ(X1)2

)
, where σ(X1) = exp

(
2X1

3

)
. (2.38)

For the experiments we simulated X ∼ Np (0, I) and βi ∼ Unif[−2, 2] for

i = 1, . . . , p. We held the β’s constant across repeat experiments. Figure 2.4 plots

the observed data Y vs X1 for one of these repeats. This shows how larger values of

X1 are associated with greater variance in Y . For each repeat we also simulated a

testing set, X̃ ∼ Np (0, I), of size ñ = 100. We then calculated the data-generating

means for the test set observations as Ỹ = X̃β. These characterise the part of the

model that was is correctly specified for the DGP.

We then conducted Bayes’ rule updating and general Bayesian updating us-

ing the five divergences mentioned above with priors σ2 ∼ IG(2, 0.5) and βi|σ2 ∼
(0, 5σ2). The medians across the 50 repeats of the posterior mean estimate for the

residual variance for the different methods are presented in Table 2.2, while Table

2.3 presents the median squared errors (MedSE)6 across the 50 repeats for the pos-

terior means of the parameters β̂i,
∑p

i=1

(
β̂i − βi

)2
, as well as the MedSE for the

6Medians were used rather than means to reduce the sensitivity of these values to outlying ex-
periments which we believe result from problems with the computation rather than the divergences
properties for inference
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Figure 2.4: A data sets simulated from the heteroscedastic linear model y ∼
N
(
Xβ, σ(X1)2

)
, with σ(X1) = exp (2X1/3) and p = 1.

predictive means on a test set Ỹ ,
∑100

i=1

(
Ŷi − Ỹi

)2
. In order to apply the HD-Bayes,

TVD-Bayes and αD-Bayes to a regression problem an estimate of the conditional

density of the response given the covariates is required. We follow authors Hooker

and Vidyashankar [2014] and implement conditional KDEs to approximate the true

data generating density. For simplicity, the familiar two-stage bandwidth estimation

process of Hansen [2004] was used to find the optimal bandwidth parameters.

Table 2.2: Table of posterior mean values for the residual variance of a standard lin-
ear model fitted to data from the heteroscedastic linear model y ∼ N

(
Xβ, σ(X1)2

)
,

with σ(X1) = exp (2X1/3). Estimates are medians across N = 50 repeats of the
posterior means produced from datasets of size n = 200 with increasing dimension
of the predictor space p = 1, 5, 10, 15, 20, under the Bayesian minimum divergence
technology. Bayes’ rule (KLD) fits a large predictive variance in order to accom-
modate the large variance in the DGP when X1 is large. The alternative methods
produce more accurate estimate of the residual variance across the majority of the
space of X1.

σ̂2 KLD HD TVD αD βD γD

p = 1 2.22 0.75 0.56 1.19 0.94 0.86
p = 5 2.19 0.43 0.37 0.95 0.89 0.83
p = 10 2.18 0.36 0.37 0.89 0.97 0.87
p = 15 2.25 0.32 0.59 0.82 0.89 0.84
p = 20 2.16 0.28 0.72 0.81 0.87 0.80

Table 2.2 demonstrates that the alternative divergences learn a smaller esti-

mate of the residual variance, σ̂2, than Bayes’ rule does under heteroscedastic errors.

Minimising the KLD requires capturing the extremes of the variance of the response

given the predictions which occurs when X1 is large. However this value is a terrible
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Table 2.3: Table of posterior mean Median Squared Errors (MedSE) values for
parameters, β, and test set means, Ỹ , of a standard linear model fitted to the
heteroscedastic linear model y ∼ N

(
Xβ, σ(X1)2

)
, with σ(X1) = exp (2X1/3).

Estimates are medians across N = 50 repeats of the posterior means produced
from datasets of size n = 200 with increasing dimension of the predictor space
p = 1, 5, 10, 15, 20, under the Bayesian minimum divergence technology. The alter-
native divergences estimate the parameters of the underlying mean function more
accurately which allows them to perform better predictively.

MedSE KLD HD TVD

β Ỹ β Ỹ β Ỹ

p = 1 0.02 1.66 0.02 1.83 0.04 4.24
p = 5 0.07 6.65 0.04 4.15 0.05 5.50
p = 10 0.14 13.84 0.09 9.44 0.13 12.44
p = 15 0.23 21.26 0.16 15.27 0.17 15.16
p = 20 0.28 23.95 0.21 20.05 0.20 18.32

MedSE αD βD γD

β Ỹ β Ỹ β Ỹ

p = 1 0.01 1.10 0.01 1.08 0.01 1.13
p = 5 0.04 3.98 0.03 3.23 0.03 3.34
p = 10 0.08 7.60 0.08 7.68 0.08 7.74
p = 15 0.12 11.30 0.12 11.07 0.12 11.09
p = 20 0.15 13.09 0.16 15.09 0.16 15.12

estimate of the residual variance of Y |X for most of the support of X. On the other

hand, the alternative divergences are able to ignore the areas of extreme variance

and estimate a residual variance that captures that data generating variance more

closely across a greater range of the predictor space.

We note that for these reasons the estimate of the σ̂2 will no longer correspond

to an estimate of the residual variance of Y |X as this will be dominated by the large

variance terms when X1 is large. This should rather be interpreted predictively as

the variance of the predictive distribution which is closest to the data generating

distribution in terms of that alternative divergence. The KLD estimate will correctly

capture the variance for large X1 but drastically over-estimate this for the majority

of X1’s support. On the other hand the alternative methods will underestimate the

variance for large X1’s put produce a much more accurate estimate fo the variance

in the DGP across the majority of the support of X1. We discussed in Section 2.5.5

that in the M -open world the DM does not necessarily have to use the model to make

future predictions. However, we believe it provides a sensible default and provides
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an interpretation of the inferred parameters in terms of observables.

Table 2.3 illustrates the impact that the fitting of a large variance has on

the parameter estimates of the mean function. Placing less influence on outliers

allows all of the alternative divergences to produce more precise estimates of the

parameters of the underlying linear relationship that was correctly specified by the

model. This then leads to better performance when predicting the uncontaminated

test set. Clearly the errors for all of the methods will increase as p increases because

the same amount of data is used to estimate more parameters. However it is clear

that the errors under the KLD are rising more rapidly. By being less sensitive to

the error distribution the alternative divergences are better able to capture the true

underlying process for the mean. This may very well explain why under misspecifi-

cation the traditional Bayesian marginal likelihood loses power to detect truly active

coefficients under misspecification [Rossell and Rubio, 2018].

2.7.3 Time series analysis

In order to further demonstrate how inflating the variance by targeting the KLD

under misspecification can damage inference, we consider a time series example.

We simulate x1, . . . , xT from an auto-regressive process of order L (AR(L)), and

then consider additive independent generalised auto-regressive conditionally het-

eroscedastic errors of order (1,1) (GARCH(1,1)), e1, . . . , et. The data generating

model can be summarised as follows

xt =

L∑
i=1

µixt−i + ε with ε ∼ N (0, σ2) (2.39)

et = ψtεk with ε ∼ N (0, 1) (2.40)

ψ2
t = ω + α1e

2
t−1 + β1ψ

2
t−1 (2.41)

yt = xt + et (2.42)

where ω > 0, αi > 0, βj ≥ 0. GARCH processes are used to model non-

stationary, chaotic time series where the variance of the process depends on the

magnitude and sign of the previous observations of the process. Eliciting a GARCH

process from a DM is a difficult task. It is far from obvious how this GARCH process

behaves as a function of its parameters and selecting a lag length for the AR process

as well as two lag lengths for the GARCH process increases the complexity of the

model selection problem. Therefore it seems conceivable that a DM could want

to fit a simple AR process to noisy time series data in order to investigate the
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underlying process. One situation where this may be desirable is in financial time

series applications where large amounts of data can arrive at a very high frequency.

In order to investigate how the minimum divergence methods perform in this

scenario we simulated 3 data sets with T = 1000, and fitted an AR(L) process to

these, where L was chosen to match the underlying AR process. The 3 data sets

were given by

1. an AR(3) with µ = (0.25, 0.4, 0.2, 0.3)

2. an AR(1) with µ = (0, 0.9) with GARCH(1,1) errors ω = 2, α1 = 0.99, β1 =

0.01.

3. an AR(1) with µ = (0, 0.9) with GARCH(1,1) errors ω = 1, α1 = 0.75, β1 =

0.01

The plots in Figure 2.5 demonstrate the one-step ahead posterior predictive

performance of the minimum divergence posteriors on a test set T = 100, simulated

from the underlying AR process. Under misspecification we show only the inference

under the HD-Bayes to avoid cluttering the plots. Results not presented here showed

that the other minimum divergence posteriors perform similarly. We use the same

priors as the regression example and once again conditional density estimates were

used for the loss functions of the HD, TVD and αD divergences.

The top plots demonstrate that when the model is correctly specified the

minimum divergence posteriors produce similar time series inference to Bayes’ rule.

This is most easily seen in the right hand plot which shows the difference in the

squared prediction errors between the Bayes’ rule predictive and the predictive min-

imising the HD is mostly around 0 and Table 2.4 which demonstrates the root mean

squared error across the test set is the same under both methods. The middle plots

demonstrate how the Bayes’ rule predictive and the predictive minimising the HD

perform under ‘extreme’ volatility in the error distribution. The tails of the model

being very poorly specified causes Bayes’ rule to fit a huge variance with the av-

erage posterior predictive variance across the test dataset being slightly above 26.

Fitting such a high variance makes the inference on the auto-regressive parameters

µ insensitive to the data. As a result the underlying trend in the data is completely

missed. In contrast the posterior predictive minimising the HD have a much smaller

variance of around 7. This allows the inference on the lag parameters to be much

more sensitive to the underlying AR process. Clearly the predictive minimising the

HD is unable to exactly fit the truth because the model is misspecified. However it

does a much better job of capturing the broad features of the underlying dependence
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Figure 2.5: Left: One step ahead posterior predictions arising from Bayesian mini-
mum divergence estimation fitting AR models with the correctly chosen lags to an
AR(3) with no additional error (top), an AR(1) with GARCH(1,1) errors, α = 0.99,
ω = 2 (middle) and a AR(1) with GARCH(1,1) errors, α = 0.75, ω = 1 (bottom)
using inference targeting minimising the KLD (red), HD (blue), TVD (pink), αD
(green), βD (orange) and the γD (light blue). Right: the difference in one step
ahead posterior squared prediction errors when using Bayes’ rule and minimising
the HD. When the model is correctly specified all of the methods appear to per-
form similarly. Under misspecification minimising the HD does a much better job
of correctly capturing the underlying dependence in the data.

between time points. This is clearly demonstrated by the considerably lower root

mean squared predictive error showed in Table 2.4 and by the error differences plot
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on the right of Figure 2.5 being mostly large and positive.

The bottom plots demonstrates how the Bayes’ rule predictive and predictive

minimising the HD perform when the error distribution is less volatile. When the

volatility is smaller the Bayes’ rule predictive variance is also smaller. Therefore the

inference is more sensitive to the underlying trend in the data than in the previous

example. However, the true dependence in the data is still under estimated relative

to the inference minimising the HD. This is again demonstrated in Table 2.4 and the

error difference plot on the right of Figure 2.5. Once again this shows that the way

in which Bayes’ rule deals with misspecification, increasing the predictive variance,

can mask some of the underlying trends in the data which can be discovered by

other methods. Table 2.4 plots the root mean squared errors (RMSE) for Bayes’ rule

and the HD-Bayes on the test set to quantify their correspondence to the data.

Table 2.4: Root mean squared errors (RMSE) for Bayes’ rule and HD minimising
posterior mean predictions when fitting an AR model to an AR(3) with no additional
error, an AR(1) with ‘high volatility’ GARCH(1,1) errors, and a AR(1) with ‘low
volatility’ GARCH(1,1) errors, for 100 test data points from the underlying AR
model.

RMSE Correctly Specified High Volatility Low Volatility

KL 0.49 1.87 1.21
Hell 0.48 1.07 0.94

2.7.4 M -closed efficiency

The examples in Section 2.7, demonstrate how inference designed to minimise an

alternative divergence to the KLD can lead to superior robustness to tail misspec-

ifications. It was also observed in Section 2.5 that when inference is done in the

M -closed world, where the model is correctly specified, these alternative divergence

methods are still able to learn about the data generating parameter. However, by

placing less importance on tail misspecifications in order to gain improved robust-

ness, the DM must trade-off a decrease in efficiency in the case when the model

class does in fact contain the DGP. Minimising the KLD uses Bayes’ rule and thus

conditions on the data coming from the model. As a result minimising the KLD

is guaranteed to perform the best when the model class contains the DGP. How-

ever, we demonstrate here that this trade-off between robustness and efficiency is

asymmetric in the favour of these robust methods, a lot of robustness can be gained

without losing too much efficiency.

In order to examine the frequentist efficiency, the observed mean squared
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error (MSE) 1
N

∑N
j=1(θ̂jn − θ)2, over N repeats of a simulated experiment are exam-

ined. The MSEs are examined on data generated from X ∼ N (0, 10) under fitting

the model X ∼ N (µ, σ2) and two prior regimes σi ∼ IG(2.1, 4), for i = 1, 2 and

µ1 ∼ N (0, 100σ2
1) and µ2 ∼ N (20, 100σ2

2). The prior for µ1 is centred on the data

while the prior for µ2 is not. Table 2.5 plots the observed MSEs over N = 100

replications of this experiment.

Table 2.5: Table of posterior mean MSE values when estimating N (µi, σ
2
i ) from

data sets simulated from the model of size n = 50, 100, 200, 500 under the Bayesian
minimum divergence technology.

MSE KLD HD TVD

µ01 = 0 µ02 = 20 µ01 = 0 µ02 = 20 µ01 = 0 µ02 = 20

µ n = 50 0.19 0.19 0.23 0.22 0.61 0.61
n = 100 0.08 0.08 0.08 0.09 0.14 0.14
n = 200 0.03 0.03 0.03 0.03 0.05 0.05
n = 500 0.02 0.02 0.02 0.02 0.03 0.03

σ2 n = 50 4.30 4.22 13.10 11.41 17.72 16.79
n = 100 2.26 2.24 6.69 6.14 6.61 6.62
n = 200 1.09 1.08 3.45 3.27 2.82 2.82
n = 500 0.45 0.45 1.21 1.17 1.46 1.46

MSE αD βD γD

µ01 = 0 µ02 = 20 µ01 = 0 µ02 = 20 µ01 = 0 µ02 = 20

µ n = 50 0.20 0.20 0.25 0.25 0.25 0.25
n = 100 0.08 0.08 0.10 0.10 0.10 0.10
n = 200 0.03 0.03 0.04 0.04 0.04 0.04
n = 500 0.02 0.02 0.02 0.03 0.03 0.03

σ2 n = 50 5.62 5.26 5.91 5.78 6.30 5.90
n = 100 2.89 2.77 3.05 3.02 3.24 3.13
n = 200 1.44 1.40 1.44 1.42 1.49 1.45
n = 500 0.51 0.50 0.60 0.60 0.62 0.62

Table 2.5 demonstrates several interesting points about these different meth-

ods. Unsurprisingly Bayes’ rule, minimising the KLD, provides the lowest MSE for

both parameters and all values of n. For large n the MSEs for µ are generally the

same and very small for all of the methods. αD-Bayes with α = 0.75 performs only

slightly worse than Bayes’ rule and provides more efficient finite sample inference

than the HD-Bayes (α = 0.5). This is unsurprising as α regulates the robustness

efficiency trade-off and the previous experiments show the HD-Bayes to be more ro-

bust than the αD-Bayes. The TVD-Bayes provides the worst finite sample efficiency

of all of the methods. We suspect this is probably a result of the irregularities of the
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TVD score function which were discussed in Section 2.6.1 and are now also shown

in Figure 2.6. There is also evidence from Table 2.5 that the prior has much less

influence on the TVD-Bayes than it does on the other methods. Table 2.6 suggest

this may be to do with the exceedingly large calibration weight estimated for the

TVD loss, which we believe again to result from the irregularities of the TVD loss

function. Lastly the βD-Bayes and γD-Bayes appear to perform marginally worse

than the αD-Bayes and better than the HD-Bayes, which is particularly impressive

given they do not require a density estimate. For fixed β = γ = 1.5 it seems as

though the βD-Bayes is more efficient than the γD-Bayes, which agrees with the

findings of Jones et al. [2001]. Setting the calibration weight appears to alleviate the

fears of Section 2.6 that these methods with ‘smaller’ loss functions might be much

more sensitive to the prior. Bizarrely better performance appears to be achieved

when the prior is specified away from the data here.

Table 2.6: Table of values for the calibration weight w estimated by the method of
Lyddon et al. [2018] when fitting N (µi, σ

2
i ) to a dataset of size n = 500 under the

Bayesian minimum divergence technology.

n = 500 KLD HD TVD αD βD γD

w 1.00 1.07 15.74 0.58 4.40 1.70

Examining whether the estimates of σ2 were generally above or below the

data generating parameter demonstrates how these different methods learn, see

Table 2.7. Firstly it appears as though the prior, with mean 4
2.1−1 ≈ 3.6 and

variance 42

(2.1−1)2(2.1−2)
≈ 132, encourages an estimate of σ2 smaller than the data

generating value, σ2 = 10, as all methods generally underestimate this for small

n. Under the Bayes’ rule, βD-Bayes and γD-Bayes, the effect of this appears to

decrease as n increases, as is expected with prior influence. However the HD-Bayes

and αD-Bayes still consistently underestimate σ2 for larger n while the TVD-Bayes

consistently overestimates σ2 in-spite of the prior specifications. We note there does

not appear to be any negligible biases in the estimation of µ for any of the methods

under either prior.

Figure 2.6 compares the score functions used in the general Bayesian update

targeting the minimisation of the KLD, TVD, HD and αD. As α increases, the upper

bound on the score associated with the αD increases and the score functions become

more convex, tending towards the log-score when α = 1. In contrast, the score

associated with the HD is closer to being linear. We believe that this is responsible

for causing the smaller variance estimates when minimising the HD and αD when

α = 0.75. The closer the score is to being linear the more similar the penalty is for
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Table 2.7: Table of sums of posterior mean over (positive) or under (nega-
tive) estimation N (µi, σ

2
i ) from data sets simulated from the model of size n =

50, 100, 200, 500 under the Bayesian minimum divergence technology

MSE KLD HD TVD

µ01 = 0 µ02 = 20 µ01 = 0 µ02 = 20 µ01 = 0 µ02 = 20

µ n = 50 0 0 2 0 4 6
n = 100 -18 -18 -1 -10 -8 -8
n = 200 -6 -6 -16 -8 -8 -8
n = 500 -4 -4 -2 0 -4 -4

σ2 n = 50 -28 -26 -92 -90 8 10
n = 100 -18 -14 -90 -90 36 36
n = 200 -16 -6 -94 -94 46 46
n = 500 8 8 -80 -80 64 64

MSE αD βD γD

µ01 = 0 µ02 = 20 µ01 = 0 µ02 = 20 µ01 = 0 µ02 = 20

µ n = 50 0 0 -2 -4 -6 -6
n = 100 -18 -18 -14 -14 -16 -14
n = 200 -6 -4 -10 -10 -10 -10
n = 500 -4 0 -6 -8 -2 -4

σ2 n = 50 -64 -64 -44 -40 -48 -46
n = 100 -60 -58 -18 -18 -24 -22
n = 200 -54 -50 -18 -16 -20 -20
n = 500 -42 -42 -6 -6 -8 -6

over and under predicting the probability of an observation when compared with

reality. The bounded nature of the scores prevents the penalty for under predicting

being too high, and therefore more posterior predictive mass is placed near the MAP

of the posterior predictive distribution. In contrast, a score function with greater

convexity will penalise under prediction compared with the data generating density

to a greater extent spreading the posterior mass out further. However, one must

keep in mind that it is the severe nature of the penalty for under prediction incurred

by the KLD that renders it non-robust. On the other hand the TVD-Bayes generally

over predict the variance. The score function for the TVD-Bayes is the only score

function considered here that is not monotonic in the predicted probability of each

observation. While under the other scores, the score for each individual observation

can be increased by predicting that observation with greater probability, this is

not the case for the TVD-Bayes. We believe this causes the TVD-Bayes to produce

variance estimates that are too large.

We emphasised above that the superior small sample efficiency of the βD-
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Figure 2.6: The loss functions of the KLD and TVD (left) and the HD and αD
(right) for different values of f(x; θ)/g(x).

Bayes and γD-Bayes compared with the HD-Bayes was dependent on being able to

select a value of β or γ correctly managing the robustness efficiency trade-off. This

is evidenced in Table 2.8 where the values of β and γ are increased above 1.5, and

the small sample efficiency can be seen to deteriorate.

Table 2.8: Table of posterior mean MSE values when estimating N (µi, σ
2
i ) from data

sets simulated from the model of size n = 50, 100, 200, 500 under the βD-Bayes and
γD-Bayes for increasing values of β and γ.

MSE βD γD

β = 1.5 β = 2.5 β = 4 γ = 1.5 γ = 2.5 γ = 3

µ n = 50 0.25 0.40 1.05 0.25 0.51 0.70
n = 100 0.10 0.18 0.29 0.10 0.21 0.32
n = 200 0.04 0.09 0.16 0.04 0.10 0.14
n = 500 0.02 0.05 0.09 0.03 0.05 0.07

σ2 n = 50 5.91 8.09 8.38 6.30 20.19 32.06
n = 100 3.05 4.58 5.28 3.24 9.37 15.45
n = 200 1.44 2.06 2.38 1.49 4.21 7.12
n = 500 0.60 0.89 1.11 0.62 1.63 2.69

As was explained in Section 2.6, the use of a density estimate allows the HD

and αD to down-weight the influence of observations based on the ratio f/g. The

βD-Bayes and γD-Bayes do not need a density estimate and therefore down-weights

the influence of observations solely based on their predicted probability under the

model f . Therefore, taking β or γ too high can result in a serious loss of small

sample efficiency.
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We note that all of the scores remain proper and therefore for large samples

they should all recover the DGP in this M -closed scenario. The observations of this

section simply concern how the different methods perform for small sample sizes.

2.7.5 Application to higher dimensions

The examples in this chapter only demonstrate the performance of these minimum

divergence techniques for relatively small dimensional problems. These have been

specifically designed so as to clearly demonstrate the effect that tail misspecifications

can have. However, it is as the dimension and complexity of the problem increases

that we believe these methods become more and more important. This can be put

down to two aspects. The first of these is that outliers or highly influential contam-

inant data-points become hard to identify in high dimensions. In our examples it is

clear from looking at the KDE or histogram of the data that there are going to be

outlying observations, but in many dimensions visualising the data in this way is

not possible. In addition to this, automatic methods for outlier detection struggle

in high dimensions [Filzmoser et al., 2008].

The second factor in requiring robust inference in high dimensions, is that

not only are outliers harder to identify, they are more likely to occur. The occurrence

of outliers indicates that the DM’s belief model is misspecified in the tails. These

misspecifications should be unsurprising. We have already discussed that specifying

beliefs about tail behaviour requires thinking about very small probabilities which is

known to be difficult [Winkler and Murphy, 1968; O’Hagan et al., 2006], and often

routine assumptions (for example Gaussianity) may be applied. As the dimension

of the space increase the tails of the distribution account for a greater proportion of

the overall density, increasing the chance of seeing observations that differ from the

practitioners beliefs. The impact these Bayesian minimum divergence methods can

have in high-dimensional real world problems is investigated further in Chapters 4

and 5.

Unfortunately there is no free lunch when it comes to applying any of these

methods to complex, high dimensions problems. We briefly discuss some of the

issues here.

An estimate of the data generating density: Minimising the HD, TVD and

αD requires an estimate of the data generating density. Section 2.6.8 includes

references to demonstrate that it is possible to do this in high dimensions, but these

are not necessarily straightforward to implement. We eagerly await further research

in this area.
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The divergence hyperparameter: However, given an estimate of the data gen-

erating density for the αD, α can then be selected based on how important tail

misspecifications are, with a guarantee on some reasonable efficiency. We consider

α = 0.5 and the HD as a realistic lower bound for how robust one might desire to

be and this has been shown in Table 2.5 to have reasonable small sample efficiency.

Although minimising the βD or γD has the computational advantage of not requir-

ing an estimate of the data generating density, there is no longer any guarantee that

a reasonable level of efficiency will be obtained in high dimensions. As the dimen-

sion increases the predicted probability of each (multivariate) observation shrinks

towards 0. The βD and γD down-weight the influence of observations with small

predicted probabilities, and as a result β or γ needs to be selected very carefully in

order to prevent the analysis from disregarding the majority of the data. This is

precisely what damages the small sample efficiencies in Table 2.8 when β and γ are

too high in one dimension. As the dimension increases the small sample efficiency

will deteriorate for smaller values of β or γ and happen at a faster rate. In fact,

we identified that the bound on the D
(β)
B (g||f) using the TVD (g, f) (Theorem 2)

was only useful if M
β−1 , where M = max {ess sup g, ess sup f}, was not too small.

Increasing the dimension of the observation space will generally lead to a decrease

in M . To see this consider a multivariate Gaussian density with diagonal covariance

matrix and fixed variance acorss dimension

M =
1

(2π)d/2 (σ2)d/2
(2.43)

which is clearly decreasing in d.

The technology available in the literature for setting β effectively is limited.

This is a price that is paid in order to not require a non-parametric density estimate.

Restricted mainly to the βD, Section 5.4.6 provides an empirical way to consider

setting β using the influence curves above and on-line optimisation. A promising

area of research here may be to consider the choice of β as a type of ‘meta-prior’

based on how confident a DM is that their likelihood model for the data is correctly

specified. However, ways to transparently covey the impact of a certain choice of β

must be developed in order for this ‘meta-prior’ to be practically useful.

Computation Lastly minimising an alternative divergence to the KLD results in

conjugate posterior distributions no longer being available. The solution to this

problem adopted in this chapter was to use Monte-Carlo methods to sample from

the minimum divergence posteriors. In particular we employed the stan probabal-
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istic programming language [Carpenter et al., 2016] implementing the No-U-Turn

sampler [Hoffman and Gelman, 2014]. However, we note here that as the dimen-

sion increases these become computationally expensive also [Beskos et al., 2013].

Chapters 4 and 5 attempts to address this problem by introducing a convenient

‘approximation’ technique to supplement this vanilla inferential technique.

2.8 Further work

This chapter uses general Bayesian updating [Bissiri et al., 2016] in order to the-

oretically justify a Bayesian update that targets the parameters of a model that

minimise a statistical divergence to the data generating process that is not the KLD.

When the M -open world is considered, moving away from targeting the minimisation

of the KLD can provide an important tool in order to robustify a statistical analysis.

The desire for robustness ought to only increase as increasingly bigger models are

built to approximate more complex real world processes. This chapter outlines to

the statistical practitioner a principled justification through which they can select

the divergence they use for their analysis in a subjective manner allowing them the

potential to make more useful predictions from their best approximate belief model.

The next chapters seek to address some of the further work inspired by this

chapter. Chapter 3 seeks to produce further theoretical results motivating switching

from minimising the KLD via Bayes’ rule to an alternative, more robust divergence.

Specifically we investigate how stable each of these updating rules is to the particular

choice of misspecified model which may help to motivate the choice of divergence.

We discussed in Section 2.7.5 that even for simple models not minimising the KLD

breaks the conjugacy property of Bayes’ rule updating. Chapter 4 takes a founda-

tional look at methods to improve the computability of these methods and produces

a particularly convenient inference algorithm tailored towards minimising the βD

that we implement in Chapter 5. Lastly, the investigation into how these minimum

divergence methods perform empirically at the end of this chapter has been limited

to analysing their performance in simulated examples that, by modern standard

are relatively simple and small. Chapters 4 and 5 investigate how the robustness-

efficiency trade-off associated with some of these methods manifests itself in real

world high-dimensional examples. In doing so initial progress towards methods to

guide the selection of divergence hyperparameters is made in Chapter 5. In partic-

ular these make use of the influence curves introduced in in Section 2.6.7.
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Chapter 3

The Stability of Bayesian

Inference

Chapter 2 considered producing the most useful inference, in a decision making

capacity, from the DM’s single best guess belief model when acknowledging that

inferences are taking place in the M -open world. In fact, when we consider the M -

open world it is more likely that there exists a whole set of equally preferable belief

models all representing the beliefs the DM has about the DGP. Chapter 3 considers

this scenario. Given such an equivalence class of beliefs models it is then natural

to investigate what can be said about the stability of inference across this class of

models. This chapter shows that very little can be said about the stability of Bayes’

rule inferences, but that inferences using divergences that are proper metrics and

inference minimising the βD can be shown to provide stability guarantees.

An outline of this chapter is as follows: firstly in Sections 3.1-3.3 we motivate

demanding stability to the subjective specification of the likelihood function for a

Bayesian analysis, analogously to the subjective specification of the prior. Sections

3.3.1 and 3.3.3 will establish what it means for inference to be stable with respect to

the specification of the likelihood. We will proceed to provide results guaranteeing

the stability of both the finite sample predictive, Section 3.3.4, and their ability

to approximate the DGP as n → ∞, Section 3.3.5, for inference using divergences

that are symmetric and satisfy the triangle inequality (divergences that are metrics

e.g. the TVD and HD). However inference targeting the minimisation of metrics

generally require non-parametric density estimates and are therefore not necessarily

straightforward to implement. We thus develop methods to approximate the stabil-

ity results available for metrics using divergences whose associated score function is

local meaning that it does not require a non-parametric density estimates. Section

70



3.4.1 demonstrates the difficulty in ensuring stability when using Bayes’ rule. How-

ever, we are able to present very promising results for the stability of inference when

using the βD both in terms of the predictive distributions, Section 3.4.2, and their

limiting ability to approximate the DGP as n → ∞, Section 3.4.2. Lastly Section

3.5 illustrates the impact these result can have in some simple model specification

examples.

3.1 A set of approximate Models

Chapter 2 considers inference from the point of view of making informed decisions

under the model misspecification paradigm. In this setting we assumed that the

model used for inference was the DM’s best guess approximation (either of their own

beliefs or of the DGP), capturing some of the important structure of the underlying

process. In reality the DM is unlikely to have one best guess belief model. There will

be many likelihood models consistent with the judgements the DM has been able

to elicit. This observation is by no means a recent one: de Finetti for example was

quoted by Dempster [1975] as saying “Subjectivists should feel obligated to recognise

that any opinion (so much more the initial one) is only vaguely acceptable. . . So it

is important not only to know the exact answer for an exactly specified initial

problem, but what happens changing in a reasonable neighbourhood the assumed

initial opinion.”, while Savage [1972] remarked “. . . in practice the theory of personal

probability is supposed to be an idealization of one’s own standard of behaviour;

that the idealization is often imperfect in such a way that an aura of vagueness is

attached to many judgements of personal probability. . . ”.

It is possible to formalise the notions above by suggesting that any belief

specification (and particularly specification of absolutely continuous densities) re-

quires some level of interpolation. There may be several judgements the DM is

accurately able to make, but in order to produce the densities or distributions re-

quired to fulfil a full Bayesian analysis will require an interpolation between these.

For example, O’Hagan [2012] argues that only judgements of medians and quantiles

can be reliably made while the rest of the distribution must be filled in arbitrarily.

As a result inference is being done with one possible candidate model but with

no principled reason for choosing that particular model, besides maybe mathematical

and computational convenience. When this is acknowledged it is then natural to

seek to analyse the sensitivity of inference to such arbitrary decisions. This chapter

seeks to investigate how stable both traditional Bayesian inference through Bayes’

rule and the robustified inference introduced in Chapter 2 are across such a set of
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admissible likelihood models.

One solution to this is to let the data help guide any decision the DM them-

selves is not able to make. That is to say, formulate any judgements the DM is uncer-

tain about as alternative belief distributions for the data and use the data to decide

which of these is best reflected. This is naturally encompassed in a Bayesian analysis

through Bayesian model posteriors and the resulting model averaging (BMA) and

selection. Section 1.1.4 discussed BMA as a solution to the M -open world, concluding

that its traditional form [Hoeting et al., 1999] was not suitable for the M -open world

but that alternatives for example the posterior belief assessment of Williamson et al.

[2015] or other methods such as stacking [see e.g. Yao et al., 2018b, and references

within] could be promising.

However, these can be computationally prohibitive. Firstly it is unlikely

that the DM has a small discrete set of models they equivalently feel describe their

beliefs. In practice the set of models consistent with the beliefs they have been able

to elicit will be enormous. Additionally each likelihood model requires the careful

elicitation of a parameter prior and even once this has been done the within-model

computations are non-trivial.

In this chapter we take a different approach. We seek to investigate the auto-

matic stability guarantees possessed by the Bayesian updating machinery introduced

in Chapter 2 across a class of models. As a result this chapter complements works

on model averaging and selection. Proving that Bayesian updating is stable across

a class of models removes the need to consider these alternative analyses and thus

relives some of the computational burden associated with averaging and selection

procedures.

3.2 Prior Stability

Traditional Bayesian stability analyses have focused on examining the stability of

inferential conclusions to the specification of the parameter prior [see Berger et al.,

1994] and references within. Focus has been on the prior distribution for the model

parameters as this is seen as the subjective part of the analyses differentiating a

Bayesian analyses from the a frequentist’s analogue.

Here rather than focus on specific cases we look at the inherent or automatic

stability that can be guaranteed by the Bayesian learning machine. Gustafson and

Wasserman [1995] consider automatic stability of Bayesian inference using some

functioning prior f0 and a ‘genuine’ prior qε0 = C(f0, ε, g) defined to be a linear,

qε0 = (1− ε)f0 + εq, or geometric, q0 ∝ qεf1−ε
0 , contamination of f0 in the direction
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of g with contamination of size ε. Specifically they investigate the quantity

sup
g∈Γ

lim
ε→0

{
TVD (fn, g

ε
n)

TVD (f0, gε0)

}
(3.1)

where fn and gεn are the posteriors produced by Bayes’ rule from n observations with

shared likelihood and respective priors f0 and gε0, and Γ is some class of contaminant

priors. The quantity in Eq. (3.1) provides a worst case difference that can be

observed a posteriori across some class of the contaminant priors. Gustafson and

Wasserman [1995] prove that for contamination C(f0, ε, g), being either linear or

geometric ε-contaminations of the functioning prior f0 then Eq. (3.1) diverges at

rate nk/2 as n → ∞ where k is the dimension of the parameter space Θ. The fact

that the rate increases with the dimension of the parameter space is particularly

worrying for ‘big-data’ analyses.

While this result appears particularly alarming, Smith and Rigat [2012] pro-

vide conditions for the prior that would ensure posterior stability in terms of TVD.

They show that TVD (fn, gn) is not actually driven by TVD (f0, g0) for large n, it is

in fact driven by the roughness of the genuine prior g0. The neighbourhoods consid-

ered by Gustafson and Wasserman [1995] allowed for a ‘rough’ prior contamination

with a spike at the MLE of the observed data encouraging much faster convergence

than under the functioning prior. Smith and Rigat [2012] instead consider neigh-

bourhoods of prior densities defined using the local De Robertis distance

DR
A(f, g) := sup

θ,φ∈A

∣∣∣∣f(θ)g(φ)

f(φ)g(θ)
− 1

∣∣∣∣ . (3.2)

This condition is a particular way of demanding a level of smoothness in the pertur-

bation from the genuine prior for each small subset A ⊆ Θ. They show under some

mild regularity conditions that provided DR
A(f0, g0) < η, where A is the small set of

parameter values on which the likelihood concentrates, ensures that the posterior

under the functioning prior tends in TVD to the posterior under the genuine prior as

η → 0. This stability results from the fact that the TVD between two posteriors is

bounded above by the De Robertis distance between the posteriors. The De Rober-

tis distance then has the special property that the distance between two posteriors

using the same likelihood and different priors is equivalent to the distance between

the priors. Therefore provided two priors have similar roughness, and are thus close

according to De Robertis distance, ensures that the posterior inference produced

from the same likelihood is stable in terms of TVD. These results of course assume

that the likelihoods used to update priors f0 and g0 are the same. This chapter, in
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contrast, is interested when such likelihoods might only be within a neighbourhood

of their own.

More generally than the prior to posterior stability discussed above, stability

of optimal decision making has been considered, largely in economics [Hansen and

Sargent, 2001a,b; Whittle and Whittle, 1990; Gilboa and Schmeidler, 1989] and

more recently in statistics [Watson et al., 2016]. By considering the stability of

optimal decisions, these methods consider only neighbourhoods of posterior beliefs

for those elements that enter into the loss function. These will often be posterior

predictive distributions, whose neighbourhoods we consider later. These methods

consider taking the minimax decision

d∗C := arg min
d∈D

sup
ν∈ΓC

Eν(θ) [`(θ, d)] (3.3)

across a KLD neighbourhood of the Bayes’ rule posterior beliefs

ΓC := {ν(θ) : KLD(ν(θ)||π(θ|x)) ≤ C} . (3.4)

Watson et al. [2016] are actually able to derive the form of

πsup
C := arg sup

ν∈ΓC

Eν(θ) [`(θ, d)] (3.5)

showing similarities to the form of the general Bayesian update Eq. (1.16). Our

criticism of these approaches is that they do not consider the stability of the Bayesian

updating machinery. They start with the posterior, the output of the Bayesian

updating machine, rather than the inputs, the prior and the likelihood. We argue

for considering that the likelihood, in addition to the prior, be considered to have

been defined up to some neighbourhood. Therefore a question of interest related

to these methods would be what the ball around the likelihood (or prior) looks like

in order to guarantee this KLD ball around the posterior (predictive). We try to

answer this question in this chapter, see Lemma 1.

Alternatively Miller and Dunson [2018] consider producing robustified Bayesian

updating by conditioning on data arriving in a neighbourhood of the empirical dis-

tribution of the data, π(θ|d(x1:n, x1:n) < R), rather than conditioning on the sample

itself. Similarly to above they consider a KLD ball around the empirical distribution

of the data, and used this to develop ‘coarsened’ posteriors. In practise a tractable

approximation to these c-posteriors simply results in tempering the likelihood, Eq.

(1.21), similarly to the work of Holmes and Walker [2017] and Grünwald [2016]

While this work is exciting and interesting these methods do not directly
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answer the questions we ask in this thesis. The way we talk about outliers in

Section 2.1 frames them as a fault with the likelihood function for the data, rather

than the data itself. Namely that outliers are evidence that the model used for

inference is misspecified, rather than that the model is correctly specified and that

outliers are a problem with the data. Hence we try to stick to the Bayesian principle

of fixing the observed data exactly, and considering stability across neighbourhoods

around the subjectively defined elements of the analysis, the likelihood model and

the prior.

3.3 Likelihood Stability

A natural extension to the work of Smith and Rigat [2012]; Gustafson and Wasser-

man [1995] is to consider for fixed prior on parameters θ, whether Bayesian inference

is stable within some neighbourhood of the likelihood model. Smith [2007] briefly

covers this topic and discovers that the data can cause divergence in terms of De

Robertis distance between the functioning and genuine posterior produced from dif-

ferent likelihoods. Beyond these initial results, work investigating the stability of

Bayesian learning across a neighbourhood of likelihood models is limited. I believe

this to be a consequence of the M -closed world assumption. In the M -closed world

of controlled experimental conditions it is reasonable to consider the prior as the

only subjective element of the analysis whose sensitivity must be checked. How-

ever in the M -open world it is now also reasonable to consider the likelihood in this

way. Henceforth we acknowledge that the model forms part of the subjective prior

specification of the analyses. In this chapter we take inspiration from the results of

Smith and Rigat [2012]; Gustafson and Wasserman [1995] and seek to analyse the

inherent stability of the Bayesian updating machine to the choice of likelihoods.

3.3.1 Notions of Stability

At first it seems natural to mimic Gustafson and Wasserman [1995]; Smith and Rigat

[2012] and investigate whether the posteriors for parameters θ are close for different

likelihood functions within some neighbourhood. However, this is not informative.

The posterior for two distinct likelihood models, given the same data and as n→∞,

will almost certainly converge around distinct values of θ. As a result, the posteriors

will become very far apart by any divergence measure as the number of data points

increases. Instead when considering stability to the likelihood, it is more natural to

consider distributions for the observables. Two likelihoods are defined to be close

if for a given set of parameters they produce similar densities for the observables
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x ∈ Rp, where p is the dimension of the observation space, we elaborate on this

further in Definition 15. A stable Bayesian analysis must then produce similar

posterior predictives for future observables x
′ ∈ Rp given data x1:n ∈ Rn×p, where n

is the number of observations, modelled using two likelihoods in this neighbourhood.

This provides a natural analogue to the work of Gustafson and Wasserman [1995];

Smith and Rigat [2012], who consider the stability of the parameter posteriors across

neighbourhoods of parameter priors. We instead focus on observables, the likelihood

provides a prior for observables and the predictive is the corresponding posterior.

To this end we consider two particular metrics to compare the posterior

predictive inferences from two different likelihood models. The first relates to the

divergence between the finite sample predictive distributions arising from the two

likelihood models. The second considers the difference between how the predictives,

as n→∞, from the two different likelihood functions approximate the DGP.

One large advantages of considering stability of the distributions for observ-

ables rather than parameters is it allows for likelihoods with different dimensions to

their parameter space to be considered in the same neighbourhood provided they

produce a distribution over the same observables. For example mixture distributions

with extra mixture components can be considered within these neighbourhoods.

The next section establishes the notation I will use throughout the rest of

this chapter.

3.3.2 Notation and Assumptions

Before providing any of the results we first introduce the notation and assumptions

that will be required. We define the general Bayesian posterior and corresponding

posterior predictive for likelihood model {f(x; θf ) : θf ∈ Θf} targeting minimising

divergence D(g||f(·; θf )) as

πDf (θf |x1:n) =
πDf (θf ) exp(−∑n

i=1 `D(xi, f(·; θf )))∫
πDf (θf ) exp(−∑n

i=1 `D(xi, f(·; θf )))dθf
(3.6)

mD
f (y|x1:n) =

∫
f(y; θf )πDf (θf |x1:n)dθf , (3.7)

where `D(x, θf ) is the loss function required to do inference minimising divergence

D(g||f(·; θf )). We remind the reader here that taking the loss function to be the

log-score,

`KLD(xi, f(·; θf ))) = − log f(xi; θf ), (3.8)
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recovers standard Bayes’ rule updating in Eq. (3.6) and standard one-step-ahead

predictive distribution in Eq. 3.7. We assume throughout that the normaliser of

the general Bayesian posterior
∫
πDf (θf ) exp(−∑n

i=1 `D(xi, f(·; θf )))dθf is finite. If

divergence D(g||f(·; θf )) requires a density estimate of g for its loss function we as-

sume we have access to one that is consistent e.g. a KDE for univariate observations.

Throughout this section we will use the · within divergence functions to indicate the

variable that is being integrated over in the divergence, i.e. the divergence does not

depend on a value for this variable. Lastly we define

θDf = arg min
θf∈Θf

D(g(·), f(·; θf )), (3.9)

as the parameter of likelihood model {f(x; θf ) : θf ∈ Θf} minimising divergence

D(·||·) to the data generating density g. This is always assumed to exist and to be

unique.

3.3.3 A neighbourhood of likelihood models

First we define exactly what we mean by a neighbourhood of likelihood models. We

consider two likelihood models

{f(x; θf ) : x ∈ X ⊂ Rp, θf ∈ Θf} (3.10)

{h(x; θh) : x ∈ X ⊂ Rp, θh ∈ Θh} , (3.11)

for the same observables x ∈ X . Defining ΘU := Θf ∩ Θh the intersection of

the parameter spaces Θf and Θh for the two likelihood models, we then write

Θf =
{

ΘU ,Θf\h
}

and Θh =
{

ΘU ,Θh\f
}

. We therefore define a neighbourhood

of likelihood models as follows.

Definition 15 (Neighbourhood of likelihood models). The neighbourhood of like-

lihood models for observable x ∈ X is defined as

ND
ε :=

{
(f(·; θf ), h(·; θh)) : D(f

(
·;
{
θU , θf\h

})
||h
(
·;
{
θU , θh\f

})
) < ε,

for all values of θU ∈ ΘU , θf\h ∈ Θf\h, θh\f ∈ Θh\f
}

(3.12)

Neighbourhood ND
ε demands that when we fix the shared part of their pa-

rameter spaces θU the likelihoods produce similar densities for x measured by diver-

gence D for all values of the unshared parameters θf\h and θh\f . This neighbourhood

condition is unlikely to hold unless θf and θh almost entirely overlap. However, we

77



add this notation to allow for some special cases where the likelihood models have

different parameter dimensions. For example, consider that

f(·; θf ) = N
(
x;µ, σ2

)
(3.13)

h(·; θh) = 0.95×N
(
x;µ, σ2

)
+ 0.05×N

(
x;µc, σ

2
c

)
(3.14)

with θU =
{
µ, σ2

}
, θf\h = ∅ and θh\f =

{
µc, σ

2
c

}
. For fixed value of θU and any

value of θh\f we have that TVD(f (·; θU ) ||h
(
·;
{
θU , θh\f

})
) < 0.05.

We additionally note the subtle point that these neighbourhoods are only

really meaningful if the parameters that overlap between the two likelihood models

maintain the same interpretation across these likelihoods such that it is meaningful

that the likelihood models are similar when their parameters are the same values.

This may require reparametrisations from the traditional parametrisations. One

example is that they may correspond to a particular moments of the predictive dis-

tribution - or in the example above, for (µ, σ2), the moments of the uncontaminated

population.

For readability we present the results of this chapter under the assump-

tion that the likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh} have

the same parameter spaces Θf = Θh = Θ. That is to say that Θf\h = Θh\f = ∅.
This significantly simplifies the notation required. An extension of these results

to the situations where the parameter spaces are no longer equal can be found in

Appendix Chapter 7.

3.3.4 The stability of the predictive distribution

First we list several important properties for the divergence targeted by inference

to satisfy in order for our initial results to hold. We relax some of these in future

sections.

Condition 1 (A convex divergence metric). According to Definition 5 a divergence

must be non-negative everywhere and only 0 when f = g. In addition to these we

require that the divergence satisfies the following:

M1 Is symmetric D(g||f) = D(f ||g).

M2 Satisfies the triangle inequality D(g, f) ≤ D(g, h) +D(h, f) ∀h.
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M3 D(g, f) is convex in both of its arguments. That is to say that for λ ∈ [0, 1]

D(λg1 + (1− λ)g2, f) ≤ λD(g1, f) + (1− λ)D(g2, f) (3.15)

D(g, λf1 + (1− λ)f2) ≤ λD(g, f1) + (1− λ)D(g, f2). (3.16)

For such divergences we introduce the following notation

D(g||f) = DM (g, f). (3.17)

Note M1 and M2 of Condition 1 ensure that divergence DM is a proper

distance metric. The triangle inequality in particular will be important in the re-

sults to come. The triangle inequality fits naturally with stability. We consider

three distributions for the data, the DGP and two candidate likelihoods within some

neighbourhood. We seek to analyse the stability of inference trying to minimise a

divergence between the DGP and the two likelihood models.

The first result relates to the stability of the posterior predictive distribution.

In order to prove theorems involving the finite sample posterior predictive, Theorems

3 and 6, we require the following to hold which places conditions on the observations

and the prior specification.

Condition 2 (Concentration of the posterior). For divergence D(·||·) the dataset,

x1:n ∼ g(·), is of sufficient size and regularity, and the priors πDf (θ) and πDh (θ)

have sufficient prior mass at θDf and θDh such that the posteriors πDf (θf |x1:n) and

πDh (θh|x1:n) have concentrated to ensure∫
Θf

D(g||h(·; θf ))πDf (θf |x1:n)dθf ≥
∫

Θh

D(g||h(·; θh))πDh (θh|x1:n)dθh (3.18)∫
Θh

D(g||f(·; θh))πDh (θh|x1:n)dθh ≥
∫

Θf

D(g||f(·; θf ))πDf (θf |x1:n)dθf . (3.19)

Condition 2 ensures that n is large enough for the posterior based on the

likelihoods f and h to have concentrated sufficiently around their optimal parameter

such that the expected divergence under the posterior for θk between model k ∈
{f, h} and the DGP is less than the same expected divergence under the posterior

for the other model.

The asymptotic normality results of Chernozhukov and Hong [2003]; Lyddon

et al. [2018] (Eq. (2.15)) concern convergence in distribution and thus one must
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be slightly careful when evoking these to suggest that there must exist some n

such that Condition 2 holds. However, under the assumption that both likelihood

models f(·; θf ), h(·; θh) and DGP g are all absolutely continuous and provided the

weak conditions for asymptotic normality [Chernozhukov and Hong, 2003; Lyddon

et al., 2018] (Eq. (2.15)) are satisfied, then these results suggest that Condition 2

will be satisfied for large enough n, as by definition D(g, k(·; , θDk )) ≤ D(g, k(·; , θD
k′

))

for k ∈ {f, h} and k
′

= {f, h} \ k.

Condition 2 is the only part of any of these theorems where the observed

data appears. So the following theorems simply require that the Bayesian updating

is being done conditional on a dataset satisfying Condition 2. In this sense we

consider it formally Bayesian. Extensions could look at whether Condition 2 and

the following theorems hold in expectation under the data generating process (DGP).

Theorem 3 (Stability of the posterior predictive using divergence metrics). Con-

sider the following conditions:

• Divergence DM (·, ·) satisfies Condition 1

• We have two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh},
data generating process g, priors π(θf ) and π(θh) and data x1:n such that

Condition 2 holds for divergence DM (·, ·)

• For the two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh} there

exists ε > 0 such that f, h ∈ NDM
ε as defined in Definition 15.

Then for mDM
f and mDM

h as defined in Eq. (3.7)

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤ RDM (g, f, h, x1:n) + ε, (3.20)

where

RDM (g, f, h, x1:n) := 2 min

{∫
(DM (g, f(·; θf )))πDMf (θf |x1:n)dθf , (3.21)∫
(DM (g, h(·; θh)))πDMh (θh|x1:n)dθh

}
.

Theorem 3 demonstrates that general Bayesian inference using a proper

divergence metric produces stable posterior predictive inferences, where stabil-

ity is measured with respect to that divergence, providing the remainder term,
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RDM (g, f, h, x1:n), defined in Eq. (3.21) is small, and the priors and data are suffi-

cient for Condition 2 to hold for that divergence metric. This remainder term will

be small provided one (or both) of the likelihood models f(·|θf ) or h(·|θh) is close

to the DGP in terms of divergence DM (·, ·) for some value of their parameter θf or

θh.

Unlike the prior misspecification case considered by Gustafson and Wasser-

man [1995], when the model is wrong the divergence between the posterior predic-

tive distributions cannot be expected to converge to 0 as the number of data points

grows. However it seems reasonable to demand that if the likelihood models are

close then the posterior predictive divergence ought to be bounded, and certainly

not divergent in n. Next we prove Theorem 3

Proof. Jensen’s inequality can be adapted to show that for convex function ψ, and

any function ρ such that EX [|ρ(X)|] and EX [|ψ(ρ(X))|] are finite, then

ψ(EX [ρ(X)]) ≤ EX [ψ(ρ(X))]. (3.22)

Consider applying this with θf as the random variable of interest with distribution

πDMf (θf |x1:n), ρ(θ) = f(y; θ) for some fixed y and with ψ(f) = DM (g, f), where

g is some fixed probability density, as a convex function. Both ρ(·) and ψ(·) are

positive functions so Jensen’s inequality is valid providing the Bayesian predictive

distribution is defined,

mDM
f (z|x1:n) = E

π
DM
f (θf |x1:n)

[f(z; θf )] =

∫
f(z; θf )πDMf (θf |x1:n)dθf <∞, ∀z

(3.23)

and that

E
π
DM
f (θf |x1:n)

[DM (h(·), f(·; θf ))] =

∫
DM (h(·), f(·; θf ))πDMf (θf |x1:n)dθ <∞.

(3.24)

We note that by symmetry we could exchange f for h above. Therefore, by the

convexity of DM (·, ·), Jensen’s inequality can be applied as described above, first to

mDM
h (·|x1:n) and then to mDM

f (·|x1:n). Therefore,

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤
∫
DM (mDM

f (·|x1:n), h(·; θh))πDMh (θh|x1:n)dθh

(3.25)

≤
∫ {∫

DM (f(·; θf ), h(·; θh))πDMf (θf |x1:n)dθf

}
πDMh (θh|x1:n)dθh. (3.26)

81



The triangle inequality associated with DM (·, ·) gives that

DM (f, h) ≤ DM (f, g) +DM (g, h) = DM (g, f) +DM (g, h), (3.27)

which can be used to show that

DM (mDM
f (·|x1:n),mDM

h (·|x1:n)))

≤
∫ {∫

DM (f(·; θf ), h(·; θh))πDMf (θf |x1:n)dθf

}
πDMh (θh|1:n)dθh

≤
∫ {∫

DM (g, f(·; θf )) +DM (g, h(·; θh))πDMf (θf |x1:n)dθf

}
πDMh (θh|x1:n)dθh

(3.28)

=

∫
DM (g, f(·; θf ))πDMf (θf |x1:n)dθf +

∫
DM (g, h(·; θh))πDMh (θh|x1:n)dθh.

(3.29)

Now given the first part of Condition 2, equation (3.18)

DM (mDM
f (·|x1:n),mDM

h (·|x1:n)))

≤
∫
DM (g, f(·; θf ))πDMf (θf |x1:n)dθf +

∫
DM (g, h(·; θh))πDMh (θh|x1:n)dθh

≤
∫
DM (g, f(·; θf ))πDMf (θf |x1:n)dθf +

∫
DM (g, h(·; θf ))πDMf (θf |x1:n)dθf (3.30)

=

∫
(DM (g, f(·; θf )) +DM (g, h(·; θf )))πDMf (θf |x1:n)dθf . (3.31)

We can add and subtract DM (f(·; θf ), h(·; θf )) inside the integral to give

DM (mDM
f (·|x1:n),mDM

h (·|x1:n)))

≤
∫

(DM (g, f(·; θf )) +DM (g, h(·; θf )))πDMf (θf |x1:n)dθf

=

∫
(DM (g, f(·; θf )) +DM (g, h(·; θf )) (3.32)

−DM (f(·; θf ), h(·; θf )) +DM (f(·; θf ), h(·; θf )))πDMf (θf |x1:n)dθf .

Finally applying the triangle inequality once more gives us that

DM (g, f) +DM (f, h) ≥ DM (g, h)⇒ DM (g, f) ≥ DM (g, h)−DM (f, h) (3.33)

which can be used in combination with the definition of the neighbourhood NDM
ε
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to show that

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤
∫

(DM (g, f(·; θf )) +DM (g, h(·; θf ))

−DM (f(·; θf ), h(·; θf )) +DM (f(·; θf ), h(·; θf )))πDMf (θf |x1:n)dθf

≤
∫

(2DM (g, f(·; θf )) + ε)πDMf (θf |x1:n)dθf (3.34)

= 2

∫
(DM (g, f(·; θf )))πDMf (θf |x1:n)dθf + ε. (3.35)

We note that we could have applied the second part of Condition 2, equation (3.19),

to exchange θf for θh in line (3.30) and the triangle inequality also gives us that

DM (g, h) +DM (f, h) ≥ DM (g, f)⇒ DM (g, h) ≥ DM (g, f)−DM (f, h). (3.36)

Which, in turn can be used to show that

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤ 2

∫
(DM (g, h(·; θh)))πDMh (θh|x1:n)dθh + ε

(3.37)

and thus

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤ RDM (g, f, h, x1:n) + ε. (3.38)

where RDM (g, f, h, x1:n) is defined in Eq. 3.21.

It is in general hard to say how tight this bound is, for example the remainder

term does not depend on ε and as a result will not go to 0 as ε → 0. The results

in Theorem 4 in the next section demonstrate that at least as n→∞ and ε→ 0 a

different stability metric goes to 0. However the next result, Corollary 1, shows the

bound to be as tight as can be expected when the true DGP is contained within the

neighbourhood NDM
ε .

Corollary 1. Consider the following conditions:

• Assume without loss of generality that f is correctly specified for g, that is to

say that there exists θf0 such that f(·; θf0) = g(·).

• Divergence DM (·, ·) satisfies Condition 1 and additionally that the divergence

metric satisfies DM (h1, h2) ≤ b <∞, ∀h1, h2

• We have two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh},
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data generating process g, priors π(θf ) and π(θh) and data x1:n such that

Condition 2 holds for divergence DM (·, ·)

• For the two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh} there

exists ε > 0 such that f, h ∈ NDM
ε as defined in Definition 15.

Then for mDM
f and mDM

f as defined in Eq. (3.7) as n→∞

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤ ε (3.39)

almost surely.

Therefore, if we can specify a model that is close to the DGP in either TVD or

HD (or any other metric), then Bayesian updating aimed at minimising the same

divergence will produce posterior inferences from the approximate model that are

no further from the posterior inferences that would have resulted from using the

true model, than the divergence between the likelihood models a priori. This result

is to be expected. However the fact that it follows from Theorem 3 provides some

idea of the tightness of the bounds in this theorem. Next we prove Corollary 1.

Proof. From Theorem 3 we know that

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤ ε +

2 min

{∫
(DM (g, f(·; θf )))πDMf (θf |x1:n)dθf ,

∫
(DM (g, h(·; θh)))πDMh (θh|x1:n)dθh

}
Additionally as we know that there exists θf0 such that f(·; θf0) = g(·), which

provided the weak conditions for asymptotic normality [Chernozhukov and Hong,

2003; Lyddon et al., 2018] (Eq. (2.15)) hold, and once again assuming that both g

and f(y; θ) are absolutely continuous, implies there exists n such that

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤ 2

∫
(D(g, f(·; θf )))πDf (θf |x1:n)dθf + ε, (3.40)

almost surely. Following the asymptotics of Walker [2013] define

ADδ,f = {θ : D(g(·), f(·; θ)) ≤ δ}, (3.41)
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and ADMδ,f
c

its complement. Now for any δ > 0 we have that

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤ 2

∫
(DM (g, f(·; θf )))πDMf (θf |x1:n)dθf + ε

= 2

∫
A
DM
δ,f

(DM (g, f(·; θf )))πDMf (θf |x1:n)dθf (3.42)

+ 2

∫
A
DM
δ,f

c
(DM (g, f(·; θf )))πDMf (θf |x1:n)dθf + ε

Now by the definition of ADMδ,f , for all values of θf ∈ ADMδ,f , DM (g, f(·; θf )) < δ

and therefore the integral over the whole set must be less than δ. And pro-

vided the divergence DM (·, ·) is bounded by some finite constant b < ∞ for any

two distributions (this bound is 1 for the Total Variation and Hellinger diver-

gences) then
∫
A
DM
δ,f

c (DM (g, f(·; θf )))πDMf (θf |x1:n)dθf ≤ bΠDM
f (ADMδ,f

c|x1:n), where

ΠDM
f (ADMδ,f

c|x1:n) is the probability of being in the set ADMδ,f
c

under the posterior

πDMf (θf |x1:n). Therefore,

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤ 2

∫
A
DM
δ,f

(DM (g, f(·; θf )))πDMf (θf |x1:n)dθf

+ 2

∫
A
DM
δ,f

c
(DM (g, f(·; θf )))πDMf (θf |x1:n)dθf + ε

≤ 2δ + 2bΠDM
f (ADMδ,f

c|x1:n) + ε. (3.43)

Therefore provided that ΠDM
f (ADMδ,f

c|x1:n)→ 0 a.s. which is provided by asymptotic

normality (Eq. (2.15)) of the posterior [Chernozhukov and Hong, 2003; Lyddon

et al., 2018], and since this holds for all δ we have that

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤ ε. (3.44)

3.3.5 Stability in the limit

While the above results provide a bound on how far apart the predictives from

two likelihood models in the same neighbourhood are when learning using a proper

divergence metric DM (·, ·), it is not clear what happens as ε → 0 unless the neigh-

bourhood contains the DGP (Corollary 1). Theorem 4 provides a limiting stability

result that only depends on ε.

Theorem 4 (Limiting predictive stability using divergence metrics). Consider the
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following conditions:

• Divergence DM (·, ·) satisfies M1 and M2 from Condition 1

• For the two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh} there

exists ε > 0 such that f, h ∈ NDM
ε as defined in Definition 15.

Then ∣∣∣DM (g, f(·; θ̂DMf ))−DM (g, h(·; θ̂DMh ))
∣∣∣ ≤ ε (3.45)

for all data generating densities g, where θ̂DMf = arg minθDM (g, f(·; θ)) and θ̂DMh =

arg minθDM (g, h(·; θ)). Where we assume that Θf = Θh.

Theorem 4 guarantees that the absolute distance between the divergence from

the limiting predictive density of two likelihood models in NDM
ε to the DGP, is no

further than the distance between the two likelihood models a priori. The absolute

distance between the divergences to the DGP may seem a strange criteria to look

at. However, bounding this guarantees stability in the approximation of the model

to the DGP across the neighbourhood defined using that divergence. Therefore, the

DM can be sure that which ever model they choose within this neighbourhood, they

will produce a similar limiting approximation of the DGP.

Proof. Define Θ = Θf = Θh. Using the triangle inequality and the definition of

NDM
ε gives us that for all θ ∈ Θ,

DM (g, f(·; θ)) ≤ DM (h(·; θ), f(·; θ)) +DM (g, h(·; θ)) (3.46)

≤ ε+DM (g, h(·; θ)) (3.47)

DM (g, h(·; θ)) ≤ DM (h(·; θ), f(·; θ)) +DM (g, f(·; θ)) (3.48)

≤ ε+DM (g, f(·; θ)). (3.49)

Now the definition of the parameters θ̂DMh and θ̂DMf as the parameters of the likeli-

hood models minimising divergence DM combined with the inequalities above result

in

DM (g, f(·; θ̂DMf )) ≤ DM (g, f(·; θ̂DMh )) ≤ ε+DM (g, h(·; θ̂DMh )) (3.50)

DM (g, h(·; θ̂DMh )) ≤ DM (g, h(·; θ̂DMf )) ≤ ε+DM (g, f(·; θ̂DMf )) (3.51)

⇒
∣∣∣DM (g, h(·; θ̂DMh ))−DM (g, f(·; θ̂DMf ))

∣∣∣ ≤ ε. (3.52)
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3.4 Approximating Metrics

The results in the previous two sections imply stability comes naturally to infer-

ence designed to minimise a divergence that is a proper metric, with satisfying the

triangle inequality being particularly important. Two obvious candidates for this

are the TVD and the HD. We discussed in Section 2.3 the desirability of learning

using the TVD from a decision theoretic point of view. The TVD has further de-

sirable properties when thinking about a neighbourhood for likelihood models and

practical belief elicitation. For two likelihoods to be close in terms of TVD requires

that the greatest difference in any of the probability statements made by the two

likelihoods is small on the natural scale. We believe that although the DM is never

going to be able to exactly elicit a full likelihood model, they may well be able to

elicit judgements that are accurate on the natural scale. We juxtapose this with

the unreasonable requirement of increasingly accurate estimation of tail probabil-

ities in order to guarantee stability of traditional Bayesian updating in the next

section. Additionally, TVD neighbourhoods contain ε-contaminations considered in

the context of prior stability by Gustafson and Wasserman [1995].

However there are several difficulties associated with inference targeted at

the minimisation of the TVD or the HD. The main one of these being that they both

requires an estimate of the data generating density, gn(x). Although we identify in

Section 2.6.8 that this is an ongoing area of research, current methods struggle to

scale to high dimensions. As a result we seek to use divergences that do not require

a density estimate, termed as ‘local’, to attempt to approximate the stability results

concerning divergence metrics. Specifically here we consider the KLD associated

with Bayes’ rule and the robust βD.

3.4.1 The KLD

While inference targeting metrics is inconvenient to implement in practise, inference

targeting the KLD, using Bayes’ rule, is straightforward due to the local property of

the log-score. . However Lemma 1 shows that stability in terms of the KLD requires

unreasonable assumptions on the DGP and the neighbourhood of likelihood models.

Lemma 1 (Limiting stability for the KLD). Defining

θ̂KLD
f = arg min

θ
KLD(g, f(·; θ)) (3.53)

θ̂KLD
h = arg min

θ
KLD(g, h(·; θ)), (3.54)
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we have that for all data generating densities g∣∣∣KLD(g, f(·; θ̂KLD
f ))− KLD(g, h(·; θ̂KLD

h ))
∣∣∣

≤max

{∫
g log

h(·; θ̂KLD
h )

f(·; θ̂KLD
h )

dx,

∫
g log

f(·; θ̂KLD
f )

h(·; θ̂KLD
f )

dx

}
. (3.55)

Proof. The definition of the KLD (Eq. (1.5)) provides that

KLD(g, f(·; θf )) = KLD(g, h(·; θh)) +

∫
g log

h(·; θh)

f(·; θf )
dx. (3.56)

Now by the definition of θ̂KLD
f and θ̂KLD

h we can show

KLD(g, f(·; θ̂KLD
f )) ≤ KLD(g, f(·; θ̂KLD

h )) (3.57)

= KLD(g, h(·; θ̂KLD
h )) +

∫
g log

h(·; θ̂KLD
h )

f(·; θ̂KLD
h )

dx (3.58)

KLD(g, h(·; θ̂KLD
h )) ≤ KLD(g, h(·; θ̂KLD

f )) (3.59)

= KLD(g, f(·; θ̂KLD
f )) +

∫
g log

f(·; θ̂KLD
f )

h(·; θ̂KLD
f )

dx. (3.60)

Combining these two inequalities results in Eq. (3.55).

Lemma 1 provides an upper bound on the difference in the quality of the KLD

approximation to the DGP of two different likelihoods used in Bayes’ rule. Standard

bounds, proven using Bernoulli’s inequality [Bernoulli, 1689], associated with the

natural logarithm are

1− 1

y
≤ log y ≤ y − 1 (3.61)

which enables us to bound this remainder term∫
g log

h(·; θ̂KLD
h )

f(·; θ̂KLD
h )

dx ≤
∫
gh(·; θ̂KLD

h ) +
g

f(·; θ̂KLD
h )

dx (3.62)

∫
g log

f(·; θ̂KLD
f )

h(·; θ̂KLD
f )

dx ≤
∫
gf(·; θ̂KLD

f ) +
g

h(·; θ̂KLD
f )

dx. (3.63)

As a result we are able to guarantee the stability of traditional Bayesian inference

if we are able to bound g
h(·;θh) and g

f(·;θh) from above. In fact we can see that even

if we were to try and apply some reverse Pinsker’s inequality to this term the ratios
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g
h(·;θh) and g

f(·;θh) still remain e.g.

∫
g log

h(·; θh)

f(·; θh)
dx ≤

∫
g

h(·; θh)
h(·; θh) log

h(·; θh)

f(·; θh)
dx (3.64)

≤M∗hKLD(h(·; θh)||f(·; θh)) (3.65)

where M∗h = ess sup g
h(·;θh) . So even if we had conditions on f and h such that a re-

verse Pinsker’s inequality held enabling us to upper bound the KLD(h(·; θh)||f(·; θh))

by the TVD(h(·; θh)||f(·; θh)) and then considered a TVD neighbourhood for our

likelihood models, we would still have to bound M∗h . As a result we conclude that

analogously to Smith and Rigat [2012], who demonstrate that a TVD ball around

the prior does not impact the posterior stability, a TVD ball around the likelihood

model is not sufficient for posterior stability when using Bayes’ rule updating.

In fact, posterior stability in the manner we consider here can only be guar-

anteed if |log(h(·; θh))− log(f(·; θf ))| is small in regions where g has mass. Without

knowledge of g, this requires that |log(h(·; θh))− log(f(·; θf ))| is small everywhere.

Therefore in order to be able to produce stable inference as described above, the DM

must be able to be confident in the accuracy of their probability statements on the

log-scale rather than on the natural scale that we considered for the neighbourhood

N TVD
ε . Logarithms act to inflate the magnitude of small numbers and thus ensuring

that |log(h(·; θh))− log(f(·; θf ))| is small requires that f and h are increasingly sim-

ilar as their values decrease. This requires the DM to be more and more confident of

the accuracy of their probability specifications as they get further and further into

the tails. Something that is known to be very difficult [Winkler and Murphy, 1968;

O’Hagan et al., 2006].

We do however note that this notion of stability is with respect to a metric

that we have already shown in this thesis to be intrinsically unstable in a number

of ways. For example it is very possible that h(·; θ̂KLD
h ) and f(·; θ̂KLD

f ) could be

stable in the sense of Theorem 4 and the TVD metric but still produce very different

approximations to g when the quality of the approximation is measured by the KLD.

Currently we require that the metric for stability is the same metric we learn using

as it easily allows us to say that D(g||h(·; θ̂Dh )) ≤ D(g||h(·; θ̂Df )).

3.4.2 The βD

We established above that it is difficult to specify a neighbourhood of likelihood

models such that traditional Bayesian inference minimising the KLD is stable. Here

we show that stability can be achieved across the natural N TVD
ε neighbourhood of
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likelihood models when learning using the robust βD. Firstly we prove a series of

lemmas showing how the βD relates to the TVD in a similar fashion to the trian-

gle inequality associated with metric divergences. Although Bregman divergences,

introduced in Eq. (1.26), are not generally metrics, they do posses the following

“three-point property” [Cichocki and Amari, 2010]

Lemma 2 (Three-point property of Bregman Divergences). For Bregman diver-

gence Dψ(g||f) defined in Eq. (1.26) the following generalisation of the triangle

inequality holds

Dψ(g||f) +Dψ(f ||h) = Dψ(g||h) + (g − f) (∇ψ(h)−∇ψ(f)) , (3.66)

where ∇ψ(·) is the first derivative of the function ψ(·).

Proof. Following the definition of a Bregman divergence Eq. (1.26)

Dψ(g||f) +Dψ(f ||h)

=ψ(g)− ψ(f)− (g − f)∇ψ(f) + ψ(f)− ψ(h)− (f − h)∇ψ(h) (3.67)

=ψ(g)− ψ(h)− (−h)∇ψ(h)− (g − f)∇ψ(f)− (f)∇ψ(h) (3.68)

=ψ(g)− ψ(h)− (g − h)∇ψ(h)− (g − f)∇ψ(f)− (f − g)∇ψ(h) (3.69)

=Dψ(g||h) + (g − f) (∇ψ(h)−∇ψ(f)) (3.70)

Applying Lemma 2 specifically for the βD provides the following lemma.

Lemma 3 (Three-point property of the βD). The following relationship for the βD

holds for densities g, f and h

D
(β)
B (f ||h) = D

(β)
B (g||h)− D

(β)
B (g||f) +R(g||f ||h) (3.71)

R(g||f ||h) =

∫
(g − f)

(
1

β − 1
hβ−1 − 1

β − 1
fβ−1

)
dµ (3.72)

Proof. This follows directly from Lemma 2 and the definition of the βD.

Next we prove an original result connecting the βD and the TVD in a similar

manner to a triangle inequality. The result relies on 1 ≤ β ≤ 2, which places the βD
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in between the KLD at β = 1 and the L2-distance, D
(2)
B (g||f) = 1

2

∫
(f − g)2. We

are yet to come across scenarios where setting β outside this range is appropriate

from a practical viewpoint, see Chapters 4 and 5. The next result also relies on

being able to bound the essential supremum (ess sup) of densities g, f and h. We

explained exactly what we mean by the ess sup in Section 2.6.4.

Lemma 4 (A triangle inequality relating the βD and the TVD). For densities f(x),

h(x) and g(x) with the property that max {ess sup f, ess suph, ess sup g} ≤ M <∞
and 1 < β ≤ 2 we have that

D
(β)
B (g||h) ≤ D

(β)
B (g||f) +

Mβ−1

β − 1
TVD(h, f) (3.73)

The symmetry of the TVD ensures Lemma 4 will also hold if we swap h and

f . This result is a significant one. It shows an important link between the βD, a

convenient divergence to use for inference, and the TVD which we have argued in this

thesis has desirable properties concerning both accurate decision making and belief

specification. We showed above that such an analogous result was not available to

connect the KLD with the TVD. Next we prove Lemma 4.

Proof. Define A+ := {x : h(x) > f(x)} and A− := {x : f(x) > h(x)}. Firstly note

that

TVD(f, h) =
1

2

∫
A+

(h(x)− f(x)) dx+
1

2

∫
A−

(f(x)− h(x)) dx (3.74)

=

∫
A+

(h(x)− f(x)) dx =

∫
A−

(f(x)− h(x)) dx. (3.75)

To see this consider Lf,h : X → R with Lf,h(x) := min(f(x), h(x)) as the lower of

the two probability densities for every x. Given that both f and h are probability

densities an thus integrate to 1 we have that∫
A+

(h(x)− f(x))dx = 1−
∫
Lf,h(x)dx (3.76)∫

A−
(f(x)− h(x))dx = 1−

∫
Lf,h(x)dx. (3.77)

The two right hand sides are identical and therefore the two left hand sides must be
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equal. By the definition of the βD we can rearrange

D
(β)
B (g||h)

=D
(β)
B (g||f) +

(∫ [
1

β
h(x)β − 1

β
f(x)β − 1

β − 1
g(x)h(x)β−1 +

1

β − 1
g(x)f(x)β−1

]
dx

)
(3.78)

=D
(β)
B (g||f) +

(
1

β

∫ [
h(x)β − f(x)β

]
dx+

1

β − 1

∫
g(x)

(
f(x)β−1 − h(x)β−1

)
dx

)
(3.79)

Now by the monotonicity of the function xβ when 1 ≤ β ≤ 2 we have that∫
A−

h(x)β − f(x)βdx < 0∫
A+

g(x)
(
f(x)β−1 − h(x)β−1

)
dx < 0

therefore removing these two terms provides an upper bound

D
(β)
B (g||h)

=D
(β)
B (g||f) +

1

β

∫ [
h(x)β − f(x)β

]
dx+

1

β − 1

∫
g(x)

(
f(x)β−1 − h(x)β−1

)
dx

≤D(β)
B (g||f) +

1

β

∫
A+

[
h(x)β − f(x)β

]
dx+

1

β − 1

∫
A−

g(x)
(
f(x)β−1 − h(x)β−1

)
dx.

(3.80)

Next x ∈ A+ ensures h(x) > f(x) and this in turn implies that h(x)f(x)β−1 > f(x)β.

As a result we can bound

D
(β)
B (g||h)

≤D(β)
B (g||f) +

1

β

∫
A+

[
h(x)β − f(x)β

]
dx+

1

β − 1

∫
A−

g(x)
(
f(x)β−1 − h(x)β−1

)
dx.

≤D(β)
B (g||f) +

1

β

∫
A+

h(x)
(
h(x)β−1 − f(x)β−1

)
dx

+
1

β − 1

∫
A−

g(x)
(
f(x)β−1 − h(x)β−1

)
dx (3.81)

=D
(β)
B (g||f) +

1

β

∫
A+

h(x)β
(

1− f(x)β−1

h(x)β−1

)
dx

+
1

β − 1

∫
A−

g(x)f(x)β−1

(
1− h(x)β−1

f(x)β−1

)
dx. (3.82)
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Now on A+ h(x) > f(x) and so
(
f(x)
h(x)

)β−1
> f(x)

h(x) for 1 ≤ β ≤ 2 so

(
1− f(x)β−1

h(x)β−1

)
≤
(

1− f(x)

h(x)

)
(3.83)

with the exact same logic holding when f(x) < h(x) for the second integral. We

can use this to show that

D
(β)
B (g||h)

≤D(β)
B (g||f) +

1

β

∫
A+

h(x)β
(

1− f(x)β−1

h(x)β−1

)
dx

+
1

β − 1

∫
A−

g(x)f(x)β−1

(
1− h(x)β−1

f(x)β−1

)
dx

≤D(β)
B (g||f) +

1

β

∫
A+

h(x)β
(

1− f(x)

h(x)

)
dx+

1

β − 1

∫
A−

g(x)f(x)β−1

(
1− h(x)

f(x)

)
dx

(3.84)

=D
(β)
B (g||f) +

1

β

∫
A+

h(x)β−1 (h(x)− f(x)) dx

+
1

β − 1

∫
A−

g(x)f(x)β−2 (f(x)− h(x)) dx (3.85)

We now use the fact that we defined max {ess sup f, ess suph, ess sup g} ≤ M < ∞
to leave

D
(β)
B (g||h)

=D
(β)
B (g||f) +

1

β

∫
A+

h(x)β−1 (h(x)− f(x)) dx

+
1

β − 1

∫
A−

g(x)f(x)β−2 (f(x)− h(x)) dx (3.86)

≤D(β)
B (g||f) +

Mβ−1

β

∫
A+

(h(x)− f(x)) dx+
Mβ−1

β − 1

∫
A−

(f(x)− h(x)) dx (3.87)

=D
(β)
B (g||f) +

Mβ−1

β
TVD(h, f) +

Mβ−1

β − 1
TVD(h, f) (3.88)

=D
(β)
B (g||f) +

Mβ−1

β − 1
TVD(h, f). (3.89)

Lemma 4 can now be used to prove a form of limiting stability for inference

using the βD.
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Stability in the limit

Using Lemma 4 we firstly seek to bound the absolute distance between the βD of

each of the limiting predictive distribution produced from two likelihood models

within N TVD
ε from the DGP.

Theorem 5 (Limiting predictive stability of βD inference). Consider the following

conditions:

• 1 < β ≤ 2

• We have two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh}
and data generating process g such that

max {ess sup f, ess suph, ess sup g} ≤M <∞ (3.90)

• For the two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh} there

exists ε > 0 such that f, h ∈ NDM
ε as defined in Definition 15.

Then ∣∣∣D(β)
B (g||f(·; θ̂(β)

h ))− D
(β)
B (g||h(·; θ̂(β)

f ))
∣∣∣ ≤ Mβ−1

β − 1
ε (3.91)

where θ̂
(β)
f = arg minθ D

(β)
B (g||f(·; θ)) and θ̂

(β)
h = arg minθ D

(β)
B (g||h(·; θ)).

Theorem 5 shows that for two likelihood models in the neighbourhood

{f(·; θf ), h(·; θh)} ∈ N TVD
ε , (3.92)

we can be sure that their limiting predictive distribution, h(·; θ̂(β)
h ) and f(·; θ̂(β)

f ),

aimed at minimising the βD, will be similarly close to the DGP in terms of the βD. So

learning using the βD allows us to guarantee two likelihood models that are close in

TVD a priori will converge (assuming the regularity conditions of Chernozhukov and

Hong [2003]; Lyddon et al. [2018]) on predictive inference that is stable with respect

to the βD approximation of the DGP. Additionally, similarly to Theorem 4, Theorem

5 hold without any conditions on the DGP besides bounding its essential supremum.

We paid particular attention to being able to define the a priori neighbourhood of

models in terms of TVD as we believe this is a reasonable neighbourhood with which

a DM ought to be able to specify their likelihood up to, see the discussion in Section

3.4. Next we prove Theorem 5.

Proof. Firstly be the definition of θ̂
(β)
f and θ̂

(β)
h as the parameters of the likelihood
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models f(·; θf ) and h(·; θh) minimising the βD we have that.

D
(β)
B (g, f(·; θ̂(β)

f )) ≤ D
(β)
B (g, f(·; θ̂(β)

h ))

D
(β)
B (g, h(·; θ̂(β)

h )) ≤ D
(β)
B (g, h(·; θ̂(β)

f )).

Now using the triangle type inequality proven in Lemma 4 and the definition of

NDM
ε we can show that

D
(β)
B (g, f(·; θ̂(β)

h ))

≤M
β−1

β − 1
TVD(f(·; θ̂(β)

h ), h(·; θ̂(β)
h )) + D

(β)
B (g, h(·; θ̂(β)

h ))

≤M
β−1

β − 1
ε+ D

(β)
B (g, h(·; θ̂(β)

h )) (3.93)

D
(β)
B (g, h(·; θ̂(β)

f ))

≤M
β−1

β − 1
TVD(f(·; θ̂(β)

f ), h(·; θ̂(β)
f )) + D

(β)
B (g, f(·; θ̂(β)

f ))

≤M
β−1

β − 1
ε+ D

(β)
B (g, f(·; θ̂(β)

f )) (3.94)

Combining these two, results in

⇒
∣∣∣D(β)

B (g, h(·; θ̂(β)
h ))− D

(β)
B (g, f(·; θ̂(β)

f ))
∣∣∣ ≤ Mβ−1

β − 1
ε (3.95)

Stability of the posterior predictives

Next we go one step further and seek to extend this stability in the limiting ap-

proximation of the DGP, to being able to bound the βD between the finite sample

predictive distributions resulting from two likelihood models in the neighbourhood

N TVD
ε . In order to prove the stability of the posterior predictives in the same vein

as Theorem 4 we require one last lemma.

Lemma 5 (The convexity of the βD). The βD between two densities g(x) and f(x)

is convex in both densities for 1 < β ≤ 2, when fixing the other. That is to say that

for λ ∈ [0, 1] and fixed f and g

D
(β)
B (λg1 + (1− λ)g2, f) ≤ λD(β)

B (g1, f) + (1− λ)D(β)
B (g2, f) (3.96)

D
(β)
B (g, λf1 + (1− λ)f2) ≤ λD(β)

B (g, f1) + (1− λ)D(β)
B (g, f2) (3.97)
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for 1 < β ≤ 2

Proof. First we fix f and look at convexity in the function g. let λ ∈ [0, 1]. The

function xp for x ≥ 0 and p > 1 is convex and thus satisfies

(λx1 + (1− λ)x2)p ≤ λxp1 + (1− λ)xp2 (3.98)

therefore we have that provided D
(β)
B (g1||f) <∞ and D

(β)
B (g2||f) <∞

D
(β)
B (λg1 + (1− λ)g2||f)

=

∫
1

β(β − 1)
(λg1 + (1− λ)g2)β +

1

β
fβ − 1

β − 1
(λg1 + (1− λ)g2) fβ−1dµ (3.99)

≤
∫

1

β(β − 1)

(
λgβ1 + (1− λ)gβ2

)
+

1

β
fβ − 1

β − 1
(λg1 + (1− λ)g2) fβ−1dµ

(3.100)

=λD(β)
B (g1||f) + (1− λ)D(β)

B (g2||f).

Next we fix g and look at the convexity in f . Similarly to above we know that when

x ≥ 0 and 1 ≤ p ≤ 2 that 1
px

p and − 1
p−1x

p−1 are both convex in x. We therefore

have that provided D
(β)
B (g||f1) <∞ and D

(β)
B (g||f2) <∞

D
(β)
B (g||λf1 + (1− λ)f2)

=

∫
1

β(β − 1)
gβ +

1

β
(λf1 + (1− λ)f2)β − 1

β − 1
g (λf1 + (1− λ)f2)β−1 dµ (3.101)

≤
∫

1

β(β − 1)
gβ +

1

β

(
λfβ1 + (1− λ)fβ2

)
− 1

β − 1
g
(
λfβ−1

1 + (1− λ)fβ−1
2

)
dµ

(3.102)

=λD(β)
B (g||f1) + (1− λ)D(β)

B (g||f2)

We are now able to use the convexity of the βD (Lemma 5), the triangular

relationship between the βD and the TVD (Lemma 4) and the three-point property

the βD (Lemma 3) to extend posterior predictive stability provided by inference

targeting metrics (Theorem 3) to inference using the βD in Theorem 6.

Theorem 6 (Stability of the posterior predictives under the βD learning). Consider

the following conditions:

• 1 < β ≤ 2

• We have two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh},
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data generating process g satisfying

max {ess sup f, ess suph, ess sup g} ≤M <∞, (3.103)

and priors π(θf ) and π(θh) and data x1:n such that Condition 2 holds for

divergence D(·, ·) = D
(β)
B (·||·)

• For the two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh} there

exists ε > 0 such that f, h ∈ NDM
ε as defined in Definition 15.

Then

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n)) (3.104)

≤ Mβ−1

β − 1
ε+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh

D
(β)
B (m

(β)
h (·|x1:n)||m(β)

f (·|x1:n)) (3.105)

≤ Mβ−1

β − 1
ε+

∫ ∫
R(g||h(·; θh)||f(·; θf ))π

(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh.

where R(g||f ||h) and R(g||h||f) were defined in Lemma 3 to be

R(g||f ||h) =

∫
(g − f)

(
1

β − 1
hβ−1 − 1

β − 1
fβ−1

)
dµ (3.106)

R(g||h||f) =

∫
(g − h)

(
1

β − 1
fβ−1 − 1

β − 1
hβ−1

)
dµ. (3.107)

Theorem 5 shows that the βD-Bayes general Bayesian updating applied to

two likelihood models within the neighbourhood N TVD
ε produces posterior predictive

inferences that are close in terms of the βD between the two posterior predictive

densities m
(β)
h (·|x1:n) and m

(β)
f (·|x1:n) provided Condition 2 holds for data x1:n and

priors πf (θf ) and πh(θh) and the remainder terms∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh (3.108)∫ ∫

R(g||h(·; θh)||f(·; θf ))π
(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh (3.109)

are small. Similarly to the remainder term in Theorem 3 the size of these remainders

will depend on the quality of the approximation of the likelihood models f(·; θf ) and

h(·; θh) to the DGP g(·). Once again we have focussed on proving stability under
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a TVD neighbourhood a priori due to relevance and practicality of considering this

neighbourhood in actual applications, see Section 3.4. Next we prove Theorem 6.

Proof. By the convexity of the βD for 1 < β ≤ 2 (Lemma 5) we can apply Jensen’s

inequality as we did in the proof of Theorem 3 to show that

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n))) ≤
∫

D
(β)
B (m

(β)
f (·|x1:n)||h(·; θh))π

(β)
h (θh|x1:n)dθh

(3.110)

≤
∫ {∫

D
(β)
B (f(·; θf )||h(·; θh))π

(β)
f (θf |x1:n)dθf

}
π

(β)
h (θh|x1:n)dθh. (3.111)

Now the three-point property associated with the βD (Lemma 3) gives us that

D
(β)
B (f ||h) = D

(β)
B (g||h)− D

(β)
B (g||f) +R(g||f ||h) (3.112)

where R(g||f ||h) is defined in Eq. (3.106). Using this here provides

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n))) (3.113)

≤
∫ {∫

D
(β)
B (f(·; θf )||h(·; θh))π

(β)
f (θf |x1:n)dθf

}
π

(β)
h (θh|x1:n)dθh

=

∫ {∫ [
D

(β)
B (g||h(·; θh))− D

(β)
B (g||f(·; θf ))

+R(g||f(·; θf )||h(·; θh)]π
(β)
f (θf |x1:n)dθf

}
π

(β)
h (θh|x1:n)dθh (3.114)

=

∫
D

(β)
B (g||h(·; θh))π

(β)
h (θh|x1:n)dθh −

∫
D

(β)
B (g||f(·; θf ))π

(β)
f (θf |x1:n)dθf

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh. (3.115)

Now given the first part of Condition 2, Eq. 3.18, applied for the D = D
(β)
B allows
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us to exchange π
(β)
h (θh|x1:n) for π

(β)
f (θf |x1:n) in the first integral

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n)))

≤
∫

D
(β)
B (g||h(·; θh))π

(β)
h (θh|x1:n)dθh −

∫
D

(β)
B (g||f(·; θf ))π

(β)
f (θf |x1:n)dθf

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh

≤
∫

D
(β)
B (g||h(·; θf ))π

(β)
f (θf |x1:n)dθf −

∫
D

(β)
B (g||f(·; θf ))π

(β)
f (θf |x1:n)dθf

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh (3.116)

=

∫ (
D

(β)
B (g||h(·; θf ))−

∫
D

(β)
B (g||f(·; θf ))

)
π

(β)
f (θf |x1:n)dθf

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh. (3.117)

where the last line has simply collected the two terms now involving θf into one

integral. We can now apply the triangle type inequality from Lemma 4, Eq. 3.73

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n)))

≤
∫ (

D
(β)
B (g||h(·; θf ))−

∫
D

(β)
B (g||f(·; θf ))

)
π

(β)
f (θf |x1:n)dθf

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh.

≤
∫
Mβ−1

β − 1
TVD(h(·; θf ), f(·; θf ))π

(β)
f (θf |x1:n)dθf

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh. (3.118)

Which given the neighbourhood of likelihood models defined by N TVD
ε in Eq. (3.12)

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n))) ≤
∫
Mβ−1

β − 1
TVD(h(·; θf ), f(·; θf ))π

(β)
f (θf |x1:n)dθf

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh.

≤M
β−1

β − 1
ε+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh. (3.119)

We note that we could have instead considered D
(β)
B (m

(β)
h (·|x1:n)||m(β)

f (·|x1:n))), ap-

plied the corresponding version of the three-point property of Bregman divergences,

with remainder R(g||h||f) =
∫

(g−h)
(

1
β−1f

β−1 − 1
β−1h

β−1
)
dµ and used the second
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part of Condition 2, therefore we also have that

D
(β)
B (m

(β)
h (·|x1:n)||m(β)

f (·|x1:n)))

≤M
β−1

β − 1
ε+

∫ ∫
R(g||h(·; θh)||f(·; θf ))π

(β)
f (θf |x1:n)dθfπ

(β)
h (θh|x1:n)dθh. (3.120)

3.5 Experiments

The experiments in this next section serve to demonstrate the impact of the theorems

proved in the chapter. In general we find that the stability that is observed in

practise when using the TVD and the βD is much tighter than the bounds that we

have been able to prove.

3.5.1 Poisson stability

For the first time in this thesis we now consider discrete likelihood models. Conve-

niently, working with independent and identically distributed discrete data provides

a natural estimate of the DGP, gn(x), the empirical mass function. As a result these

examples provide a way to showcase Theorems 3 and 4 when using the TVD without

having to worry about the computability of a estimate of the data generating den-

sity. Additionally, it is straightforward to estimate the TVD between two discrete

distributions. Even when these do not have finite support, an accurate estimate of

the TVD between the two distributions can be gained by truncating the support at

a sufficiently large value.

In order to demonstrate these theorems we consider the Poisson likelihood

model with parameter λ, Poi(λ). The Poisson likelihood model is not particularly

flexible. It has one parameter, λ, and imposes the property that if X ∼ Poi(λ) then

E [X] = Var[X] = λ. Often unmodelled heterogeneities can lead to the variance

of observe data being larger than its mean. This phenomenon is known as over-

dispersion. Another issue with real data is that often the number of zeros observed

exceeds those that would be predicted under a Poisson model, a phenomenon known

as zero-inflation.

A common method to deal with zero-inflation is to consider fitting a mixture

model with an extra component modelling counts at 0.

PoiZI(y;λ, ρ) = (1− ρ) Poi(y;λ) + ρIy=0, (3.121)

100



with ρ ∈ (0, 1). Additionally, unmodelled heterogeneity in the data could be mod-

elled by the addition of a second ‘contaminating’ Poisson component [see e.g. Wang

et al., 1996; Leroux and Puterman, 1992; Dalrymple et al., 2003; Mufudza and Erol,

2016]

Poimix(y;λ1, λ2, ρ) = (1− ρ) Poi(y;λ1) + ρPoi(y;λ2), (3.122)

with ρ ∈ (0, 1). For both models imposing an upper-bound on the possible value of

ρ < ρ̂, for example reflecting the subjective belief that at least (1 − ρ̂) × 100% of

observations come from the Poisson model, places each likelihood model within a

TVD neighbourhood of the standard Poisson likelihood of size ρ̂. We note that over-

dispersion in count data can also be dealt with using Negative-binomial regression

[Lawless, 1987]. However, it is difficult to construct a TVD neighbourhood, N ε
TVD,

from Definition 15 containing the Negative-Binomial and the Poisson and therefore

we do not use this model to formally demonstrate the theorems of the previous

section. Nevertheless, later in this section we observe empirically that the TVD-

Bayes is still stable to the selection between the Poisson and the Negative-Binomial

(see Figures 3.3 and 3.4.

We apply these three models to two datasets containing over-dispersed Pois-

son counts

Data 1 BioChemist - the number of articles produced during the last 3 years of a

biochemsitry Ph.D by 915 graduate students1 [Long, 1990]

Data 2 GrouseTicks - the number of ticks on the heads of 403 red grouse chicks2

[Elston et al., 2001]

For these two datasets we implement both Bayes’ rule updating (KLD-Bayes)

and TVD-Bayes for the Poisson, two-component mixture of Poissons and Zero-

inflated Poisson models explained above. We use the empirical mass function to

estimate the data generating density. For the BioChemist dataset we set ρ̂ = 0.1

in order to constrain both the Poisson mixture and the zero-inflated Poisson to be

within the N 0.1
TVD neighbourhood of the standard Poisson likelihood a priori. For

the GrouseTicks dataset we set ρ̂ = 0.2. For both datasets we consider priors on

λ ∼ G(2, 2) and ρ ∼ Unif[0, ρ̂].

Figure 3.1 plots the posterior predictive mass functions for one observation

obtained by updating using the BioChemist dataset. When using Bayes’ rule (KLD-

Bayes) the small over-dispersion causes the mean of the Poisson model to be shifted

1downloaded from http://www.stata-press.com/data/lf2/couart2.dta.
2available in the ‘lme4 ’ package in R
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towards the right tail, causing it to fit the modal area of the observed data (x = 0,

1, 2) poorly. The zero-inflated Poisson is able to capture this area slightly better

while the Poisson mixture appears to provide the best fit for the observed data. As

a result these three models provide fairly different approximations to the mode of

the observed data, but they do all appear to capture the right tail of the observed

data in a similar manner. In contrast, updating using the TVD-Bayes for all three

likelihood models provides a more accurate approximation of the data around the

mode of the distribution, but fails to capture the heaviness of the right hand tail.

The TVD-Bayes fits almost identical posterior predictives around the mode of the

observe data for all three likelihood models, only significantly differing at x = 1.

While the TVD-Bayes appears to be much more stable across the three models near

the mode of the data, the KLD-Bayes provides a more stable approximation to the

right-hand tail.
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Figure 3.1: Posterior predictive mass functions for one exchangeable observation
when fitting a Poisson likelihood (Poi), a two component mixture of Poissons like-
lihood (Poi Mix) and a zero-inflated Poisson likelihood (ZI Poi), constrained to fit
within the neighbourhood N 0.1

TVD, to the BioChemist dataset. Left: using Bayes’
rule (KLD-Bayes) updating. Right: using updating aimed at minimising the TVD

(TVD-Bayes).

These observations are reinforced by the estimates of the TVD between each

of these predictive mass function which are presented in Table 3.1. The observation

that the TVD-Bayes achieved greater stability around the mode of the observed data

is backed up by uniformly smaller total-variation distances between the predictives

when compared with the same distances between the KLD-Bayes predictives. The

fact that the TVD values between the Poisson likelihood model and the Poisson

mixture, and between the Poisson and the zero-inflated Poisson were both below

0.1, the upper-bound on the distance between the models a priori, enforced by
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bounding ρ̂ = 0.1, demonstrates the result of Theorem 3. We also note this happens

despite the posterior density for ρ placing most of its density towards this upper-

bound for both the Poisson mixture and the zero-inflated Poisson. Despite the a

priori TVD between these likelihood models being upper-bounded by 0.1, the KLD-

Bayes predictive distributions from the Poisson and Poisson mixture models have a

TVD of greater than 0.1, suggesting here that Bayes’ rule is causing these inferences

to diverge!

Table 3.1: Estimates of the TVD between the posterior predictive mass functions
for one exchangeable observation when fitting a Poisson likelihood (Poi), a two
component mixture of Poissons likelihood (Poi Mix) and a zero-inflated Poisson
likelihood (ZI Poi), constrained to fit within the prior neighbourhood N 0.1

TVD, to the
BioChemist dataset. Left: using Bayes’ rule (KLD-Bayes) updating. Right:
using updating aimed at minimising the TVD (TVD-Bayes).

KLD-Bayes Poi Poi Mix ZI Poi

Poi - 0.1283 0.0748
Poi Mix - - 0.1317

TVD-Bayes Poi Poi Mix ZI Poi

Poi - 0.0533 0.0589
Poi Mix - - 0.0684

Figure 3.2 shows the corresponding predictive mass functions produced from

the GrouseTicks dataset. While for the BioChemist dataset even under the KLD-

Bayes, all three models provided a reasonable approximation of the distribution of

the observed data, this is no longer the case for the GrouseTicks data. Under the

KLD-Bayes all three models attempt to strike a balance between capturing the large

model at 0 and the very long right hand tail. They however achieve this in very

different ways, producing very different predictive distributions. In juxtaposition,

the TVD-Bayes is able to ignore the long right-hand tail and focus on the mode

of the observed data. In doing so all three likelihood models are able to provide

much more satisfactory approximations of the observed data and also much greater

stability in this approximation across the three likelihoods.

These observations are once again backed up by the TVD values between the

predictive distributions presented in Table 3.2. The TVD values between the KLD-

Bayes predictive distributions are huge. In fact they are approaching the upper

bound for the TVD at 1. In contrast, the values for the TVD-Bayes are much

smaller and the fact that the TVD between the Poisson and mixture of Poissons and

the Poisson and the zero inflated Poisson are both less than 0.2, the a priori TVD

been the models enforced by bounding ρ̂ = 0.2, again demonstrating the impact of

Theorem 3. Additionally we note that stability under the TVD-Bayes still occurs for

the GrouseTicks dataset even though all three models provide a worse approximation

to the DGP than they did for the BioChemist dataset. This demonstrates the fact
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Figure 3.2: Posterior predictive mass functions for one exchangeable observation
when fitting a Poisson likelihood (Poi), a two component mixture of Poissons like-
lihood (Poi Mix) and a zero-inflated Poisson likelihood (ZI Poi), constrained to fit
within the neighbourhood N 0.2

TVD, to the GrouseTicks dataset. Left: using Bayes’
rule (KLD-Bayes) updating. Right: using updating aimed at minimising the TVD

(TVD-Bayes).

that Theorem 3 holds independently of the DGP.

Table 3.2: Estimates of the TVD between the posterior predictive mass functions
for one exchangeable observation when fitting a Poisson likelihood (Poi), a two
component mixture of Poissons likelihood (Poi Mix) and a zero-inflated Poisson
likelihood (ZI Poi), constrained to fit within the prior neighbourhood N 0.2

TVD, to the
GrouseTicks dataset. Left: using Bayes’ rule (KLD-Bayes) updating, Right:
using updating aimed at minimising the TVD (TVD-Bayes).

KLD-Bayes Poi Poi Mix ZI Poi

Poi - 0.8846 0.4636
Poi Mix - - 0.8879

TVD-Bayes Poi Poi Mix ZI Poi

Poi - 0.1373 0.1481
Poi Mix - - 0.1659

Unconstrained a priori

In practise a further common way to account for over-dispersion is to use a negative-

binomial likelihood model. Negative-binomial models are traditionally interpreted as

modelling the the number of failures before a certain number of successes in repeated

independent trials. However, they can also be parametrised in terms of a mean

number of counts, similar to the Poisson likelihood. It is not straightforward to build

a TVD neighbourhood containing the negative-binomial and the Poisson likelihood

models and therefore we did not implement this above to illustrate the theorems of

this chapter. Instead we now implement the negative-binomial likelihood alongside

104



the Poisson likelihood, the mixture of Poissons and the zero-inflated Poisson, where

we no longer constrain the value of ρ to be less than some threshold. As a result

these likelihoods do not fall into any of our a priori neighbourhoods, but Figures 3.3

and 3.4 and Tables 3.3 and 3.4 show that the TVD-Bayes is still much more stable

in terms of TVD than thee KLD-Bayes.
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Figure 3.3: Posterior predictive mass functions for one exchangeable observation
when fitting a Poisson likelihood (Poi), a two component mixture of Poissons likeli-
hood (Poi Mix), a zero-inflated Poisson likelihood (ZI Poi) and a negative-binomial
likelihood (NB), unconstrained a priori, to the BioChemist dataset. Left: using
Bayes’ rule (KLD-Bayes) updating. Right: using updating aimed at minimising the
TVD (TVD-Bayes).

Table 3.3: Estimates of the TVD between the posterior predictive mass functions for
one exchangeable observation when fitting a Poisson likelihood (Poi), a two com-
ponent mixture of Poissons likelihood (Poi Mix), a zero-inflated Poisson likelihood
(ZI Poi) and a negative-binomial likelihood (NB), unconstrained a priori, to the
BioChemist dataset. Top: using Bayes’ rule (KLD-Bayes) updating. Bottom:
using updating aimed at minimising the TVD (TVD-Bayes).

KLD-Bayes Poi Poi Mix ZI Poi NB

Poi - 0.1470 0.1696 0.1814
Poi Mix - - 0.1389 0.0540

ZI Poi - - - 0.0918

TVD-Bayes Poi Poi Mix ZI Poi NB

Poi - 0.1225 0.0925 0.1256
Poi Mix - - 0.0409 0.0369

ZI Poi - - - 0.0594
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Figure 3.4: Posterior predictive mass functions for one exchangeable observation
when fitting a Poisson likelihood (Poi), a two component mixture of Poissons likeli-
hood (Poi Mix), a zero-inflated Poisson likelihood (ZI Poi) and a negative-binomial
likelihood (NB), unconstrained a priori, to the GrouseTicks dataset. Left: using
Bayes’ rule (KLD-Bayes) updating. Right: using updating aimed at minimising the
TVD (TVD-Bayes).

Table 3.4: Estimates of the TVD between the posterior predictive mass functions for
one exchangeable observation when fitting a Poisson likelihood (Poi), a two com-
ponent mixture of Poissons likelihood (Poi Mix), a zero-inflated Poisson likelihood
(ZI Poi), and a negative-binomial likelihood (NB), unconstrained a priori, to the
GrouseTicks dataset. Top: using Bayes’ rule (KLD-Bayes) updating. Bottom:
using updating aimed at minimising the TVD (TVD-Bayes).

KLD-Bayes Poi Poi Mix ZI Poi NB

Poi - 0.7558 0.5112 0.6449
Poi Mix - - 0.7976 0.4665

ZI Poi - - - 0.4041

TVD-Bayes Poi Poi Mix ZI Poi NB

Poi - 0.2467 0.2272 0.3340
Poi Mix - - 0.1988 0.1476

ZI Poi - - - 0.2286

3.5.2 Fixing the quartiles

Our next example takes inspiration from the approach outlined to belief elicitation

in O’Hagan [2012]. It is argued there that for absolutely continuous probability

distributions, it is only reasonable to ask an expert to make a judgement about the

median and the quartiles of a distribution along with maybe a few specially selected

features. This is based on the fact that humans are generally able to accurately

make judgements of equal probability. The rest of this distribution is then filled
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in arbitrarily by the statistician facilitating the analysis. For example, if the upper

and lower quartiles are believed to be a similar distance from the median then a

Gaussian distribution is typically assumed. However, in principle there are a huge

number of distributions sharing these properties that could have been used instead

of the Gaussian.

O’Hagan [2012] justify this ‘cavalier’ approach of arbitrarily filling in the rest

of the density given the medians and quartiles as often “adequate for the purpose

for which the elicitation is being performed”. The reason for this is that any two

distributions with the same mean, modality and quartiles will look very similar, see

Figure 3.5. This may very well be the case if these distributions are going to be

directly used to calculate estimates of bounded expected utilities. However Lemma

1 suggests that much more than identical medians and quartiles will be required to

ensure the stability of Bayes’ rule updating. This example aims to demonstrate this

and the stability that can be afforded to such arbitrary assumptions when using the

βD-Bayes.

In order to do so we consider the stability of Bayesian inference to the choice

between a Gaussian and a Student’s t-likelihood. The neighbourhood of likelihood

models is given by

f(x; θf ) := N
(
x;µf , σ

2
f × σ2

adj

)
(3.123)

h(x; θh) := Student’s− tν
(
x;µh, σ

2
h

)
(3.124)

where we set σ2
adj for a given ν to match the quartiles of the two distribution for all

µ = µf = µh and σ2 = σ2
f = σ2

h. For ν = 5 we find by optimisation that σ2
adj = 1.16.

In fact we can use the representation

TVD(g, f) =

∫
g>f

(g − f) =

∫
g>f

g −
∫
g>f

f (3.125)

to estimate that this neighbourhood also corresponds to a N TVD
ε neighbourhood with

ε = 0.043 as defined in Eq. (3.12). Figure 3.5 plots the probability density function

and cumulative distribution function of f and h for µ = 0, σ2 = 1, ν = 5 and

σ2
adj = 1.16 defined above. This shows how similar the Gaussian and Student’s-t

likelihood are. They are clearly within drawing accuracy of each other and it seems

unreasonable to require any DM to be able to distinguish between the two.
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Figure 3.5: Probability density function (pdf) and cumulative density function (cdf)

of a Gaussian f(x; θf ) = N
(
x;µf , σ

2
adjσ

2
f

)
and a Student’s-t h(x; θh) = tν(x;µh, σ

2
h)

random variable, with µ = 0 and σ2 = 1. The parameters ν = 5 and σ2
adj = 1.16

where chosen such that the two densities have the same median and quartiles which
also ensured that {f(x; θf ), h(x; θh)} ∈ N TVD

ε (defined in (3.12)) with ε = 0.043
for all µ = µf = µh and σ2 = σ2

f = σ2
h. The two likelihoods are accurate within

any sensible drawing accuracy. So requiring a DM to distinguish between these two
seems unreasonable.

A toy experiment

To investigate the stability of inferences across this neighbourhood N TVD
ε of likeli-

hood models, we generated n = 1000 observations from the ε-contamination model

introduced in Section Example 2.1 with (ε = 0.1, µu = 0, σ2
u = 12, µc = 5, σ2

c = 32).

We then conducted Bayesian updating under the Gaussian and Student’s-t likelihood

using both Bayes’ rule and the βD-Bayes and priors π(µ, σ2) = N
(
µ;µ0, v0σ

2
)
IG(σ2; a0, b0),

with hyperparameters (a0 = 0.01, b0 = 0.01, µ0 = 0, v0 = 10). Figure 3.6 plots the

parameter posterior and posterior predictive distributions for both models under

both updating mechanisms.

The left hand side of Figure 3.6 demonstrates what most statistical practi-

tioners expect when comparing the performance of a Gaussian and a Student’s-t

likelihood under outlier contamination [O’Hagan, 1979]. Under the Student’s-t like-

lihood the inference is much less affected by the outlying contamination than under

the Gaussian likelihood. The parameter µ is shifted less towards the contaminant

population and the parameter σ2 is inflated much less by the outlying contamination.

In short, very different inferences are produced using a Student’s-t and a Gaussian

under outlier contamination. Updating using the βD-Bayes presents a striking jux-

taposition to this! The βD-Bayes produces almost identical posteriors for both µ
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Figure 3.6: Posterior predictive distributions and parameter posterior distributions
for

(
µ, σ2

)
under Bayes’ rule updating (KLD-Bayes) (left) and βD-Bayes (right)

under the likelihood functions f(x; θf ) = N
(
x;µ, σ2

adjσ
2
)

(red) and h(x; θh) =

tν(x;µ, σ2) blue where ν = 5 and σ2
adj = 1.16. Both the parameter and predictive

inference is stable across N TVD
ε under the βD-Bayes and is not under Bayes’ rule

(KLD-Bayes)

and σ2, resulting in almost identical posterior predictive densities. The βD-Bayes

is clearly stable to the selection of either a Gaussian or Student’s-t likelihood where

Bayes’ rule updating is not.

Not only does the βD inference appear to be more stable across this N TVD
ε

here, but we also argue that the βD predictive better captures the majority of the
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Table 3.5: Estimates of the energy distance between the Bayesian predictive distri-
butions when using a Gaussian and Student’s-t likelihood under Bayes’ rule (KLD)
and inference minimising the βD

E-distance KLD βD

0.125 2.13× 10−3

DGP better than either of the predictives do under the Bayes’ rule (KLD).

Estimating the TVD or the βD between the two predictves distributions is

hampered by the fact that they are not available in closed form. However the energy

distance Székely and Rizzo [2013] provides a metric that can be easily estimated from

samples of the predictive. Table 3.5 presents the energy distance between the two

predictives

Stability in linear regression

We extend the toy example above to situations where the Gaussian and Student’s-t

densities are used for error distributions in linear regression. Here some univariate

response Y is regressed on a vector of predictors X = (X1, . . . , Xp) as follows

Y = XθT + ε, (3.126)

where θ = (θ1, . . . , θp) is a vector of regression coefficients and the errors ε are

considered independent and identically distributed with mean 0. Similarly to above

we consider that the DM is unable to decide between

ε ∼ N
(
0, σ2 × σ2

adj

)
(3.127)

ε ∼ tν
(
0, σ2

)
, (3.128)

where we continue to consider ν = 5 and σ2
adj = 1.16. We apply these two linear

models to four datasets from the UCI repository [Lichman et al., 2013], providing a

range of sample sizes and number of predictors. The data sets are described below

• Energy: 768 observations seeking to understand the relationship between the

cooling load requirements of buildings as a function of seven other building

parameters.

• Power: 9568 observations seeking to understand the relationship between the

electrical output from a combined cycle power plant as a function of four other

power plant parameters.
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• Concrete: 1030 observations seeking to understand the relationship between

concrete’s compression strength as a function of eight other features of the

concrete.

• BostonHousing: 506 observations seeking to estimate the relationship between

the median property value in neighbourhoods of Boston and thirteen features

of those neighbourhood.

The response and all of the predictors were standardised to each have mean 0 and

variance 1.

In order to asses the stability of Bayes’ rule updating and updating using

the βD-loss we produce N = 50 datasets by taking a random 80% of each dataset.

The figures below present the absolute difference between several posterior and

predictive metrics in order to quantify the stability of the KLD-Bayes and βD-

Bayes with β = 1.125, 1.25 and 1.5 updating under the Gaussian and Student’s-t

likelihood. These metrics are the L1 norm of the difference between the posterior

mean estimates for the regression parameters θ, the absolute difference between the

posterior mean for the residual variances σ2, the absolute difference between the

predictive log-score applied to the training sets and the absolute difference between

the predictive βD-loss for β = 1.125, 1.25, 1.5 also applied to the training sets. We

note that the theorems of this chapter say nothing about the stability in terms of

the parameter estimates and the log-score.

Energy dataset: Figure 3.7 compares these six stability metrics for the four up-

dating methods we consider above when applied to the Energy dataset. The Bayes’

rule updating, minimising the KLD, appears to produce the most stable inference

according to the log-score and interestingly also in terms of the estimates of the

regression parameters θ. It is unsurprising that Bayes’ rule updating provides the

most stable inference in terms of the log-score . The log-score focuses mainly on

how the models approximate the tails of the observed data and therefore this shows

that Bayes’ rule produces the most stable inference in the tails of the DGP. This

is similar to what was observed in the Poisson experiments above. The βD-Bayes

for β = 1.125 and β = 1.25 produce the most stable inference according to the

βD-loss for β = 1.125 and β = 1.25 respectively. It appears as though β = 1.5 is

too large for inference in this case as it produces the least stable inference by all

metrics. Even the βD-loss using the same β that was used for the updating. As

the parameter β of the βD-loss increases away from 1 (the βD-loss is equivalent to

the log-score for β = 1), the difference in this measure focuses less on the stability
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Figure 3.7: Plots comparing the stability of Bayes’ rule and βD-Bayes for β = 1.125,
1.25, 1.5 inference for linear regression models under either Gaussian or Student’s-
t error distributions applied to the Energy dataset. From left to right: L1

norm of the difference between the posterior means for the regression coefficients θ,
absolute difference between the posterior mean estimates for the residual variances
σ2, absolute difference in predictive log-score applied to the training set, absolute
difference in predictive βD-score applied to the training set β = 1.125, 1.25, 1.5. All
averaged over 50 subsets of training points.

of the approximation of the tails of the observed data, and more on the stability of

the approximation to the modal part of the data. The fact that the βD-Bayes for

β = 1.125 and β = 1.25 provide more stable inference than Bayes’ rule according

to the βD-loss with β = 1.25 and β = 1.5 show that these methods are producing

more stable inference for the modal areas of the observed data, despite being less

stable in terms of the parameter estimate for the mode.

Power dataset: Figure 3.8 compares the six stability metrics for the four updating

methods we consider above when applied to the Power dataset. Here Bayes’ rule

updating (KLD-Bayes) achieves the most stable inference under the log-score and the

also the βD-loss for β = 1.125. However, the βD-Bayes updating for all three values

of β produces more stable inference for the other four metrics, again suggesting that

the βD-Bayes produces a more stable approximation around the high density regions

of the observed data.
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Figure 3.8: Plots comparing the stability of Bayes’ rule and βD-Bayes for β = 1.125,
1.25, 1.5 inference for linear regression models under either Gaussian or Student’s-
t error distributions applied to the Power dataset. From left to right: L1

norm of the difference between the posterior means for the regression coefficients θ,
absolute difference between the posterior mean estimates for the residual variances
σ2, absolute difference in predictive log-score applied to the training set, absolute
difference in predictive βD-score applied to the training set β = 1.125, 1.25, 1.5. All
averaged over 50 subsets of training points.

Concrete dataset: We observed something quite different for the Concrete dataset

in Figure 3.9. Here Bayes’ rule updating provides the most stable inference accord-

ing to the βD-loss for β = 1.125 and β = 1.25 as well as the log-score, and is only

less stable on the other 3 metrics than the βD-Bayes with β = 1.5. However, on all

metrics the βD-Bayes for β = 1.125 and β = 1.25 are never much less stable than

the log-score updating. This suggests that the conditional response of the Concrete

dataset is reasonably approximated by either a Gaussian likelihood or a Student’s-t

likelihood. For example, these likelihoods differ a priori in TVD by ε = 0.043. If

this difference was observed in terms of the βD-loss function a posteriori for each

training data point, then the difference in these training scores would accumulate

to just over 35. All four updating methods generally appear to produce inference

that is more stable that this threshold!
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Figure 3.9: Plots comparing the stability of Bayes’ rule and βD-Bayes for β = 1.125,
1.25, 1.5 inference for linear regression models under either Gaussian or Student’s-t
error distributions applied to the Concrete dataset. From left to right: L1

norm of the difference between the posterior means for the regression coefficients θ,
absolute difference between the posterior mean estimates for the residual variances
σ2, absolute difference in predictive log-score applied to the training set, absolute
difference in predictive βD-score applied to the training set β = 1.125, 1.25, 1.5. All
averaged over 50 subsets of training points.

Boston Housing dataset: Lastly, Figure 3.10 demonstrates the corresponding

results for the BostonHousing dataset. Here, the Bayes’ rule updating (KLD-Bayes)

is only the most stable according to the log-score and is generally much less stable

according the the other five metrics. This goes to show that although the KLD-

Bayes provides stable inference for the tails of the observed data, it can provide

fairly unstable inference when the high density regions of the observed data are of

interest. In these cases using the βD-Bayes is shown to be much more stable.

Figures 3.9 and 3.10 demonstrate, similarly to the experiments of Chapter

2, the asymmetric nature of possible gains and losses of using these alternative di-

vergence methods instead of Bayes’ rule. When Bayes’ rule performs well, these

alternative methods can be shown to only be marginally worse, while when Bayes’

rule performs poorly, these alternative methods can be shown to improve this per-

formance vastly.
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Figure 3.10: Plots comparing the stability of Bayes’ rule and βD-Bayes for
β = 1.125, 1.25, 1.5 inference for linear regression models under either Gaussian
or Student’s-t error distributions applied to the BostonHousing dataset. From
left to right: L1 norm of the difference between the posterior means for the re-
gression coefficients θ, absolute difference between the posterior mean estimates for
the residual variances σ2, absolute difference in predictive log-score applied to the
training set, absolute difference in predictive βD-score applied to the training set
β = 1.125, 1.25, 1.5. All averaged over 50 subsets of training points.

3.6 Further Work

The results of this Chapter demonstrate that inference aimed at minimising the TVD

and HD (metrics) and also the βD, can be shown to be stable to certain interpretable

neighbourhoods of likelihood models. While, the same cannot be said for inference

under Bayes’ rule, minimising the KLD. Stability to such modelling selections is

a natural and important property for conducting inference in the M -open world.

These tell a DM exactly how far they need to go with their belief elicitation to be

sure that any interpolation does not significantly effect the posterior conclusions.

These compliment the results of Chapter 2, showing that these general Bayesian

minimum divergence inferences are philosophically preferable both in a decision

making capacity and in a belief elicitation capacity.

The next two chapters focus specifically on minimising the βD. Chapter

4 outlines a computationally convenient and philosophically interesting regime to
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conduct inference. Chapter 5 then applies this methodology to improve inferences

from on-line change-point detection.
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Chapter 4

Generalised Variational

Inference

Chapters 2 and 3 presented a philosophically appealing way to consider conducting

inference in the M -open world. This chapter embeds this within a wider framework

of Bayesian analyses where we additionally consider the computational constraints

that may also be present when conducting a modern M -open Bayesian analysis. In

this chapter we view Bayesian inference as an optimisation problem over the space

of densities. We use this insight to further generalise the definition of a principled

Bayesian inference problem, containing Bayes’ rule, GBI and VI as special cases. We

then develop a further subclass of Bayesian inference problems to improve on the

performance of VI. We call these generalised variational inference (GVI). We show

that the modular formulation of GVI is able to solve 3 problems associated with

traditional Bayesian and approximate Bayesian inference: tractability, robustness

and over concentration. We show the advantages of GVI relative to other, less

principled approximate Bayesian inference methods. The majority of this chapter

appears in the article Knoblauch, Jewson, and Damoulas [2019] which has been

submitted for publication.

The organisation of the chapter is as follows: Section 4.1 interprets Bayes’

rule as the solution to an optimisation problem. Section 4.2 introduces variational

inference (VI), a method to conduct ‘approximate’ posterior inference via optimisa-

tion. Here we observe that VI is doing constrained optimisation of the same objective

function solved by Bayes’ rule updating. We also outline the problems faced by VI

approximate inference, namely over-concentration of posterior, and methods avail-

able in the literature to solve these. We are then motivated by the link between

Bayes’ rule and VI and the observed unsuitability of the VI objective function for
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modern inference to produce a generalised optimisation framework for Bayesian

inference in Section 4.3. This is motivated axiomatically and made up of three in-

terpretable components, a loss function defining the parameter of interest, a prior

regularising divergence describing how the posterior quantifies uncertainty and a

space of probability densities to be optimised over. While Chapters 2 and 3 have

considered changing the loss function to achieve robustness, Section 4.4 considers

changing the prior regularising divergence to solve the over-concentration problems

associated with VI, we call this generalised variational inference (GVI). Section 4.5

demonstrates the importance of the axiom underpinning GVI by illustrating situ-

ations where the previously available solutions to the problems with VI produce

undesirable or non-transparent inference. Section 4.6 interprets GVI as an approxi-

mation to the Bayes’ rule posterior. Section 4.7 produces a black box optimisation

algorithm to solve the GVI objective function and Section 4.8 shows that GVI can

outperform the state of the art for both Bayesian Neural Networks and Deep Gaus-

sian Processes.

4.1 Bayes’ rule as optimisation

Before presenting VI, an approach to ‘approximate’ the Bayesian posterior relying

on optimisation rather than sampling, we examine a little known optimisation view

of Bayes’ rule updating.

In developing GBI, Bissiri et al. [2016] shows that Bayes’ rule can be written

as an optimisation problem over the space of densities. Bayes’ rule is recovered

from the GBI updating rule when `(θ,x) = −∑n
i=1 log f(xi; θ). As a result Eq.

(1.17) shows that the traditional Bayesian posterior resulting from Bayes’ rule is

the solution to the following optimisation problem

π(θ|x) = arg min
q∈P

{
Eq(θ)

[
−

n∑
i=1

log (f(xi; θ))

]
+ KLD(q(θ)||π(θ))

}
(4.1)

where P =
{
q(θ) :

∫
q(θ)dθ = 1

}
. Note that by optimising over P we implicitly

assume that the solution to Bayes’ rule can be normalised. The proof of this can be

found in Section 1.2. This interpretation of Bayes’ rule can actually be traced back

to Zellner [1988], who motivates the above objective function from an information

theoretic standpoint and shows that Bayes’ rule is the optimal information process-

ing rule. Henceforth we refer to Eq. (4.1) as the traditional Bayesian objective

function.
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4.1.1 Interpreting the Bayesian objective function

The traditional Bayesian objective function presents a particularly transparent in-

terpretation of Bayes’ rule updating. Here we analyse the roles of the two terms in

this objective function. The first term is

Eq(θ)

[
−

n∑
i=1

log (f(xi; θ))

]
, (4.2)

and this will be minimised at

q(θ) = 1[θ=θ̂n], θ̂n = arg min
θ∈Θ

n∑
i=1

− log (f(xi; θ)) . (4.3)

This defines the parameter of interest under Bayes’ rule as

θ∗ = arg min
θ∈Θ

∫
− log (f(x; θ)) dG(x) (4.4)

which we know from Chapter 2 to be the parameter minimising the KLD between

the DGP and the model.

The second term is

KLD(q(θ)||π(θ), (4.5)

and this limits how far q(θ) can move from π(θ), allowing the prior to regularise

the within-sample inference. This can be seen from the fact that KLD(1[θ=θ̂]||π(θ))

is undefined so this regularisation term ensures π(θ|x) does not degenerate and

produces a posterior quantification of uncertainty.

4.2 Variational Inference (VI)

The view of Bayes’ rule as optimising over the space of densities is not acknowl-

edged by many. Bayesian inference is usually computed via conditional probability

updates often requiring sampling procedures. Optimisation within Bayesian infer-

ence however, is usually associated with approximate inference procedures such as

variational inference (VI) methods [Jordan et al., 1999; Beal et al., 2003]. Instead

of attempting to sample from an intractable exact posterior π(θ|x), VI methods

posit a family of tractable approximate posteriors q(θ;κ). This family is typically

called the variational family. The hyperparameters of this variational family are

then optimised to find the q̂(θ) = q(θ; κ̂(x)) closest to the exact posterior. This dis-

tribution is then treated as an approximation to the exact posterior. Due to their
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computational convenience, it is common to assume that the variational family is a

member of the exponential family [e.g. Beal et al., 2003]. That means we can write

their densities in the form

q(θ;κ) = h(θ) exp
{
η(κ)TT (θ)−A(η(κ))

}
(4.6)

with A(η(κ)) = log
∫
h(θ) exp

{
η(κ)TT (θ)dθ

}
and natural parameter space N =

{η(κ) : A(η(κ)) <∞}. Henceforth we consider the variational family to be of this

form.

4.2.1 Traditional VI

The closeness between the variational family q(θ;κ) and the exact posterior π(θ|x)

is traditionally measured using the KLD [Jordan et al., 1999; Beal et al., 2003].

Minimising the KLD in this fashion provides a convenient objective function of the

from

q̂(θ) = arg min
q∈Q

{KLD(q(θ;κ)||π(θ|x))} (4.7)

= arg min
q∈Q

{∫
q(θ;κ) log

q(θ;κ)

π(θ|x)
dθ

}
= arg min

q∈Q

{∫
−q(θ;κ) log

n∏
i=1

f(xi; θ) + q(θ;κ) log
q(θ;κ)

π(θ)
+ q(θ;κ) log π(x)dθ

}

= arg min
q∈Q

{
Eq(θ;κ)

[
−

n∑
i=1

log (f(xi; θ))

]
+ KLD(q(θ;κ)||π(θ))

}
, (4.8)

where Q = {q(θ;κ) : κ ∈ K}, K =
{
κ ∈ Rd;

∫
q(θ;κ)dθ = 1

}
and the marginal like-

lihood π(x) can be ignored as it does not depend on θ. The negative of Eq. (4.8) is

traditionally known as the evidence lower bound (ELBO). This draws its name from

the following identity [Jordan et al., 1999]

Eq(θ)

[
n∑
i=1

log (f(xi; θ))

]
− KLD(q(θ)||π(θ)) = log

∫
π(θ)

n∏
i=1

f(xi; θ)dθ − KLD(q(θ)||π(θ|x))

⇒ Eq(θ)

[
n∑
i=1

log (f(xi; θ))

]
− KLD(q(θ)||π(θ)) ≤ log

∫
π(θ)

n∏
i=1

f(xi; θ)dθ (4.9)
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By definition KLD(q(θ;κ)||π(θ|x)) ≥ 0 and therefore the negative of the objective

in Eq. (4.8) forms a lower bound on the log evidence

log π(x) = log

∫
π(θ)

n∏
i=1

f(xi; θ)dθ. (4.10)

This lower bound demonstrates that the approximate posterior q̂(θ) maximises a

lower bound for the evidence of the data under the model providing further justifi-

cation for its use.

4.2.2 VI and Bayes’ rule

Approaching the implementation of Bayes’ rule as the optimisation in Eq. (4.1)

illuminates striking similarities between Bayes’ rule and traditional VI. In fact the

objective function of Bayes’ rule (Eq. (4.1)) is in fact identical to that of VI (Eq.

(4.8)). The only difference between the two procedures is the class of densities

over which the optimisation is performed. Bayes’ rule optimises over the space of all

densities finding the ‘exact’ minimal density for the objective function. Alternatively

VI constrains the solution to live within the variational family. VI is a constrained

optimisation of the traditional Bayesian objective function for inference.

This demonstrates exactly where the tractability of VI comes from. Both Bayes’

rule and VI are optimisation problems, but optimisation in VI is done over the real

valued hyperparameters indexing the variational family rather than the space of

infinite dimensional densities that are optimised over in Bayes’ rule.

4.2.3 F-VI

VI performance has recently been largely criticised for tending to lead to over-

concentration of marginal posteriors [see e.g. Turner and Sahani, 2011]. In large

scale machine learning problems it is common for computational reasons to take the

Gaussian mean-field variational family. The Gaussian mean-field variational family

is simply the product of independent Gaussians for each parameter. When the actual

posterior has dependency between parameters, the member of the mean-field family

closest in KLD has considerably smaller marginal variances. This is demonstrated

using 2-dimensional Gaussians in Figure 4.1. This plotted example is inspired by

that of Bishop [2006]; Blei et al. [2017].

This phenomenon is attributed to the zero-forcing nature of minimising

KLD(q||π) associated with traditional VI. That is to say that, minimising KLD(q||π)

over q encourages the optimal q̂ to have areas of density close to 0 where the density
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Figure 4.1: Black: Contours of a standard bivariate Gaussian with correlation
ρ = 0.9 drawn at density 0.01, 0.1 and 0.3. Red: corresponding contours of the
independent bivariate Gaussian minimising the KLD associated with traditional VI

π is non-zero. Hence, the marginal variances of VI approximations are often too

small.

Under-estimating marginal variances can be seen to damage the out-of-

sample predictive performance of these algorithms. In recent years there has been

an increasing volume of literature considering approximate inference minimising al-

ternative divergences to the KLD between the variational family and the solution to

Bayes’ rule. These methods consider divergences with zero-avoiding properties in

an attempt to achieve more conservative estimates of marginal uncertainty. These

approaches can be separated into two categories: Global and Local divergence min-

imisation.

Global methods, similar to traditional VI posit a variational family for the whole

posterior and construct an optimisation problem minimising some divergence be-

tween the approximate and exact posterior. The current literature on this ap-

proach is vast. For example: both Li and Turner [2016] and Saha et al. [2019]

consider minimising the Rényi-αD; Regli and Silva [2018] minimise the scaled αβ-

Divergence; Dieng et al. [2017] minimise χ-Divergences; Ambrogioni et al. [2018]

minimise Wasserstein divergences; and Ranganath et al. [2016] produce the more

general operator-VI.
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Local methods, use the properties of exponential families to posit a variational

family for each likelihood term and take inspiration from message-passing to esti-

mate these ‘locally’ in an iterative manner. Expectation Propagation (EP) [Minka,

2001; Opper and Winther, 2000] locally minimises the reverse of the KLD used in

traditional VI. Power-EP [Minka, 2004] extends this to locally minimising αD’s while

Black-Box αD minimisation [Hernandez-Lobato et al., 2016] has a similar objective

function to Power-EP but fixes the estimate for each likelihood term to be the same

across the dataset.

We combine both local and global divergence minimisation methods under

the term F-VI

Definition 16 (F-VI methods). F-VI methods produce approximate posterior q̂ ∈
Q by either locally or globally minimising divergence F between members of the

variational family, Q, and posterior π(θ|x),

q̂ = arg min
q∈Q

F (q(θ)||π(θ|x)), (4.11)

where F (q(θ)||π(θ|x)) 6= KLD(q(θ)||π(θ|x))

These methods are motivated as being able to produce more conservative

estimates of marginal variance and as a result produce better test set predictive

performance.

4.2.4 VI optimality

Now the previous sections present a paradox! Section 4.2.2 presented VI as a con-

strained optimisation of the traditional Bayesian objective function solved by Bayes’

rule. Therefore, by definition VI must produce the optimal distribution within the

constraining family.

Theorem 7 (Optimality of VI for the traditional Bayesian problem). For fixed

variational family Q, VI minimising the KLD to the posterior provided by Bayes’ rule

provides the optimal approximation to this posterior measured using the objective

function eliciting Bayes’ rule in Eq.(4.1)

Proof. A sketch of this proof is as follows. Minimising the KLD between a member

of the variational family q ∈ Q is equivalent to finding the optimal q according to the

objective function in Eq. (4.8). This in turn is the same objective function which

optimised over the space of all normalised probability densities provided Bayes’ rule.

A more formal proof is provided in Knoblauch et al. [2019]
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However, the alternative F-VI methods claim to produce more desirable ap-

proximate posteriors within the same variational family, Q, motivated by the ap-

proximation of marginal variances and improved test set predictive performance.

How can this be?

This paradox is resolved by noticing that VI produces the optimal posterior in

the constrained family relative to the traditional Bayesian inference problem defined

by Bayes’ rule (Eq. (4.1)). F-VI methods must definitionally achieve no greater value

for Eq. (4.1) than the VI approximation. Therefore, for these F-VI methods to be

producing more desirable posteriors within the same constraining family, means the

objective function associated with Bayes’ rule must no longer reflect the inference

problem the DM really wants to solve.

We established in Chapters 2 and 3 that while Bayes’ rule is the correct

thing to do in the M -closed world, where the DM has the time and introspection

to exactly specify their model (and prior), this is no longer so clear in the M -open.

Analogously, once the prior and model have been (correctly) specified, if there is

not infinite time available for computation it appears that Bayes’ rule no longer

necessarily provides a suitable optimisation criteria for inference.

In some circumstance it appears that F-VI is able to implicitly provide a

more desirable objective function for inference. However, this objective function is

obscured by the formulation of F-VI as a posterior approximation. As a result of

this, we are able to show two situations where the formulation of F-VI as a posterior

approximation leads to opaque and undesirable inference in Sections 4.5 and 4.8.1

Instead, we take inspiration from the improved performance of F-VI methods

and seek to generalise the optimisation problem in Eq. (4.1). We shall encode

desirable qualities for the posterior directly into the objective function eliciting it,

rather than an approximating divergence.

4.3 Generalising the Bayesian inference problem

Inspired by the optimality of VI relative to the traditional Bayesian inference prob-

lem and the realisation that the objective function defined by Bayes’ rule is not

necessarily suitable for modern Bayesian analyses, we derive a generalisation of the

Bayesian inference problem. This is first defined and then we provide an axiomatic

derivation of this form.
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4.3.1 The Bayesian inference problem

Here, we argue that Bayesian inference should take the form P (`n, D,Π) given by

q∗(θ) = arg min
q∈Π

{L(q|x, `,D)} ;

L(q|x, `,D) = Eq(θ) [`(θ,x)] +D (q(θ)||π(θ)) , (4.12)

where the arguments of the form P (`n, D,Π) are given by

• a loss `n defining the target parameter for inference relative to the sample

distribution of observations, θ∗ = arg minθ∈Θ

∫
`(θ, x)dG(x). This will often

be additive over observations `n(θ,x) =
∑n

i=1 `(θ, xi) for some `. The term

Eq(θ) [`(θ,x)] will be minimised at q(θ) = 1[θ=θ̂] where θ̂ = arg minθ∈Θ `n(θ,x).

• a divergence D : P(Θ)×P(Θ)→ R+ regularising the posterior with respect

to the prior π. D will determine how uncertainty around θ̂ is quantified by

q∗(θ). As a result we term this the uncertainty quantifier.

• a set of admissible probability distributions for the posterior Π ⊆ P(Θ)

with P(Θ) =
{
q(θ) :

∫
q(θ) = 1

}
, over which the regularised expected loss is

minimized.

Definition 17 (A Bayesian inference problem). Any Bayesian inference method

solving P (`n, D,Π) with admissible choices `n, D(·||·) and Π. Theorems 8 and 9

prove Bayesian inference methods satisfy Axioms 1 – 4.

Before demonstrating the axiomatic construction of the form of P (`n, D,Π)

we present traditional Bayes’ rule inference as a special case of our framework.

Firstly Eq. (4.1) demonstrates that the Bayes’ rule posterior can be derived as the

minimiser of an objective function over a space of densities, for Bayes’ rule this is the

space of all normalised probability densities P. For the objective function, taking

D = KLD and `(θ,x) = −∑n
i=1 log f(xi; θ) in Eq. (4.12) recovers the objective

function in Eq. (4.1). As a result the Bayes’ rule posterior is a solution to the

Bayesian inference problem

P (−
n∑
i=1

log(f(xi; θ)),KLD,P(Θ)). (4.13)

We provide further examples of methods currently available in the literature satis-

fying our framework in Section 4.3.3. But first, we produce an axiomatic derivation

of the form of P (`n, D,Π).
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4.3.2 Axiomatic Derivation

This section imposes intuitive axioms on Bayesian inference which derive the form

of P (D, `n,Π) in Eq. (4.12). While the objective function, Eq. (4.1), associated

with Bayes’ rule is underpinned by the axioms of conditional probability, and the

VI objective function, Eq. (4.8), results from a posterior approximation, justifying

the form of the objective Eq. (4.12) requires that we impose several axioms. We

comment on how these axioms compare and contrast with the assumptions of Bissiri

et al. [2016] below. For simplicity, x = x1:n are treated as n independent draws, but

the presented arguments extend to conditional independence structures.

Axiom 1 (Representation). Bayesian inference infers posteriors q on Θ by

i. measuring how q fits a sample x via the expectation of a loss `n(θ,x)

ii. elicits uncertainty quantification about θ̂ via a divergence D(q||π) between q

and the prior π.

iii. optimise for q over the space of admissible probability distribution Π on Θ

This axiom formalizes Bayesian inference inspired by Zellner [1988]; Bissiri

et al. [2016]. This implies that it is representable as a triplet P (`n, D,Π). Showing

that P (`n, D,Π) takes the form in eq. (4.12) requires three more axioms.

Axiom 2 (Information difference). P (`n, D,Π) produces different posteriors for

x = x1:n and x̃ = x1:n+m if and only if there is an information difference of x̃

relative to x, i.e. if `n (θ,x) 6= `n+m(θ, x̃).

Axiom 3 (Prior regularization). q is regularized towards π by penalizing the diver-

gence D(q||π).

Axiom 4 (Translation Invariance). For constant C and `′n = `n+C, P (`′n, D,Π) =

P (`n, D,Π).

Axiom 2 ensures that datasets containing different information about θ pro-

duces different posteriors. Axiom 3 says that D(q||π) acts as a penalty. Axiom 4

enforces that inference is invariant to adding a constant to `n. Note that we do

not want inference to be invariant to multiplications of `n by a constant. This, for

example, would contradict Axiom 2 for additive `n.

Lemma 6 (Multiplicative Constants). If Axiom 2 holds, `n is additive and C ∈ N,

P (`n, D,Π) 6= P (C · `n, D,Π).
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Proof. If `n is additive then `n(θ,x) =
∑n

i=1 `(θ, xi) for some loss function ` and

x = x1:n. For any k ∈ N, write x(k) = x(k)1:k×n with x(k)i = x(i mod n)+1, where (a

mod b) denotes the (integer) remainder of the division a/b. In words, x(k) copies

the entries of x exactly k times. Now, simply note that k · `n(θ,x) = `kn(θ,x(k))

to see that P (D, `kn,Π) = P (D, k · `n,Π) = P (D, `n,Π) would violate Axiom 2 as

`n(θ,x) 6= `kn(θ,x(k)) for k > 1 and any choice of D and Π.

This proof shows that there is an equivalence between multiplying the loss

function by a constant and a sample containing more observations. As a result

multiplying the loss by a constant changes the amount of information in the sample

and therefore results in a different posterior. On the other hand an additive constant

cannot be interpreted in this way, the constant affects each observation equally.

Therefore an additive constant represents no gain in information and must result in

an equivalent posterior.

Finally, we motivate the form of P (`n, D,Π) in eq. (4.12). Since the additive

nature of Eq. (4.1) and Eq. (4.8) both rely on log-additivity via D = KLD, we

require more fundamental arguments for general D.

Theorem 8 (Form 1). If Axiom 1 holds, P (`n, D,Π) can be written as

arg min
q∈Π

{L(q|x, `n, D)} , (4.14)

for L(q|x, `n, D) = f
(
Eq(θ)[`n(θ,x)], D(q||π)

)
, where f is some function f : R2 → R.

Proof. This follows directly from Axiom 1: By (iii), Bayesian inference is an op-

timization over Π producing a posterior q. Moreover, by (i) this optimization de-

pends on the expectation of the loss `n via q’s expectation, i.e. via Eq(θ)[`(θ,x)].

Further, by (ii) it also depends on the divergence D between prior and q, i.e. on

D(q||π). Hence, Bayesian inference is representable as arg minq∈Π {L(q|x, `n, D)}
for L(q|x, `n, D) = f

(
Eq(θ)[`n(θ,x)], D(q||π)

)
for a function f .

Theorem 9 (Form 2). For P (`n, D,Π) being arg minq∈Π {L(q|x, `n, D)} and ◦ an

elementary operation on R, L(q|x, `n, D) = Eq(θ) [`n(θ,x)]◦D(q||π) satisfies Axioms

3 and 4 only if ◦ = +.

Proof. First rewrite

f
(
Eq(θ)[`n(θ,x)], D(q||π)

)
= Eq(θ) [`n(θ,x)] ◦D(q||π). (4.15)
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The elementary operations are addition, subtraction, multiplication and division.

Consider the losses `n and `′n = `n + C for C ∈ R a constant. It is straightforward

to see that Axiom 4 will not hold in general if ◦ is multiplication, as

arg min
q

{
L(q|x, `′n, D)

}
= arg min

q

{
Eq(θ) [`n(θ,x) + C] ·D(q||π)

}
= arg min

q

{
Eq(θ) [`n(θ,x)]D(q||π) + C ·D(q||π)

}
6= arg min

q

{
Eq(θ) [`n(θ,x)]D(q||π)

}
= arg min

q
{L(q|x, `n, D)} , (4.16)

and similarly if ◦ is division. As C is a constant, it is however easy to show that if

◦ is addition or subtraction,

arg min
q

{
L(q|x, `′n, D)

}
= arg min

q
{L(q|x, `n, D)} . (4.17)

Since subtracting the prior regulariser is a direct and obvious violation of Axiom

3, it follows that addition is the only elementary operation on R satisfying both

Axioms and the result follows.

Comparison with Bissiri et al. [2016]

Next we compare our axiomatic derivation of the form of P (`n, D,Π) above to the

assumptions used to justify the general Bayesian update in Bissiri et al. [2016].

Axiom 1 formalises the assertions of Bissiri et al. [2016] that posterior beliefs exist

(iii) in the absence of a model for the data and that these can be defined through

an optimisation problem using the expected loss (i) and a divergence (ii). Axiom

2 and part (i) of Axiom 1 combine to enforce the same behaviour of Assumption 3

of Bissiri et al. [2016]. Axiom 4 agrees exactly with Assumption 5 of Bissiri et al.

[2016]. Assumption 4 of Bissiri et al. [2016] will hold under the generalisation of

the Bayesian inference problem provided that the prior, π(θ), is a member of the

admissible family of posterior distributions. This is an important consequence of

using a divergence, which is by definition minimised to 0 when the distributions are

equal, to regularise uncertainty quantification. It seems reasonable to assume that in

general the prior is contained within the variational family. Otherwise, why would

a DM take the time to elicit a prior distribution that was not admissible for the
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posterior? However if this were the case and the loss were constant the posterior

becomes the member of the set of admissible posteriors closest in terms of prior

regularising divergence.

A glaring omission form the discussion above is Assumption 1 of Bissiri et al.

[2016], that GBI should be coherent. Here, this is taken to mean that first updating

a prior with x1:m and then using this as the prior for xm+1:n results in the same

posterior as had we updated the prior with x1:n+m in one go. It is this assumption

which enforces D = KLD for GBI. This assumption will in general be violated by

GVI.

We give two reasons for not adopting this axiom within our framework.

Firstly, we note that the solution to Eq. (4.12) using the KLD is only coherent

when Π = P(Θ), so restricting where the posterior lives breaks coherence even for

D = KLD. Secondly demanding coherence must imply an extreme confidence in the

specification of the model, an assumption associated with the M -closed world. For

example consider a DM has a uni-modal model for the data and that they are updat-

ing their beliefs on-line. Further, consider that as the data accumulates it is clearly

coming from a bimodal distribution. The demand for coherence prohibits the DM

from changing their model. They must instead achieve the same posterior beliefs

had they updated in one go, as they would updating one observation at a time. If

a DM is sure that their model is well specified then this is reasonable. But in the

M -open world this is no longer the case. Additionally coherence must prohibit any

exploratory data analysis which is known by every statistician to be an important

first stage in building a model. Assumption 2 is very closely linked to the desire for

coherence and will again not be satisfied under the generalisation of the Bayesian

inference problem when D 6= KLD and Π 6= P(Θ).

4.3.3 Special cases of the Bayesian inference problem

Next, we point out several popular forms of Bayesian inference the fit with our

generalised framework. As we have already pointed out Eq. (4.1) shows that Bayes’

rule solves

P (−
n∑
i=1

log(f(xi; θ)),KLD,P(Θ)). (4.18)

For Q = {q(θ|κ) : κ ∈ K} a variational family, the objective of

P (−
n∑
i=1

log(f(xi; θ)),KLD,Q) (4.19)
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is Eq. (4.8), the negative of the Evidence Lower Bound (ELBO) of VI. Further for

loss function `n(θ,x), GBI [Bissiri et al., 2016] is given by

P (`n(θ,x),KLD,P(Θ)) (4.20)

Table 4.1 below lists some special cases of the Bayesian inference problem already

appearing in the literature.

Method `(θ, xi) D Π

Standard Bayes − log(f(xi; θ)) KLD P(θ)

Generalized Bayes1 any ` 1
wKLD, w > 0 P(θ)

Power Bayes2 − log(f(xi; θ))
1
wKLD, w > 0 P(θ)

Divergence Bayes3 divergence-based ` KLD P(θ)

Standard VI − log(f(xi; θ)) KLD Q
Power VI4 − log(f(xi; θ))

1
wKLD, w > 0 Q

Regularized Bayes5 − log(f(xi; θ)) + φ(θ, xi) KLD Q
(β-)VAE 6 − log (fζ(xi; θ)) β · KLD, β > 1 Q
Gibbs VI7 any ` KLD Q
Generalized VI any ` any D Q

Table 4.1: P (`n, D,Q) and relation to some existing methods. All losses are additive
and of the form `n(θ,x) =

∑n
i=1 `(θ, xi) for some `(θ, xi).

1[Bissiri et al., 2016;
Lyddon et al., 2018], 2[e.g. Holmes and Walker, 2017; Grünwald et al., 2017; Miller
and Dunson, 2018], 3[e.g. Hooker and Vidyashankar, 2014; Ghosh and Basu, 2016;
Futami et al., 2017; Jewson et al., 2018], 4[e.g. Yang et al., 2017; Huang et al., 2018]
5[Ganchev et al., 2010], but only if the regularizer can be written as Eq(θ) [φ(θ,x)]
as in [Zhu et al., 2014], 6[Kingma and Welling, 2013; Higgins et al., 2017], 7[e.g.
Alquier et al., 2016; Futami et al., 2017]

Although it is common to consider the weight w as multiplying the loss func-

tion [Bissiri et al., 2016; Lyddon et al., 2018; Holmes and Walker, 2017; Grünwald

et al., 2017; Miller and Dunson, 2018], it affects the uncertainty quantifying proper-

ties of the posterior rather than the limiting location (at least in finite parametric

models). Therefore, exactly the same solution is obtained by multiplying the regu-

lariser by 1
w . We adopt this convention to maintain the transparent interpretability

of each term in P (`n, D,Π).

We observe here that F-VI methods with F 6=KLD are not special cases of

the Bayesian inference problem. A discussion of this and its implications takes place

in Section 4.5
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4.4 Generalised Variational Inference (GVI)

The principled formulation of the Bayesian inference objective function, P (`n, D,Π),

now presents a DM with three components they can alter to achieve transparent

effects on their inference. Two of these components define the form of the Bayesian

objective function and we examine these here. We return to the situation motivating

VI, where there are not the computational resources available to optimise over the

space of all densities. As a result we consider optimising the objective function Eq.

(4.12) over a constrained space of normalised densities Q ⊂ Π. We call this subset

of Bayesian inference problems generalised variational inference (GVI) problems.

Definition 18 (GVI inference problem). Any Bayesian inference method solving

P (`n, D,Q) with admissible choices `n, D(·||·) and Q ⊂ Π is a Generalized Varia-

tional Inference (GVI) problem.

We defer the discussion of the variational family to Section 4.9.

4.4.1 The loss function

Chapters 2 and 3 have discussed in great depth why a DM may want to use an

alternative loss function to the log-score in order to change the target parameter

for inference, θ∗, to gain robustness to outliers. This is one of the components that

can easily be tuned under GVI. We discuss this no further here. We simply note

that although Bayes’ rule provides the optimal objective function in the M -closed

world, when the model is misspecified the DM may very reasonably seek to use an

alternative objective function for their inference.

4.4.2 The prior regularising Divergence

Looking at the GVI objective function, Eq. (4.12), the prior regularising divergence is

the only part of the optimisation which elicits uncertainty quantification. That is to

say that without the prior regularising divergence the optimal posterior belief would

be a point mass at the in-sample loss minimiser and we would recover frequentist

inferential methods. As a result, changing the uncertainty quantifying properties of

a posterior distribution must require a change to the prior regularising divergence.

In fact, once we have decomposed the objective function of traditional VI into the

GVI objective function, it is straightforward to see that it must be the KLD prior

regularising term that causes the VI posteriors to over concentrate in the presence

of unaccounted for correlation.
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The large literature around the so called ‘zero-avoiding’ F-VI procedures sug-

gest that practitioners find it attractive for posterior variances to be conservative,

because this property can be shown to improve finite sample prediction. However, it

is clear from Figure 4.1 that using the KLD prior regulariser in a GVI problem when

optimising over a constrained space of densities neglecting the correlation between

parameters does not respect this desire for conservative marginal variances. In fact

it is well known that even when the optimisation is done over the whole space of

probability distributions, Bayes’ rule posteriors are known to over-concentrate when

the model is misspecified, suggesting the regularising power of the KLD is not great

enough [Holmes and Walker, 2017; Miller and Dunson, 2018; Grünwald, 2016].

Once again we stress that Bayes’ rule provides the correct objective function

to use when the model is correct and the DM is able to optimise over the space of

all probability densities. However, there is no longer any such justification to do

this when these assumptions are relaxed. In fact, the current literature on F-VI only

goes to show that in practice DM’s do wish to change their objective function in

these circumstances.

In order to rectify this we propose using more general divergences than the

KLD to regularise the prior. In particular we restrict our attention here to several

members of the αβγD family. Specifically the: αD, Rényi-αD, βD, γD and 1
w

KLD

where we down(up)-weight the KLD regulariser by taking w > 1 (w < 1).

To the best of our knowledge, we are first to consider inference with D 6=
1
w

KLD. This probably results from exact Bayesian inference – i.e. any problem

P (`n, D,Π) for Π = P(θ) – being coherent only if D = 1
w

KLD [Bissiri et al., 2016].

However we have already discussed departures from coherence in Section 4.3.2.

We consider the following toy example to investigate the inferences produced

using different prior regularising divergences.

Bayesian Linear Regression (BLR) with correlated predictors

Consider the following simple Bayesian linear regression (BLR) example with two

predictors and no intercept Xi = (Xi1, Xi2)

σ2 ∼ IG(a0, b0)

θ|σ2 ∼ N2

(
µ0, σ

2V0

)
(4.21)

yi|θ, σ2 ∼ N
(
Xiθ, σ

2
)
.

This example is convenient as it provides a closed form conjugate exact posterior.

Studying this exact posterior for θ = (θ1, θ2) reveals that if the two variables X1

132



and X2 are correlated, the corresponding exact Bayesian posterior will be strongly

correlated, too. As a result we simulate

(X1, X2)T ∼ N2

((
0

0

)
,

(
1 0.9

0.9 1

))
. (4.22)

We compare these exact posteriors with traditional VI and the different GVI methods

introduced in the previous sections. In order to do so we consider the following

variational family

Q = {q(θ1, θ2, σ
2) : q(θ1, θ2, σ

2) = q(θ1|σ2,κn)q(θ2|σ2, κn)q(σ2|κn), κn ∈K}
q(σ2|κn) = IG(σ2|an, bn) (4.23)

q(θ1|σ2, κn) = N
(
θ1|µ1,n, σ

2v1,n

)
q(θ2|σ2, κn) = N

(
θ2|µ2,n, σ

2v2,n

)
,

where κn = (an, bn, µ1,n, µ2,n, v1,n, v2,n)T . Here the regression coefficients θ are con-

strained to be independent, mimicking the ‘mean-field’ family, but these coefficients

are allowed to depend on the residual variance. Under this variational family and

the log-score loss function, the objective functions for VI and GVI using the αD,

Rényi-αD, βD and γD uncertainty quantifiers are available in closed form. In

other words, both the uncertainty quantifier term as well as the expected loss term

are available in closed form. Consequently, no sampling is required in order to find

the GVI and VI posteriors.

Before considering any data Figure 4.2 plots the magnitude of the KLD, D(α)
A ,

D
(β)
B , D(α)

AR and D
(γ)
G between two members of Q for varying values of the divergence

hyperparameters α = β = γ. The KLD forms a central point for all five divergence,

recovering the other four at α = β = γ = 1. Figure 4.2 demonstrates that as we

increase α = β = γ from 0, through the KLD, to 2 the magnitude of the D
(β)
B ,

D
(α)
AR and D

(γ)
G is decreasing. The D

(α)
A alternatively, initially decrease but is then

minimised at α = 0.5 and then increases from there onwards. We refer to this plot

throughout the next section to provide intuition about the size of the regularisation

to the prior provided by different prior regularisers and their hyperparameters.

For the experiments, n = 25 observations are simulated from Eq. (4.22)

with θ = (2, 3) and σ2 = 4. The results for the different uncertainty quantifiers are

depicted in Figs. 4.3-4.8. We summarize the most interesting results from these

plots in the following three subsections.
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values of the divergence hyperparameters.

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

D
(α)

A

θ1

D
en

si
ty

Posterior
GVI, α = 1.25
VI
GVI, α = 0.95
GVI, α = 0.5
GVI, α = 0.01
MLE

Figure 4.3: Marginal VI and GVI posteriors for the θ1 coefficient of a Bayesian linear
model under the D(α)

A prior regulariser for different values of the divergence hyperpa-
rameters. The boundedness of the D

(α)
A causes GVI to severely over-concentrate if α

is not carefully specified. Prior Specification: σ2 ∼ IG(20, 50), θ1|σ2 ∼ N (0, 25σ2)
and θ2|σ2 ∼ N (0, 25σ2).

The boundedness of the (αD)

Of the alternative divergences to the KLD contained within the αβγD family [Ci-

chocki and Amari, 2010], αD is arguably the most well known. Here we demon-
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strate that it is not necessarily suitable to quantify uncertainty in a Bayesian

problem specified via P (`n,D
(α)
A ,Q). In particular, Figure 4.3 shows that the so-

lutions to P (`n,D
(α)
A ,Q) can produce degenerate posteriors. For example, when

α = 0.5, P (`n,D
(α)
A ,Q) essentially collapses to the Maximum Likelihood Estimate.

This is a consequence of the boundedness of αD for α ∈ (0, 1): One can show that

D
(α)
A (q||π) ≤ 1

α(1−α) . As α decreases from 1, this upper-bound initially decreases and

as a result decreases the maximal penalty for uncertainty quantification far from the

prior – this allows the optimisation to focus solely on minimising the in-sample loss.

This phenomenon was depicted in Figure 4.2. However, Figure 4.2 also shows that

the magnitude increases again as α approaches 0 and for α > 1, where the diver-

gence is no longer bounded. For these values of the hyperparameter, it is possible

to achieve more conservative uncertainty quantification. In Figure 4.3 for example,

α = 1.25 and α = 0.01 are able to achieve marginal variances that more closely cor-

respond to the exact posterior. In spite of this, the αD stands as a cautionary tale:

Without understanding the properties of the uncertainty quantifier D sufficiently

well, GVI may well yield unsatisfactory posteriors.

Increasing the magnitude of the divergence results in posteriors with

large variances

In this section, we summarize the impact that selecting one of the alternative diver-

gences can have on the marginal variances of the solution to P (`n, D,Q).

Figure 4.2 provided some idea of how the magnitude of the uncertainty quan-

tifier changes with the hyperparameter and Figure 4.4 illustrates the impact this

has on the marginal variances of the resulting posteriors. The latter plot shows that

βD, Rényi-αD and γD are able to produce more conservative posterior variance

for β, α, γ < 1 and less conservative posterior variance for β, α, γ > 1. This is a

manifestation of the posterior being penalized more heavily (β, α, γ < 1) or less

heavily (β, α, γ > 1) for deviating from the prior than under the traditional VI. This

is also illustrated by Figure 4.2 which shows that the magnitude of these divergences

increases as the hyperparameters decrease below 1 (the value recovering the KLD)

and decreases as the hyperparameters increase above 1.

As a result, by choosing the divergence and its hyperparameter appropri-

ately, greater control can be exerted over the resulting posterior than is possible

with standard VI. Specifically, it allows desirable properties for the posteriors (such

as conservative uncertainty quantification) to be directly and transparently incor-

porated into the form P (`n, D,Q) via D.
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Figure 4.4: Marginal VI and GVI posteriors for the θ1 coefficient of a Bayesian linear
model under the D

(α)
AR, D(β)

B , D(γ)
G and 1

w
KLD prior regularisers for different values of

the divergence hyperparameters. Correlated covariates cause dependency in the
exact posterior of the coefficients θ, and as a result VI underestimates marginal
variances. GVI has the flexibility to more accurately capture the exact marginal
variances. Prior Specification: σ2 ∼ IG(20, 50), θ1 ∼ N (0, 52) and θ2 ∼ N (0, 52).

Robustness to the prior

In this section we compare the impact of changing the uncertainty quantifier on the

posterior’s sensitivity to the specification of the prior. Specifically, we consider and

compare βD, Rényi-αD, γD and 1
w

KLD. When comparing 1
w

KLD with Rényi-αD

and γD, we fixed α = γ = w. Theorem 10, which for clarity we leave till the end of

the chapter to state (Section 4.6), demonstrates that the objective function of the

GVI problem P (D(γ)
G , `n,Q) provides an upper bound on the objective function of the

GVI problem P ( 1
γKLD, `n,Q). This provides a connection between the value of γ and

w and therefore we argue γ = w provides a fair comparison. An analogous result for

the α and Rényi-αD is available in Knoblauch et al. [2019]. The βD uncertainty

quantifier required the selection of different values to ensure its availability in a

closed form.
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1
w
KLD Firstly, Figure 4.5 examines how weighting the KLD impacts the solution to

P (`n, 1
w

KLD,Q). Choosing w < 1 leads to posteriors that encourage larger variances,

making them amenable to conservative uncertainty quantification. However, this

comes at the price of making them more sensitive to the prior. Conversely w > 1

will result in posteriors that are less sensitive to the prior than standard VI. At the

same time, they will also be more concentrated around the Maximum Likelihood

Estimator. This makes the 1
w

KLD uncertainty quantifier unattractive: In essence,

one has to choose between wider variances (at the expense of being robust to the

prior) and prior robustness (at the expense of more concentrated posteriors). As we

shall see, the necessity of performing this undesirable trade-off is not shared by the

other (robust) divergences considered in this section.
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Figure 4.5: Marginal VI and GVI posteriors for the θ1 coefficient of a Bayesian linear
model under different prior specifications and the using the 1

w
KLD as the uncertainty

quantifying divergence for several values of w. Prior specification: σ2 ∼ IG(3, 5).

Rényi-αD Figure 4.6 demonstrates the sensitivity of P (`n,D
(α)
AR,Q) to prior spec-

ification. For 0 < α < 1, the Rényi-αD is able to provide more conservative

marginal variances than standard VI while also being more robust to badly specified

priors. That being said, when α > 1 the Rényi-αD is more sensitive to the prior
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Figure 4.6: Marginal VI and GVI posteriors for the θ1 coefficient of a Bayesian linear
model under different prior specifications and the using the D

(α)
AR as the uncertainty

quantifying divergence for several values of α. Prior specification: σ2 ∼ IG(3, 5).

than standard VI. This can be seen by examining the form of the Rényi-αD:

D
(α)
AR(q(θ)||π(θ)) =

1

α(α− 1)
log

∫
q(θ)απ(θ)1−αdθ (4.24)

=
1

α(α− 1)
log

∫
q(θ)α

π(θ)α−1
dθ, (4.25)

where we rearrange to ensure all of the powers are positive when α > 1. There is

now a ratio of densities in the Rényi-αD. This means that if q(θ) is large in an area

where π(θ) is not, then a severe penalty is incurred. This limits how far q(θ) can

move from the prior and thus results in lack of prior robustness.

βD Figure 4.7 demonstrates the sensitivity of P (`n,D
(β)
B ,Q) to prior specification.

The plot shows that β > 1 is able to achieve extreme robustness to the prior, while

β < 1 causes extreme sensitivity to the prior. This phenomenon is a result of the

fact that the βD decomposes into three integrals, one containing just the prior, one
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Figure 4.7: Marginal VI and GVI posteriors for the θ1 coefficient of a Bayesian
linear model under different prior specifications and using the D(β)

B as the uncertainty
quantifying divergence for several values of β. Prior specification: σ2 ∼ IG(3, 5).

containing just q(θ) and one containing an interaction between them.

D
(β)
B (q(θ)||π(θ)) =

1

β

∫
π(θ)βdθ − 1

β − 1

∫
π(θ)β−1q(θ)dθ +

1

β(β − 1)

∫
q(θ)βdθ.

The left hand integral depending only on the prior is constant in q and so we can

ignore it. Now if 0 < β < 1, then the signs of both of the remaining terms switch.

Additionally, it is instructive to rewrite the middle term like + 1
1−β

∫ q(θ)
π(θ)1−β

dθ with

1− β > 0. This shows that the prior now appears in the denominator of a fraction.

The consequences of this are similar to the behaviour of the Rényi-αD for α > 1,

if q(θ) has density where the prior has little density then we are dividing a not so

small number by a very small number and a huge penalty is incurred for this. As

a result, the corresponding posterior will not be able to move away from the prior.

In fact, notice that that two of the four posteriors for β = 0.75 favour the prior so

much that there is virtually no mass at the Maximum Likelihood Estimate.

For β > 1 the opposite effect is observed. The prior no longer appears in

the denominator of a fraction and therefore deviations from the prior are punished
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in a milder manner. In fact for β = 1.25 we observe almost prior invariant uncer-

tainty quantification. We conjecture this is because the uncertainty quantification

part of the Bayesian decision problem is largely controlled by right-hand term only

involving q(θ). This integral is very large if the variance of q(θ) gets very small,

which prevents it from converging to a point mass at the MLE as the GVI posterior

using the αD did in Figure 4.3. Therefore, the βD appears to be able to to provide

uncertainty quantification that is minimally impacted by the specification of the

prior. This could have exciting implications within the objective Bayes literature

[see, e.g. Jeffreys, 1961; Zellner, 1977; Bernardo, 1979; Berger and Bernardo, 1992;

Jaynes, 2003; Berger, 2006] and is worthy of further investigation.
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Figure 4.8: Marginal VI and GVI posteriors for the θ1 coefficient of a Bayesian linear
model under different prior specifications and the using the γD as the uncertainty
quantifying divergence for several values of γ. Prior specification: σ2 ∼ IG(3, 5).

γD Lastly, Figure 4.8 demonstrates the sensitivity of P (`n,D
(γ)
G ,Q) to prior specifi-

cation. The γD with γ > 1 produces greater robustness to the prior than the 1
w

KLD

uncertainty quantifier with w > 1. However, this robustness is not as extreme as was

seen for the D
(β)
B . The reason for this is that although the γD consists of the exact

same three terms as the βD, these terms are now logarithms. This means that the
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three integrals are combined multiplicatively (in the γD) rather than additively (in

the βD), which makes the variation across γ much smoother than across β: Unlike

for the βD, minimising the γD can no longer disregard any one term in order to

minimise the others. For γ < 1 it appears as though the γD reacts similarly to the
1
w

KLD for w < 1.

Now that we have examined the power of GVI to produce more conserva-

tive estimates of marginal variance, we return to F-VI methods and examine the

consequences of their failure to satisfy our axioms for Bayesian inference.

4.5 F-VI consequences

Unlike traditional VI, the F-VI techniques with F 6= KLD introduced in Section 4.2.3

and other posterior approximation techniques such as integrated nested Laplace

approximations (INLA) [Rue et al., 2009] do not fit into the format of a principled

Bayesian GVI problem. This has the following consequences

(1) If F 6= KLD, F-VI will violate Axioms 1–4.

(2) F-VI with a variational family Q gives provably suboptimal Q-constrained

approximations to its exact target P (`n,KLD,P(θ)) relative to standard VI.

(3) F-VI conflates the effects of `n and D because it induces desirable proper-

ties for the posterior through F rather than through the clearly interpretable

modularity of P (`n, D,Q).

Rather than building an axiomatically justified objective function to elicit desirable

inferences, F-VI techniques build an approximation to the solution of the traditional

Bayesian objective function. The starting point for these methods is the solution

to Eq. (4.1), and then a member of the variational family is chosen to be close to

this exact posterior by some criteria. Not only can this approximation be shown

to provably perform worse than VI according to Eq. (4.1), but the resulting objec-

tive function for inference does not satisfy our axioms. Principally, the objective

functions for F-VI will not satisfy Axiom 1. The consequences of this are that F-VI

methods do not separate the target parameter for inference from the uncertainty

quantifying properties of the posterior. As a result the uncertainty quantification

and the target parameter are no longer two independent components that can be

tuned, they interact! The example below demonstrates the dangers of not formu-

lating a principled inference problem. Not separating the target parameter and the
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uncertainty quantifier cause F-VI to produce unexpected and/or unsatisfactory be-

lief distributions. Behaviour of this type is also observed in one of the deep learning

applications presented at the end of this chapter in Section 4.8 (see Section 4.8.1).

4.5.1 Multi-Modality caused by Label Switching

It is popular to demonstrate the impact of the zero-forcing or zero-avoiding nature

of the divergence F used in F-VI by approximating a bimodal distribution with a

uni-modal one [e.g. Minka, 2004; Hernandez-Lobato et al., 2016]. In fact, these

situations provide an excellent example of the drawbacks of F-VI that we demon-

strate here. A prime example of how bimodal posteriors are induced is the label

switching phenomenon. This phenomenon occurs if the likelihood function is in-

variant to switching parameter labels. One straightforward example of this which

is of great practical importance are Bayesian mixture models. Consequently, we

use a Bayesian mixture model to investigate the differences between F-VI and GVI

when faced with multi-modal posteriors. In particular, we conduct inference for the

coefficients µ = (µ1, µ2) in the model

f(x; θ) = 0.5N (x;µ1, σ
2) + 0.5N (x;µ2, σ

2). (4.26)

The bimodality in the posteriors for µ is a consequence of the fact that µ = (a, b)

has exactly the same likelihood as µ = (b, a). In order to compare the performance

of VI, F-VI and GVI we generate n = 100 observations from 2 cases of this model.

case 1: µ = (0, 1) and σ2 = 0.652

case 2: µ = (0, 2) and σ2 = 0.652

We plot the exact and approximate posteriors in Figure 4.9. All variational

posteriors come from a ‘mean-field’ Gaussian variational family, and all inference

was based on the priors π(µ1) = π(µ2) = N (0, 22). Figure 4.9 shows the danger

of not carefully constructing the inference problem under a multimodal posterior.

The invariance to label switching in the likelihood means − log(f(xi; θ)) is equally

minimised at either mode of the exact posterior. The modular formulation of VI

and GVI ensures that when q is constrained to be uni-modal then the optimal q still

focuses on one of two equally good combinations of the parameter values minimising

the loss. Predictively, the resulting parameter inference will therefore still perform

well. Here, GVI uses the D
(α)
AR with α = 0.5 and thus fits a larger posterior vari-

ance then VI. However F-VI is formulated as a posterior approximation rather than
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Figure 4.9: Marginal Exact, VI, D(α)
AR-VI [Li and Turner, 2016] and GVI using the

− log(f(xi; θ)) and D
(α)
AR prior regulariser posteriors for the coefficients θ = (µ1, µ2)

of a 2-component mixture model. Top: Case 1. The exact posterior is bimodal
as a result of label-switching. VI and GVI are able to concentrate on one of the
combinations of parameters minimising the loss. In contrast, D(α)

AR-VI is smoothing
between the two modes. Note in particular that the highest posterior mass is placed
at a locally (least) likely combination of µ1 and µ2. Bottom: Case 2. Here the two
components are separated further. The right hand plot shows the negative impact
the D

(α)
AR-VI posterior approximation has predictively.

a principled inference problem As a result, the optimal unimodal approximation

focuses on approximating the exact posterior rather than minimising a regularised

loss function. This causes F-VI to miss either local optimum and smooth between

the two. In fact, it does the worst possible thing and concentrates on the values of

µ1 and µ2 which locally maximize the loss/minimize the likelihood. This effect is

exaggerated in case 2 where the 2 posterior modes are further separated. Here the

negative effect that the F-VI approximation has on the predictive is clear.
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4.6 GVI as a posterior approximation

Next, we demonstrate that although the GVI objective function is defined as an

principled objective function for inference, we can still interpret its solution as ap-

proximating the Bayes’ rule posterior if we wish.

One common interpretation given to VI is that its objective function,

L(q|x,− log f(x; θ),KLD) (4.27)

aka. the ELBO, forms a lower bound on the log-marginal-likelihood, see Eq. (4.9)

Additionally the log-marginal-likelihood does not depend on θ and thus Eq. (4.9)

shows that minimising L(q|x,− log f(x; θ),KLD) is equivalent to minimising

KLD(q(θ)||π(θ|x)). Note that in this thesis we consider the objective to be min-

imised, while VI traditionally considers maximising the negation of this objective

function. It is straightforward to rewrite Eq. (4.9) for the general loss function.

−L(q|x, `(θ, x),KLD) = log

∫
exp (−`(θ, x))π(θ)dθ − KLD(q(θ)||π`(θ|x))

⇒ −L(q|x, `(θ, x),KLD) ≤ log

∫
exp (−`(θ, x))π(θ)dθ. (4.28)

where π`(θ|x) ∝ π(θ) exp (−`(θ, x)) is the GBI posterior under loss function `(θ, x).

We call the normaliser of this posterior,∫
exp (−`(θ, x))π(θ)dθ (4.29)

the marginal loss-likelihood.

Theorem 10 now proves an analogue to Eq. (4.28) using the γD prior reg-

ulariser. The interested reader can note that in the Appendix of Knoblauch et al.

[2019] we report and prove similar results for the Rényi-αD and βD.

Theorem 10 (Lower bounding the marginal loss-likelihood using the D
(γ)
G uncer-

tainty quantifier). The objective function, L(q|x,D(γ)
G , `n), associated with Bayesian

problem, P (D(γ)
G , `n, Q), can be used to lower bound the marginal loss-likelihood

(normalising constant) of the GBI posterior in the following ways:

• If 0 < γ < 1

L(q|D(γ)
G , `n) ≥ KLD(q(θ)||π`(θ|x))− log

∫
π(θ) exp(−`(θ, x))dθ

+
1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− Eq(θ) [log q(θ)] (4.30)
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where π`(θ|x) = π(θ) exp(−`n(θ,x))∫
π(θ) exp(−`n(θ,x))dθ

.

• If γ > 1

L(q|D(γ)
G , `n) ≥ 1

γ
KLD(q(θ)||πγ`(θ|x))− 1

γ
log

∫
π(θ) exp(−γ`(θ, x))dθ

+
1

γ
Eq(θ) [log π(θ)]− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
(4.31)

where πγ`(θ|x) = π(θ) exp(−γ`n(θ,x))∫
π(θ) exp(−γ`n(θ,x))dθ

.

Proof. Firstly we note that the objective function associated with the Bayesian

problem P (D(γ)
G , `n, Q) can be simplified by removing the terms in the D

(γ)
G that do

not depend on q(θ)

arg min
q∈Q

{
Eq(θ) [`(θ, x)] + D

(γ)
G (q(θ)||π(θ))

}
=

arg min
q∈Q

{
Eq(θ) [`(θ, x)] +

1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]}
=arg min

q∈Q

{
L(q|x, `n,D(γ)

G )
}

We have to consider two cases for γ as the positivity and negativity of γ − 1 affect

the results that can be use.

Case 1) 0 < γ < 1: The definition of the γD provides the following GVI objective

function

L(q|x,D(γ)
G , `n)

= Eq(θ) [`(θ, x)] +
1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
= Eq(θ) [`(θ, x)] +

1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
+

1

(1− γ)
logEq(θ)

[
π(θ)γ−1

]
.
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Jensen’s inequality and the concavity of the natural logarithm applied to Eq(θ)
[
π(θ)γ−1

]
provides

L(q|x,D(γ)
G , `n)

= Eq(θ) [`(θ, x)] +
1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
+

1

(1− γ)
logEq(θ)

[
π(θ)γ−1

]
.

≥ Eq(θ) [`(θ, x)] +
1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
+

1

(1− γ)
Eq(θ) [(γ − 1) log π(θ)] (4.32)

= Eq(θ) [`(θ, x)] +
1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− Eq(θ) [log π(θ)]

=
1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− Eq(θ) [log (π(θ) exp (−`(θ, x)))] . (4.33)

The final term above collected the term involving π(θ) and `(θ, x) to produce a term

which looks like the GBI posterior. Next the normaliser of this, log
∫
π(θ) exp (−`(θ, x)) dθ,

is added and subtracted

L(q|x,D(γ)
G , `n)

≥ 1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− Eq(θ) [log (π(θ) exp (−`(θ, x)))]

=
1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− Eq(θ)

[
log

π(θ) exp (−`(θ, x))∫
π(θ) exp (−`(θ, x)) dθ

]
− log

∫
π(θ) exp (−`(θ, x)) dθ

=
1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
+ KLD(q(θ)||π`(θ|x)) (4.34)

− log

∫
π(θ) exp (−`(θ, x)) dθ − Eq(θ) [log q(θ)] .

The final line above added and subtracted -Eq(θ) [log q(θ)] in order to obtain the

KLD(q(θ)||π`(θ|x)) term. This gives Eq. (4.30).

Unfortunately, we cannot perform the same trick when γ > 1 as 1
1−γ is no

longer positive and the inequality would be reversed.

Case 2) γ > 1: The definition of the γD provides the following GVI objective

function where we multiply the second term by 1 = π(θ)γ−1

π(θ)γ−1
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L(q|x,D(γ)
G , `n)

= Eq(θ) [`(θ, x)] +
1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
= Eq(θ) [`(θ, x)] +

1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1π(θ)γ−1

π(θ)γ−1

]
− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
. (4.35)

Jensen’s inequality and the concavity of the natural logarithm applied to

Eq(θ)
[
q(θ)γ−1 π(θ)γ−1

π(θ)γ−1

]
provides

L(q|x,D(γ)
G , `n)

= Eq(θ) [`(θ, x)] +
1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1π(θ)γ−1

π(θ)γ−1

]
− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
≥ Eq(θ) [`(θ, x)] +

1

γ
Eq(θ)

[
log

q(θ)π(θ)

π(θ)

]
− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
=

1

γ
Eq(θ)

[
log

q(θ)

π(θ) exp (−γ`(θ, x))

]
+

1

γ
Eq(θ) [log π(θ)]

− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
(4.36)

The final term above collected the term involving π(θ) and γ`(θ, x) to produce a term

which looks like the GBI posterior. Next the normaliser of this, log
∫
π(θ) exp (−γ`(θ, x)) dθ,

is added and subtracted

L(q|x,D(γ)
G , `n)

≥ 1

γ
Eq(θ)

[
log

q(θ)

π(θ) exp (−γ`(θ, x))

]
+

1

γ
Eq(θ) [log π(θ)]

− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
(4.37)

=
1

γ
Eq(θ)

log
q(θ)

π(θ) exp(−γ`(θ,x))∫
π(θ) exp(−γ`(θ,x))dθ

− 1

γ

∫
π(θ) exp (−γ`(θ, x)) dθ

+
1

γ
Eq(θ) [log π(θ)]− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
=

1

γ
KLD(q(θ)||πγ`(θ|x))− 1

γ

∫
π(θ) exp (−γ`(θ, x)) dθ

+
1

γ
Eq(θ) [log π(θ)]− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
(4.38)

Where the final line simply uses the definition of the KLD. This gives Eq. (4.31).
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We term this result ‘Lower bounding the marginal loss-likelihood using the

D
(γ)
G uncertainty quantifier’ because we can easily bring the log-marginal loss-likelihood

in Eq. (4.30) and (4.31) to the LHS and the GVI objective function to the RHS

and get something similar to Eq. (4.28). However we cannot necessarily be sure

that the final two terms of Eq. (4.30) and (4.31)) will be positive. And thus we

cannot be sure that the GVI objective function itself will lower-bound the marginal

loss-likelihood. Instead, we present the results as we have done as they provide an

interpretation of GVI as a posterior approximation. They provide a lower bound

on an objective function that is to be minimised. As a result minimising the GVI

objective function will be making the lower-bound small.

These lower bounds can be split into three terms: The negative log-marginal

loss-likelihood which is independent of q(θ); the KLD between q(θ) and the gen-

eral Bayesian posterior with loss ` and calibration weight w, termed πw` here for

simplicity, and then an adjustment term.

Interpretation: Eq. (4.30) shows that when γ ∈ (0, 1) minimising L(q|D(γ)
G , `n)

trades off minimizing KLD(q||π`) with minimizing adjustment term

T
(0,1)
G (q) =

1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− Eq(θ) [log q(θ)] . (4.39)

While KLD(q||q∗) is the same target as in traditional VI applied to posterior π`,

it is straightforward to show that the adjustment term encourages the solution to

P (D(γ)
G , `n, Q) with 0 < γ < 1 to have greater variance than that of P (KLD, `n, Q)

(i.e., VI), as evidenced by Figure 4.4. Specifically, one can rewrite

T
(0,1)
G (q) = −1

γ
h

(γ)
R (q(θ)) + hKLD(q(θ)), (4.40)

where hKLD(q(θ)) is the Shannon entropy of q(θ) and h
(γ)
R (q(θ)) is the Rényi entropy

of q(θ) with parameter γ. Now Theorem 3 in Van Erven and Harremos [2014] can be

extended to show that h
(γ)
R (q(θ)) is decreasing in γ. Since it is also well-known that

limγ→1 h
(γ)
R (q(θ)) = hKLD(q(θ)), it follows that minimising − 1

γh
(γ)
R (q(θ))+hKLD(q(θ))

for 0 < γ < 1 will make h
(γ)
R (q(θ)) large – an effect that is achieved by increasing

the variance of q(θ).

Alternatively Eq. (4.31) shows that when γ ∈ (1,∞) minimising L(q|D(γ)
G , `n)
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is trading off making KLD(q||πγ`) small with also making the adjustment term

T
(1,∞)
G (q) =

1

γ
Eq(θ) [log π(θ)]− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
. (4.41)

small. Minimising KLD(q||q∗γ) for γ > 1 will encourage the solution of P (D(γ)
G , `n, Q)

to be more concentrated than minimising KLD(q||π`). We can also show that the

adjustment terms T
(1,∞)
G (q) encourage shrinkage of the variance of q(θ) as evidenced

by Figure 4.4. Jensen’s inequality shows that for γ > 1

1

γ − 1
logEq(θ)

[
π(θ)γ−1

]
≥ Eq(θ) [log(π(θ))] ≥ 1

γ
Eq(θ) [log(π(θ))] . (4.42)

As a result minimising T
(1,∞)
G (q) will seek to make 1

γ−1 logEq(θ)
[
π(θ)γ−1

]
large.

Fixing π(θ), maximising 1
γ−1 logEq(θ)

[
π(θ)β−1

]
plus 1

γ times the Rényi entropy of

q(θ) is equivalent to minimising D
(γ)
G (q(θ)||π(θ)), and thus seeks q(θ) close to π(θ).

The Rényi entropy term would have acted to increase the variance of q(θ) and

therefore maximising 1
γ−1 logEq(θ)

[
π(θ)γ−1

]
without adding the Rényi entropy will

lead to shrinkage of the variance of q(θ).

These results are somewhat reassuring. However as we have mentioned, we

prefer to treat GVI as a principled objective function for generating inference in its

own right.

4.7 Black-Box GVI

In order to implement GVI beyond the simple linear regression example in Section

4.4.2, Stochastic Gradient Descent (SGD) was required. In most situations (see

Knoblauch et al. [2019] Appendix-Section 5) the GVI objective function can be

represented as an expectation over the variational family. In this situation the

‘log-derivative-trick’ can be used to write the gradient of the expectation as an

expectation (with respect to the variational family) of a gradient which can then be

estimated in an unbiased fashion by Monte-Carlo. Therefore SGD methods take steps

in the direction of the estimated gradient until some stopping criteria is reached. In

our experiments we specifically used the ADAM [Kingma and Ba, 2014] version of

SGD.

A key part of a successful and efficient SGD optimiser is being able to reduce

the variance of the Monte Carlo estimates of the gradient. In Knoblauch et al. [2019]

we build upon the black-box variance reduction techniques of Ranganath et al. [2014]

to produce a black-box implementation of GVI implementing control variates and
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antithetic variates to reduce variance1.

4.8 Experiments

In this section we compare GVI to the state of the art variational inference procedures

for two popular deep learning models, Bayesian Neural Network (BNN) regression

and Deep Gaussian Process (GP) regression.

4.8.1 Bayesian Neural Network (BNN) regression

One major application of VI and F-VI techniques is to Bayesian Neural Network

(BNN) regression [Neal, 2012]. BNN regression seeks to learn the relationship be-

tween some univariate2 response Y and a set of p predictors X, where the mean

function of Y |X is parametrised by a Neural Network with L− 1 hidden layers.

hil = fl (θl · hil−1) , l = 1, . . . , L− 1, hi0 = Xi (4.43)

MiL = fL (θL−1 · hiL−1) (4.44)

Yi ∼ N
(
ML (θ,Xi) , σ

2
)

(4.45)

In order to facilitate comparisons with the current F-VI literature we follow the set-

up of Hernandez-Lobato et al. [2016]; Li and Turner [2016]. In this case M (θ,X) is

a single hidden layer Neural Network with 50 nodes. The ReLU activation function,

fl(θ,h) =ReLU(θ,h) = max(0, θ ·h), is used for each of these nodes. The parameter

vector is θ = {θ1, . . . , θL} with each θl containing the biases and weights for each

layer of the network. Each member of θ has a standard Gaussian prior and the

Gaussian mean-field family is optimised over Q =
{
q(θ;µ, ξ2) = Np

(
µ,diag

(
ξ2
))}

.

The residual variance, σ2, is considered a nuisance parameter and is estimated by a

procedure commonly referred to as Type-II maximum likelihood. This produces a

point estimate for σ2 by optimising the variational objective function over values for

σ2 as well as the variational family. This procedure is motivated by the fact that the

objective functions of Hernandez-Lobato et al. [2016]; Li and Turner [2016] provide

a lower bound to the marginal likelihood, the criteria Bayesian’s would typically

maximise to produce point estimates for nuisance parameters. We critically analyse

the affects of this procedure in Section 4.8.1.

1I note that my co-authors on this paper derived and implemented these black-box variance
reduction methods. However I implemented the ADAM SGD algorithm to produce both GVI and
F-VI posterior approximation in the label switching case Figure 4.9.

2Y could in general have dimension greater than 1
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The BNN’s are applied to several datasets from the UCI repository [Lichman

et al., 2013], with typical benchmark settings [as in Hernandez-Lobato et al., 2016;

Li and Turner, 2016]. We compare F-VI using the αD [Hernandez-Lobato et al.,

2016] and the Rényi-αD [Li and Turner, 2016]3 with VI and GVI using the D(α)
AR prior

regulariser and the log-score loss function. The methods are evaluated based on both

the posterior expected log-score and the root-mean-squared error (RMSE) averaged

over 50 splits with 90% training and 10% test data. The RMSE provides some

idea of how well located the posteriors are while the posterior expected log-score

additionally evaluates how well the posterior captures the finite sample uncertainty.

See the Appendix of Knoblauch et al. [2019] for more information on the set-up of

these experiments. We note that the D(α)
AR(q||π) with α = 0 corresponds to KLD(π||q)

(see Definition 13), the direction of the KLD normally associated with expectation

propagation (EP), the opposite to that considered by VI and generally considered to

have much greater zero-avoiding behaviour. Figure 4.10 presents the comparisons

of these inference procedures.

2.50 2.55 2.60 2.65 2.70
D(0.5)

AR

KLD (VI)
D(1.5)

AR

D(2.0)
AR

D(2.5)
AR

D(0.5)
AR

D(0.5)
A

D(0.0)
A

FVI

GVI

boston

3.05 3.10 3.15 3.20

concrete

2.79 2.80 2.81 2.82 2.83

power

1.65 1.70 1.75 1.80 1.85 1.90

yacht

3.0 3.2 3.4
D(0.5)

AR

KLD (VI)
D(1.5)

AR

D(2.0)
AR

D(2.5)
AR

D(0.5)
AR

D(0.5)
A

D(0.0)
A

FVI

GVI

boston

5.0 5.2 5.4 5.6 5.8

concrete

4.000 4.025 4.050 4.075 4.100 4.125

power

0.8 1.0 1.2

yacht

Figure 4.10: Comparing test set performance on the BNN between F-VI, GVI with
alternative choices for D, and VI. Top row: Negative test log likelihoods. Bottom
row: Test RMSE. The lower the better.

Firstly, remember that setting the prior regularising divergence as D = D
(α)
AR

with α ∈ (0, 1) causes the GVI posterior to be less concentrated than VI. Con-

versely, GVI with D = D
(α)
AR provides more concentrated posteriors if α > 1. Fig-

ure 4.10 shows that GVI’s test performance is a banana shaped curve in α: Over-

concentration relative to VI is an advantage for test set prediction, but concen-

3We report results with our parameterization of αD which is equivalent to using the one in [Li
and Turner, 2016] for 1− α
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trating too far affects performance adversely. In fact the posteriors produced by

P (`n,D
(α)
AR,Q) for all settings of α > 1 uniformly beat VI and for all settings of

α < 1 are beaten by VI. This suggests that for BNNs, one should select D to con-

centrate slightly more than standard VI, not less. This agrees with results such

as [Bowman et al., 2015; Rossi et al., 2019] which observe that BNNs are generally

over-parametrised functions for the DGP and thus the likelihood functions need up-

weighting (prior down-weighting) to allow sufficient informations to be learnt about

all parameters. The fact that performance eventually decrease with too greater

concentration agrees with the well-known fact the Bayesian methods generally out

perform frequentist MLE’s on test sets because they provide some quantification of

finite sample uncertainty.

Figure 4.10 additionally shows that the F-VI methods also outperform VI.

However, F-VI does so using the αD and Rényi-αD approximating divergences with

(α < 1) chosen for their ‘zero-avoiding’ properties to increase posterior variances.

The results of this section thus appear incoherent. GVI is able to improve on the

performance of VI for BNNs by producing more concentrated posteriors, while F-VI

improves on the performance of VI by producing less concentrated posterior. This

is investigates further next in Section 4.8.1.

Hyperparameter optimisation

Following the apparent inconsistent performance of GVI and F-VI methods on the

BNN experiments above, we provide a further investigation into these results. In

order to investigate the levels of over and under concentration of both GVI and

F-VI relative to traditional VI we consider plotting the variational parameter poste-

riors. Rather than do so for each of the many BNN parameters, we investigate the

variational posterior for the mean function of the response given predictor values x,

M(θ,x) (given in Eq. (4.44)). This provides a summary of the posterior distribution

for all of the parameters.

Fig 4.11 shows the posterior for the mean function, q(M(θ, xi)|x), of the

response given the predictors of three observations from the test set of one of the

test/train splits of the data. Here we can see that the ‘zero-avoiding’ properties of

the αD and Rényi-αD for α < 1 (α = 1 was the KLD associated with VI) when

used in F-VI. These methods produce posteriors with marginally greater variances

than were produced under VI. So here the divergence F is having the desired impact.

Additionally, note how the GVI techniques with prior regularisers that are stronger

than those used in VI (α < 1), are also able to produce more conservative posterior

variances, and are able to do so to a greater extent than the F-VI methods.
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Figure 4.11: Variational posterior q(M(θ, xi)|x) over M , the estimated mean of the
response variable, for VI, the D(α)

A -VI method of Hernandez-Lobato et al. [2016], the
D

(α)
AR-VI method of Li and Turner [2016] and GVI for D =D

(α)
AR on three test points on

the Boston data sets; based on 1,000 samples each. One can see that the posteriors
over θ inherit the zero-avoiding properties of their approximating divergence as
expected. Thus, they produce flatter variances. Note that the GVI methods with
more conservative uncertainty quantification also provide flatter posterior variances
over θ.
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Figure 4.12: Posterior predictives q(y|x) for VI, the D
(α)
A -VI method of Hernandez-

Lobato et al. [2016], the D(α)
AR-VI method of Li and Turner [2016] and GVI forD =D

(α)
AR

on three test points on the Boston data sets. Notice that relative to standard VI,
all F-VI posterior predictives are more contracted. In contrast, GVI with a more
conservative uncertainty quantifier does what one would expect zero-avoiding F-VI

methods to do. Thus, while F-VI may provide flatter marginal variances in the
(variational) posterior for θ, this does not translate into the predictive.
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In Figure 4.11 the posteriors appear to be behaving in the way we expected

them to. Therefore, to investigate the inconsistent performance observed in Figure

4.10 we investigate the posterior predictive distributions for the same three test

points. These are plotted in Figure 4.12. The posterior predictive combines the

uncertainty in the posterior mean for each of the three data points (Figure 4.11) with

the point estimate of the residual variance, σ̂2 estimated by the Type II maximum

likelihood approach explained in Section 4.8.1. Although the F-VI methods fitted

larger posterior variance than were estimated under VI for the mean function, the

posterior predictive distributions have much smaller variances than those estimated

by VI. This is strange as Bayesian analyses should propagate an increase in posterior

parameter uncertainty to the posterior predictive distributions.

Table 4.2: Comparing the value of σ̂2 for different Q-constrained posterior inference
methods (GVI with Rényi’s α-divergence uncertainty quantifier and the F-VI meth-
ods of [Li and Turner, 2016] and [Hernandez-Lobato et al., 2016]). For F-VI methods,
σ̂2 produces a substitution effect because it directly affects the target about which
uncertainty is quantified. For GVI methods, uncertainty quantification and loss are
additively separated, which prevents this substitution effect.

GVI

D = D
(1.25)
AR VI D = D

(0.5)
AR D = D

(0.01)
A

σ̂2 9.225 10.797 16.811 39.533

F-VI

D
(0.5)
AR D

(0.5)
A D

(0.0)
A

4.016 5.856 0.911

The decrease in the variance of the predictive distributions, however, is ex-

plained when looking at the point estimates for the predictive residual variances

under the different methods displayed in Table 4.2. The F-VI methods in the right

hand table, using zero-avoiding divergence in their posterior approximation, esti-

mate drastically smaller values for the residual variance than VI does. In particular

comparing the D
(α)
A for α = 0.5 and α = 0 shows that the more zero-avoiding the

approximating divergence is, the greater the decrease in the residual variance esti-

mate! This acts to counter the small expansion in posterior variance for the mean

parameters (Figure 4.11) and results in the F-VI posterior producing more concen-

trated predictive distributions. The desire for conservative estimates of marginal

uncertainty must result from a desire to produce predictive distributions that do not

underestimate the predictive variance. A desire for conservative future predictions.

However, the selection of a zero-avoiding approximating divergence has the opposite
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effect of decreasing the predictive variance!

We contend that these difficulties are in fact a direct consequence of the

unprincipled nature of the F-VI objective functions, more specifically its failure to

adhere to Axiom 1. F-VI methods attempt to approximate the exact posterior

using a divergence which elicits a single desirable behaviour, in this case a zero-

avoidance. However, treating the residual variance as a hyperparameter means

that the value of σ̂2 will impact shape of the exact posterior, the target of the

approximation. Specifically if σ̂2 is decreased then the exact posterior variances

for the biases and weights will decrease. These smaller variance posterior must

then become desirable under F-VI because they are then easier to approximate with

a zero-avoiding divergence (there are fewer areas of positive mass to avoid putting

0’s). Therefore F-VI decrease the residual variance to achieve a easier to approximate

posteriors.

Figure 4.12 and Table 4.2 shows that under GVI there is still an interaction

between the level of uncertainty quantification and the residual variance estimate

variance σ̂2. However in juxtaposition to what was seen for F-VI, the relationship in

GVI is consistent with the desired impact. Table 4.2 shows that when a divergence

that elicits conservation estimates of marginal posterior variance is chosen (D(α)
AR with

α < 1) then a conservative estimate of residual variance is also produced. On the

other hand, if a divergence eliciting more confident estimates of marginal posterior

variance is used (D(α)
AR with α > 1) then more confident estimates of residual variance

is produced. This transparency and consistency of desired outcomes is a result of

how GVI separates the loss minimisation (posterior location) from the uncertainty

quantification. There is no prior over σ2 and as a result σ2 does not appear in the

uncertainty quantifier. The parameter σ2 is optimised based only on the loss function

part of the GVI objective function taking into account the uncertainty quantifying

properties of the posteriors for the biases and weights. If the biases and weights have

large posterior variance, the residual variance is increased in order to minimise the

expected loss. On the other hand, if the biases and weights have smaller posterior

variance the opposite happens, again in order to minimise the posterior expected

loss.

4.8.2 Deep Gaussian Process (GP) regression

Deep Gaussian Processes (GPs) [Damianou and Lawrence, 2013] provide another

application area where VI and F-VI have been implemented. Deep GPs can be

formulated as follows:
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p(fl|Θl) = GP(fl; 0,Kl), l = 1, . . . , L (4.46)

p(hl|fl,hl−1, σ
2
l ) =

n∏
i=1

N (hl,i; fl(hl−1,i, σ
2
l )), h0,i = xi (4.47)

p(y|fL,hL−1, σ
2
L) =

n∏
i=1

N (yi; fL(hL−1,i, σ
2
L)) (4.48)

A GP prior is placed on the function corresponding to each layer. Specifying,

that the function evaluation for any finite set of d-dimensional inputs (x1, . . . , xn) is

Multivariate Gaussian with mean function 0 and covariance function K = k(xi, xj).

The inputs to the first layer are the predictor variables for the regression h0,i = xi,

the outputs of each of the l = 1, . . . , L − 1 layers are hidden variable hl,i, corre-

sponding to noisy evaluations of the GP function in that layer evaluated at inputs

corresponding to the outputs of the previous layer hl−1,i. The outputs of layer L

are the observed regression response.

Here the performance of GVI is compared with that of VI using the varia-

tional families of Salimbeni and Deisenroth [2017] that outperformed competing F-VI

methods [Bui et al., 2016]. These introduce inducing points, or pseudo-observations

Z l for each layer l, and define the GP prior for the observed data conditional on

these. This sparse, inducing points framework provides tractability within each layer

[Matthews et al., 2016], and the exact model is used, conditional on the inducing

points, for the variational posterior, maintaining correlations between layers4.

The use of the exact posterior for the variational family suggests that un-

certainty quantification may be adequately dealt with by the KLD regulariser in VI.

As a result, here we investigate the impact changing the loss function can have. In

order to robustify the Deep GP against model misspecification we consider the local

γD loss function (Eq. (2.33) from Section 2.6) instead of the βD which we have

largely considered in previous chapters. The γD loss can be conveniently stored in

log-form and is therefore desirable for computational stability. This is not the case

for the βD loss as it can be negative. A full derivation of the GVI algorithms applied

to Deep GPs can be found in Knoblauch [2019]. Similarly to the BNN examples we

compare methods based on RMSE and negative log-likelihood on a 10% testing set

over 50 repeats, under the same setting as Salimbeni and Deisenroth [2017].

Figure 4.13 shows that GVI with the γD loss is able to outperform VI no

matter the number of GP layers used. Unsurprisingly, choosing γ close to 1 is

4My co-authors were responsible for deriving and implementing this Deep GPs GVI algorithm
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Figure 4.13: Comparing performance of GVI with γD-loss function and KLD prior
regulariser and VI for DGPs with L layers. Top row: Negative test log likelihoods.
Bottom row: Test RMSE. The lower the better.

desirable. We are evaluating the test set performance on the log-score (corresponding

to γ = 1). However, the improved performance when taking γ marginally above 1

shows that providing robustness to extreme misspecifications allows the deep GPs

to provide better test set generalisation.

4.9 Further work

This chapter has developed a generalised view of Bayesian inference as an opti-

misation problem depending on three inputs, a loss function defining the target

parameter, a divergence eliciting uncertainty quantification and a space of probabil-

ity densities to be optimised over. This was inspired by the optimisation perspective

provided for Bayes’ rule by Bissiri et al. [2016], which in turn allowed us to view

traditional VI as constrained optimisation. GVI is shown to be underpinned by prin-

cipled axioms which lead it to produce more transparent posterior inferences than

several approximate inference alternatives to VI. We demonstrated the efficacy of

GVI on two deep-learning problems.

Our takeaway message is as follows, in this modern data rich world we may

no longer be able to exactly specify a belief model for the data or have the compu-

tational power to optimise for posterior beliefs over the space of all densities. When

this is the case, one must resort to approximating beliefs and constraining the space

of admissible posterior densities. In this paradigm we argue that embedding the
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fact that approximations have to be made in the objective function is the best way

to proceed and that GVI provides the transparent and principled tools to do this.

The next chapter considers an applied problem where moderate dimensional

observations arrive sequentially in real-time. The on-line nature of this analysis

requires us to relax the assumption of infinite time to optimise over the space of all

probability densities for our inference. Instead we tailor a specific case of GVI algo-

rithms to this problem allowing us to produce fast and accurate Bayesian inference.

The on-line setting also provides us with an opportunity to to consider setting the

divergence hyperparameters discussed so far in this thesis in a prequential [Dawid,

1984] (predictive sequential) manner. We provide some initial work towards this in

the next chapter.

159



Chapter 5

Robust Bayesian On-line

Changepoint Detection

Chapters 2, 3 and 4 have proposed new methodology for conducting parametric

model inference under the M -open world assumption, proved several philosophical

and practical benefits of doing so, and considered novel inference methods to ac-

cess these posteriors. This final chapter applies and extends these techniques to the

challenging problem of Bayesian on-line changepoint detection (BOCPD). This ex-

ample showcases the importance of applying robust and computationally convenient

methodologies in the modern, high-dimensional, M -open world. This work has been

published in Knoblauch, Jewson, and Damoulas [2018].

An outline of this chapter is as follows: Section 5.1 introduces the state of the

art in BOCPD algorithms inferring a run-length posterior over the time since the last

changepoint. Section 5.2 demonstrates the problems these algorithms face in the

M -open world. Section 5.3 identifies that these posteriors are simply special cases of

the general Bayesian posterior introduced in Chapter 1. Section 5.4 then proposes

using the βD to robustify these posteriors producing robust BOCPD (RBOCPD). In so

doing: Section 5.4.2 proves the extent to which the βD can robustify the run-length

posterior; Section 5.4.4 derives a fast and accurate GVI (Chapter 4) algorithm for

RBOCPD ensuring it is suitable for on-line implementation; Section 5.4.6 proposes

methods to initialise and update the value of the divergence hyperparameter β.

Lastly, Section 5.5 implements the RBOCPD algorithm. Firstly, on a canonical

example form the literature and then to robustify the analysis of air pollution data

from the City of London.
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5.1 Bayesian Online Changepoint Detection (BOCPD)

Modelling non-stationary time series with changepoints (CPs) is popular [Khaleghi

and Ryabko, 2012; Zhang et al., 2011; Lin et al., 2017] and important in a wide

variety of research fields, including genetics [Caron et al., 2012; Grzegorczyk and

Husmeier, 2009; Stimberg et al., 2011], finance [Kummerfeld and Danks, 2013],

oceanography [Killick et al., 2010], brain imaging and cognition [Fox and Dunson,

2012; Huang and Paulus, 2016], cybersecurity [Polunchenko et al., 2012] and robotics

[Alvarez et al., 2010; Konidaris et al., 2010]. In fact, CP detection has been identified

as one of the major challenges for modern, big data applications (National Research

Council, 2013)

For streaming data, a particularly important subclass are Bayesian On-

line Changepoint Detection (BOCPD) methods that can process data sequentially

[Adams and MacKay, 2007; Fearnhead and Liu, 2007a; Turner et al., 2009; Xuan

and Murphy, 2007; Wilson et al., 2010; Saatçi et al., 2010; Caron et al., 2012;

Niekum et al., 2014; Turner et al., 2013; Ruggieri and Antonellis, 2016; Knoblauch

and Damoulas, 2018] while providing full probabilistic uncertainty quantification.

Consider a multivariate stream of data arriving at discrete time points {yt}∞t=1 =

{y1, y2, . . .}, BOCPD wishes to produces inference about the location of changes in

sample distribution of the observations in real time, that is as soon as possible after

they occur. However in order to operate on-line any BOCPD algorithm needs to be

computationally efficient.

We start by introducing the current state of the art in BOCPD algorithms and

proceed to explain why we believe these methods are not suitable for the analysis

of complex high-dimensional datasets. Instead we propose and apply one of the

techniques developed in this thesis, GVI using the βD-loss function, in an attempt

to resolve these issues.

5.1.1 The algorithm

We focus our attention on the BOCPD algorithm of Knoblauch and Damoulas [2018]

which unifies the algorithms of Adams and MacKay [2007] and Fearnhead and Liu

[2007b] in order to provide BOCPD with model selection. For simplicity of the

illustration below we omit the model selection component of the algorithm. However,

this is reintroduced and applied within the RBOCPD [Knoblauch et al., 2018] in the

experiments below.

BOCPD exploits the product partition model (PPM) [Barry and Hartigan,

1992], assuming independence of parameters conditional on the CPs and indepen-
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dence of observations conditional on these parameters. These algorithms get their

on-line efficiency by introducing a random variable called the run-length rt for ev-

ery time point t. The variable rt is the time since the last CP. If rt = 0 then yt

was generated by a different regime than all of the previous observations. While,

if rt = l then yt was generated by the same regime as the previous l observations.

Now assume rt = l when a new observation yt+1 arrives. The run-length will either:

• increase by 1, rt+1 = rt+1, indicating that yt+1 is consistent with the previous

l observations

• or shrink to 0, rt+1 = 0, indicating that yt+1 is different form the previous l

observations and is thus the first observations from a new regime.

So for each run-length we only need to consider two possible alternatives after the

observation at the next time point. In order to produce a full Bayesian quantifi-

cation of uncertainty, BOCPD produces a posterior distribution over the run-length

rt+1 given the observations y1:(t+1). Thus, at each time point we have a discrete

distribution over the time since the last CP. Adams and MacKay [2007] provide the

following recursive Bayesian updating equations for the run-length posterior:

Growth probability

π (rt = l + 1|y1:t) = (5.1)

π0 (rt = l + 1|rt−1 = l)P
(
rt−1 = l,y1:(t−1)

)
P
(
yt|rt = l + 1,y1:(t−1)

)
P
(
y1:(t)

)
CP probability

π (rt = 0|y1:t) =
t−1∑
i=0

π0 (rt = 0|rt−1 = i)P
(
rt−1 = i,y1:(t−1)

)
P
(
yt|rt = 0,y1:(t−1)

)
P
(
y1:(t)

)
(5.2)

where the rt’s have a discrete finite support distribution and thus normalising

their posteriors is straightforward P (y1:t) =
∑t

i=0 P (rt = i,y1:t). The distribu-

tion P
(
rt−1 = i,y1:(t−1)

)
is the joint distribution of observations and parameters

stored from previous time points. The distribution π0 (rt|rt−1) is the run-length
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prior of the form

π0 (rt|rt−1) =


1−H (rt−1 + 1) if rt = rt−1 + 1

H (rt−1 + 1) if rt = 0

0 otherwise.

(5.3)

H(·) is often called the hazard function of the run-length distribution and here rep-

resents the probability of a changepoint at time t given that the run length is rt. The

run-length distribution is often assumed to follow a geometric distribution which has

the property of emitting a constant hazard function H(·) = 1
λ for some λ ∈ R which

is considered a fixed prior hyperparameter. The density P
(
yt|rt = l + 1,y1:(t−1)

)
is

the predictive density of observation yt given the previous t − 1 observations and

last CP l time points ago. Following the PPM assumption of independence before

and after a CP,

P
(
yt|rt = l + 1,y1:(t−1)

)
= P

(
yt|y(t−l):(t−1)

)
=

∫
f(yt; θ,y(t−l):(t−1))π(θ|y(t−l):(t−1))dθ (5.4)

where f(yt; θ,y(t−l):(t−1)) is a parametrised likelihood for the observations. BOCPD

algorithms tend to restrict themselves to conjugate families in order to preserve

computational efficiency when calculating the posterior π(θ|y(t−l):(t−1)). In this

case we can write the posterior predictive density as P (yt;κ(rt,y1:(t−1))) where

κ(rt,y1:(t−1)) are the hyperparameters of the conjugate family associated with ob-

servations y(t−l):(t−1) and the conjugate prior for θ. As a result all that needs to be

stored to conduct run-length posterior inference at time t is the joint distribution

P
(
rt−1 = i,y1:(t−1)

)
for all i and the posterior hyperparametes κ(rt,y1:(t−1)), which

can be easily updated when the next observation arrives. Fixed time complexity

can be achieved in BOCPD by truncating this CP posterior to only keep the the M

most likely run-length for each t [Adams and MacKay, 2007].

As well as producing posterior distributions over the run lengths and thus

the CP locations, Fearnhead and Liu [2007b] derive a recursive formula for the

MAP segmentation in order to provide point estimates of the CP locations. Define

MAP1 = 1 then

MAPt = max
r
{p(y1:t, rt = r)MAPt−r−1} (5.5)

The MAP segmentation given r∗t is then St = St−r∗t−1
⋃ {t− r∗t }. Where S0 = ∅

and t
′ ∈ St means there was a CP at t

′
< t.
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Additionally, to the formulation of of Adams and MacKay [2007] explained

above, Knoblauch and Damoulas [2018] are also able to produce inference on which

of a set of likelihood models mt ∈ {m1, . . . ,mM} is the most suitable for each run

length segment. Therefore, allowing the model to change from one segment to the

next. This is particularly useful in Knoblauch and Damoulas [2018] as it allows

them to select between regressors for their spatially structured BVAR models. Im-

plementing this simply uses the one-step-ahead predictives to accumulate evidence

for a given model in an analogous way to the run-length. As a result, implementing

the robustification we propose in this chapter requires no further work if we addi-

tionally consider model selection. We exclude this for brevity from the exposition

above, but note that it is used to analyse the ‘air-pollution’ data in Section 5.5.3.

5.1.2 The time-series model

As we mentioned above in order to maintain computational efficiency BOCPD algo-

rithms restrict themselves to conjugate models and priors. One particular family

suitable for time series analysis is the conjugate Bayesian linear model1 with Gaus-

sian likelihood and Normal-Inverse-Gamma (NIG) prior.

Yi|Xi,β, σ
2 ∼ N

(
Xiβ, σ

2
)
, for i = 1, . . . , n (5.6)

β|σ2 ∼ Np
(
µ0, σ

2V0

)
(5.7)

σ2 ∼ IG (a0, b0) , (5.8)

where (a0, b0,µn,V0) are prior hyperparameters. The posterior resulting from Bayes’

rule is also in the NIG family

π(β, σ2|y,x) = IG
(
σ2; an, bn

)
Np
(
β;µn, σ

2Vn
)

(5.9)

where parameters (an, bn,µn,Vn) are given by closed form updating equations (e.g.

see Banerjee [2008]). This family is particularly attractive as it contains the tradi-

tional auto-regressive (AR) and vector-auto-regressive (VAR) processes, where pre-

vious observations become predictors for the next. Further this model allows for

the incorporation of multivariate responses by considering each dimension of a re-

sponse as a new observation and correctly populating the design matrix with zeros

to indicate which parameters correspond to which dimensions. The key assumption

when extending this model to multiple dimensions is that the errors are uncorrelated

across dimensions and have constant variance. Throughout this chapter we assume

1The conjugate Bayesian linear model is excellently reviewed by Banerjee [2008]
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this model unless otherwise specified.

5.2 Problems in high-dimensions

In the M -closed world the above BOCPD algorithm can be effective at providing ef-

ficient inference in an online setting. However in the high-dimensional M -open world

associated with big data applications the currently available CP detection technol-

ogy can be shown to be insufficiently robust. For our motivating demonstration of

this we take the London air pollution dataset analysed by Knoblauch and Damoulas

[2018]. This consists of readings of Nitrogen Oxide (NOX) levels across 29 stations

in London taken at 15 minute intervals over the course of a year. Before the analysis

the quarter hourly measurements were averaged over 24 hrs to provide one obser-

vation per day, and weekly seasonality is accounted for by subtracting week-day

averages for each station. Figure 5.1 plots these time series at 4 of the locations.

Visualising medium to high dimensional data is tricky and it is difficult to see from

these plots whether the congestion charge had any affect on the levels of pollution

or not.
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Figure 5.1: Air pollution data: NOX pollution levels across the year at 4 of the 29
sites in London. Quarter hourly readings are averaged to produce daily pollution
levels and week-day variations are taken out by standardisation. Also marked is the
congestion charge introduction, 17/02/2003 (solid vertical line).

Knoblauch and Damoulas [2018] analyse this data using Bayesian vector

auto-regressions (BVAR) using a neighbourhood defined by the spatial structure of

the observations to sparsify the predictor space. Observations can only be affected

temporally by observations at its nearest neighbours. They demonstrate that their

method finds a CP around the time that the congestion charge was introduced

in London. This indicated that the congestion charge may very well have had

the desired effect, something of interest to policy makers at the London Transport
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Authority. However further inspection of this analysis reveals that BOCPD also finds

a further 11 other CPs within a space of a year.0.0
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Figure 5.2: Air pollution data: Most likely run-lengths at each time point t for
standard BOCPD run-length posterior. Also marked are the congestion charge
introduction, 17/02/2003 (solid vertical line) and the retrospective MAP segmenta-
tions (crosses).

Figure 5.2 plots the posterior for the run-length, rt, over the year in consid-

eration. The grey-scale provides some idea of the distribution of the posterior mass

across different run-lengths, darker colours correspond to more posterior mass. The

red line shows the posterior MAP at each time points and the grey crosses show the

CPs associated with the MAP segmentation (Eq. (5.5)). The shape of these posteri-

ors, and in particular their MAP, demonstrates a key component of the run-length

random variable: the run-length either grows by one at each time point, indicating

this observation is consistent with the current segment, or the run length jumps to

another value indicating that the observations comes from a different segment. The

thick purple line indicated the introduction of the congestion charge and Figure 5.2

shows that Knoblauch and Damoulas [2018] found evidence of a changepoint just

after its introduction. However, finding so many additional changepoints calls into

question the validity of the conclusion that the introduction of the congestion charge

had a lasting impact on the underlying dynamics of air pollution in London.

Although Knoblauch and Damoulas [2018] prove a theorem demonstrating

that BVARs have the flexibility to capture a wide variety of stationary time series

processes, we have strong reason to suspect that many of these CPs are false positive

resulting from model misspecifications. These BVAR models were mainly chosen for

their computational convenience in this on-line setting and the data is likely to

be more complex. Section 2.7.5 has already discussed the increased risk of model

misspecifications and outliers in such moderate to high-dimensional settings. For

example foggy days, Christmas and school holidays are known to produce large
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irregularities in the air pollution levels recorded, and these have not been explicitly

accounted for in the model. These changes to the system are not the types of changes

we desire to detect. These constitute short, temporary changes in the underlying

behaviour of the system followed by a return to the system’s previous state. As

a result we feel these can reasonably be defined as outlying segments. We are

really interested in doing inference for long-term changes to the underlying process

generating pollution in London. Further to this, BOCPD algorithms are particularly

vulnerable to outliers. These algorithms declare CPs if the posterior predictive

computed from y1:t at time t has low density for the value of the observation yt+1

at time t+ 1. Naturally, this leads to a high false CP discovery rate in the presence

of outliers and as they run on-line, pre-processing is not an option.

The literature on robust on-line CP detection so far is sparse and covers

limited settings without Bayesian uncertainty quantification [e.g. Pollak, 2010; Cao

and Xie, 2017; Fearnhead and Rigaill, 2017]. For example, the method in Fearnhead

and Rigaill [2017] only produces point estimates and is limited to fitting a piecewise

constant function to univariate data.

Here we aim to develop a procedure which is able to produce full and princi-

pled Bayesian uncertainty quantification, largely maintains the computational con-

venience of using conjugate Gaussian models, but also produces inference which is

automatically robust to the misspecifications in the tails of this model.

5.3 General Bayesian Online Changepoint Detection

Eq. (5.1) and (5.2) provide the recursive formulation of the run-length posterior.

We can expand the recursion in Eq. (5.1) by repeatedly substituting in the form

of the joint distributions given by previous iterations to produce the more familiar

representation of the run-length posterior as prior times likelihood. This more famil-

iar representation lets us interpret the posterior as a special case of the generalised

Bayesian posterior [Bissiri et al., 2016]. Setting k = t− l− 1 the run-legth posterior

can be written as

π(rt = l + 1|y1:t) ∝

prior︷ ︸︸ ︷
P (rk = 0|y1:k)

t∏
i=k

π0(ri|ri−1)

likelihood︷ ︸︸ ︷
t∏
i=k

P (yi|ri = i− k,yk:(i−1))

= P (rk = 0|y1:k)
t∏
i=k

π0(ri|ri−1) exp

(
−

t∑
i=k

− logP (yi|ri = i− k,yk:(i−1))

)
.

(5.10)
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This demonstrates that analogously to Bayes’ rule for traditional parameter updat-

ing (Eq. (1.20), Section 1.2.1), that the log-score is being applied to the one-step-

ahead predictive densities in order to produce the run-length posterior.

Additionally this reveals the connection between BOCPD and Bayesian model

selection using the marginal likelihood, as pointed out in Knoblauch and Damoulas

[2018]. The run-length score function can equivalently be written as

−
t∑
i=k

logP (yi|ri = i− k,yk:(i−1)) = − log
t∏
i=k

P (yi|ri = i− k,yk:(i−1)) (5.11)

= − logP (y1:t, rt = t− k) (5.12)

where P (yk:t, rt = t− k) is the marginal likelihood for the observations yk:t. Bernardo

and Smith [2001] discussed this as a way of scoring a model and it also appears in

the Bayes-factor ratio [Kass and Raftery, 1995]. Here is it corresponds to the likeli-

hood (or evidence) in the data for a certain run-length. Viewed in an off-line sense

the run length posterior of BOCPD is a special case of a Bayesian posterior over

different models for the data.

5.4 Robust Bayesian Online Changepoint Detection

We have discussed at length in previous chapters why the log-score is not necessarily

suitable for M -open inference. Chapter 2 demonstrated how inference minimising

the log-score was very sensitive to outliers. This lead it to produce inference that

provided limited performance guarantees when used to calculate expected utilities in

a decision problem. Further, the experiments demonstrated that increasing the vari-

ance to deal with these outliers lead to less precise parameter and predictive infer-

ences. Additionally, Chapter 3 identified that inference using the log-score was only

stable to a very small equivalence class of likelihood models. Chapters 2 and 3 have

posited several alternatives allowing parametric model inference to be conducted in

a more robust fashion. In order to robustify the BOCPD run-length posterior we

consider the βD loss function with parameter βrl. This was mainly motivated by

the βD’s locality. Updating a density estimate on-line is computationally intensive

and may perform poorly for small sample sizes. Using this produces robustified

recursive Bayesian updating equations for the run-length posterior:
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Robust growth probability

π(βrl) (rt = l + 1|y1:t) =

π0 (rt = l + 1|rt−1 = l)P (βrl)
(
rt−1 = l,y1:(t−1)

)
exp

(
−`(βrl) (rt = l + 1, yt)

)
P (β)

(
y1:(t)

)
(5.13)

Robust CP probability

π(βrl) (rt = 0|y1:t) =

t−1∑
i=0

π0 (rt = 0|rt−1 = i)P (βrl)
(
rt−1 = i,y1:(t−1)

)
exp

(
−`(βrl) (rt = 0, yt)

)
P (βrl)

(
y1:(t)

) (5.14)

where

`(βrl) (rt = i, yt) = − 1

βrl − 1
P (yt|rt = i,y1:(t−1))

βrl−1 +
1

βrl

∫
P (z|ri,y1:(t−1))

βrldz.

(5.15)

The robust run-length posterior is still discrete and has finite support so can easily

be normalised using P (β) (y1:t) =
∑t

i=0 P
(β) (rt = i,y1:t).

5.4.1 Robustify the model

Section 2.2 provided several philosophical arguments for why the model is impor-

tant for any statistical analyses and should not be abandoned or changed for fears

of a lack of robustness, we expand upon these here. In the BOCPD case the BVAR

model and particularly the spatial neighbourhoods introduced in Knoblauch and

Damoulas [2018] impart important structure on the analysis. Additionally, Gaus-

sian errors were assumed in order to make the algorithm computationally viable.

One standard method from the robust statistics literature [e.g. Berger et al., 1994;

O’Hagan, 1979] to guard against outliers is to robustify the model with heavy tails,

for example a Student’s-t distribution. We identify several philosophical and practi-

cal drawbacks of doing this relative to changing the loss function: I) switching from

a Gaussian to a Student’s-t likelihood breaks conjugacy, as a result either MCMC

or variational methods will be required to approximate this posterior, we demon-

strate in Section 5.4.4 that using the βD-loss function with a Gaussian likelihood

can become more computationally convenient than switching to a Student’s-t likeli-

hood. II) Using a Student’s-t likelihood corresponds to modelling the outliers rather

than ‘ignoring’ them for the analysis. Predictive variances will still be increased as
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a result of outliers. III) Using the Student’s-t likelihood only works for problems

requiring symmetric continuous error distributions, while the βD-loss can be ap-

plied to achieve robustness much more generally, to count data for example. Lastly,

IV) we now show that using a Student’s-t likelihood is not sufficient to guarantee

robustness in the run-length inference.

The algorithm of Fearnhead and Rigaill [2017] is robust because hyperpa-

rameters enforce that a single outlier is insufficient for declaring a CP. Analogously,

we investigate conditions under which a single (outlying) observation yt+1 is able to

force a CP in BOCPD. An intuitive way of achieving this is by studying the odds of

rt+1 ∈ {0, r + 1} conditional on rt = r. Under BOCPD we have that

π
(
rt+1 = r + 1|y1:(t+1), rt = r

)
π
(
rt+1 = 0|y1:(t+1), rt = r

) =(((((((
P (rt = r,y1:t) · (1−H(r + 1))P (yt+1|rt+1 = r + 1,y1:t)

(((((((
P (rt = r,y1:t) ·H(r + 1)P (yt+1|rt+1 = 0,y1:t)

.

(5.16)

Taking a closer look at Eq. (5.16), if yt+1 is an outlier with low density under

P (yt+1|rt+1 = r + 1,y1:t), the odds will move in favour of a CP provided that the

prior is sufficiently uninformative to make P (yt+1|rt+1 = 0,y1:t) > P (yt+1|rt+1 =

r + 1,y1:t). In fact, even very small differences have a substantial impact on the

odds. This is why using the Student’s t error for the BLR model with standard

Bayes will not provide robust run-length posteriors: While an outlying observation

yt+1 will have greater density P (yt+1|rt+1 = r + 1,y1:t) under a Student’s t error

model than under a normal error model, P (yt+1|rt+1 = 0,y1:t) (the density under

the prior) will also be larger under the Student’s t error model. As a result, changing

the tails of the model only has a very limited effect on the ratio in Eq. (5.16). In

fact, the perhaps unintuitive consequence is that Student’s t error models will yield

CP inference that very closely resembles that of the corresponding normal model. A

range of numerical examples in the Appendix of Knoblauch et al. [2018] illustrate

this surprising fact.

5.4.2 Quantifiable robustness

In contrast to the observations above, CP inference robustified via the βD does not

suffer from this phenomenon. Under RBOCPD the corresponding odds are

π(β)
(
rt+1 = r + 1|y1:(t+1), rt = r

)
π(β)

(
rt+1 = 0|y1:(t+1), rt = r

) =
(1−H(r + 1)) exp

(
−`(β) (rt + 1 = r + 1, yt+1)

)
H(r + 1) exp

(
−`(β) (rt + 1 = 0, yt+1)

) .

(5.17)
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Theorem 11 then provides very mild conditions for the βD robustified run-length

posterior under a conjugate BLR model ensuring that there is a combination of

hyperparameters such that these odds (and thus the MAP of the run length pos-

terior) never favour a CP after any single outlying observation yt+1. These results

demonstrate that the RBOCPD requires a greater build up of evidence in favour of

a CP before declaring one than the original BOCPD. This result is analogous to the

robustness guarantee of Fearnhead and Rigaill [2017].

Theorem 11. If the likelihood model for BOCPD is the conjugate Bayesian Linear

Regression (BLR) with µ ∈ Rp and priors a0, b0, µ0, Σ0; and if the posterior pre-

dictive’s variance determinant is larger than |V |min > 0, then one can choose any

(βrl, H(rt, rt+1)) ∈ S (p, βrl, a0, b0, µ0,Σ0, |V |min) to guarantee that

π(β)
(
rt+1 = r + 1|y1:(t+1), rt = r

)
π(β)

(
rt+1 = 0|y1:(t+1), rt = r

) ≥ 1, (5.18)

for all yt+1. The set S (p, βrl, a0, b0, µ0,Σ0, |V |min) is defined by an inequality given

in (5.36).

Proof. This proof looks at the run length posterior parameterised by βrl, however

to ease notation we refer to βrl= β throughout. First we condition on the event that

rt = r, then after one time step either rt+1 = r + 1 or rt+1 = 0 and the odds ratio

under the βD-bayes is

exp
(
−`(β) (rt + 1 = r + 1, yt+1)

)
exp

(
−`(β) (rt + 1 = 0, yt+1)

) (5.19)

= exp

(
1

β − 1

(
p(yt+1|y(t−r):t)

β−1 − p(yt+1|y0)β−1
)
− 1

β

∫
p(z|y(t−r):t)

β − p(z|y0)βdz

)
.

This proof first seeks a lower bound for this ratio. A lower bound on 1
β−1p(yt+1|y1:t)

β−1

is 0, while the maximal value of 1
β−1p(yt+1|x0)β−1 will occur at the prior mode. Un-

der the conjugate BLR the one-step-ahead predictive distributions are multivariate

t-distribution. For the multivariate t-distribution prior predictive with NIG hyper-

parameters a0, b0, µ0, Σ0 of dimensions p the prior mode has density

p(µ0|ν0,µ0,V0, p) =
Γ((ν0 + p)/2)

Γ(ν0/2)ν
p/2
0 πp/2 |V0|1/2

[
1 +

1

ν0
(µ0 − µ0)Σ−1

0 (µ0 − µ0)

]−(ν0+p)/2

(5.20)

=
Γ((ν0 + p)/2)

Γ(ν0/2)ν
p/2
0 πp/2 |V0|1/2

(5.21)

=
Γ(a0 + p/2)

Γ(a0) (2b0π)p/2 |I +XΣ0XT |1/2
. (5.22)
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As a result the only term in the lower bound of Eq. (5.19) that does not solely

depend on the prior hyperparameter is 1
β

∫
p(z|y1:t)

βdz. This term appears in the

negative and thus to lower bound Eq. (5.19), an upper bound for 1
β

∫
p(z|y1:t)

βdz

must be found. The multivariate t-distribution can be integrated as

1

β

∫
MVStν(z|µ,V )βdz

=
Γ((ν + p)/2)βΓ(((β − 1)ν + (β − 1)p+ ν)/2)

Γ(ν/2)βΓ(((β − 1)ν + (β − 1)p+ ν + p)/2)

1

(β(νπ)((β−1)p)/2 |V |(β−1)/2
(5.23)

=
Γ((ν + p)/2)β−1Γ((ν + p)/2)Γ(((β − 1)ν + (β − 1)p+ ν)/2)

Γ(ν/2)β−1Γ(ν/2)Γ(((β − 1)ν + (β − 1)p+ ν + p)/2)

1

β(πν)((β−1)p)/2 |V |(β−1)/2

Given that
Γ(x+ p

2 )
Γ(x) is increasing in x and as β ≥ 1 and ν ≥ 0 then ((β − 1)ν + (β −

1)p+ ν)/2) ≥ ν/2 which implies

Γ((ν + p)/2)Γ(((β − 1)ν + (β − 1)p+ ν)/2)

Γ(ν/2)Γ(((β − 1)ν + (β − 1)p+ ν + p)/2)
≤ 1. (5.24)

This in turn provides the following inequality

1

β

∫
MVStν(z|µ,V )βdz

=
Γ((ν + p)/2)β−1Γ((ν + p)/2)Γ(((β − 1)ν + (β − 1)p+ ν)/2)

Γ(ν/2)β−1Γ(ν/2)Γ(((β − 1)ν + (β − 1)p+ ν + p)/2)

1

β(πν)((β−1)p)/2 |V |(β−1)/2

≤ Γ((ν + p)/2)β−1

Γ(ν/2)β−1

1

β(πν)((β−1)p)/2 |V |(β−1)/2
. (5.25)

Now employing the well-known result using Stirling’s formula to bound the gamma

function

(2π)1/2xx−1/2 exp(−x) ≤ Γ(x) ≤ (2π)1/2xx−1/2 exp(1/(12x)− x) (5.26)

we can therefore rewrite the ratio of gamma functions leaving

1

β

∫
MVSt− tν(z|µ,V )βdz ≤ Γ((ν + p)/2)β−1

Γ(ν/2)β−1

1

β(πν)((β−1)p)/2 |V |(β−1)/2

≤
(√

2π((ν + p)/2)(ν+p−1)/2) exp(−(ν + p)/2 + 1/6(ν + p)
)β−1(√

2π(ν/2)(ν−1)/2 exp(−ν/2)
)β−1

β(πν)((β−1)p)/2 |V |(β−1)/2
(5.27)

= ((1 +
p

ν
)(β−1)(ν+p−1)/2) exp((β − 1)(1/(6(ν + p))− p/2))

1

β(π)((β−1)p)/2 |V |(β−1)/2
.

Clearly exp ((β − 1)(1/(6(ν + p))− p/2)) is decreasing in ν for all p and to demon-
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strate when ((1 + p
ν )(β−1)(ν+p−1)/2) is decreasing in ν we examine its derivative

w =
(

1 +
p

ν

)(β−1)(ν+p−1)/2
(5.28)

= exp
(

((β − 1)(ν + p− 1)/2) log
((

1 +
p

ν

)))
(5.29)

dw

dν
=
β − 1

2

(
log
(

1 +
p

ν

)
− (ν + p− 1)

p
ν2

1 + p
ν

)(
1 +

p

ν

)(β−1)(ν+p−1)/2)
.(5.30)

The sign of dwdν is dictated by

(
log
(
1 + p

ν

)
− (ν + p− 1)

p

ν2

1+ p
ν

)
, which can be demon-

strated to be positive always if p = 1 and negative always if p > 1.

Case 1: when p > 1, 1
β

∫
p(z|y1:t)

βdz is decreasing in ν and thus we can

upper bound it by substituting the smallest value of ν. Here we bound ν above 1

in order to enforce that the mean of the predictive t-distribution exists. Under the

KLD posterior it is clear that a0 rises as more data is seen and while we do not have

closed forms associated with the variational approximation to the βD posterior

(see Section 5.4.4) we expect this to be the case here. As more data is seen the

finite sampling uncertainty, represented by ν in the NIG case, should be decreasing.

Therefore provided a0 is set such that 2a0 > 1, then this lower bound should never

be violated.

Case 2: when p = 1, Stirling’s formula has failed to provide a decreasing

upper bound for 1
β

∫
p(z|y1:t)

βdz. However in the univariate case

1

β

∫
Stν(z|µ,V )βdz ≤ Γ((ν + 1)/2)β−1

Γ(ν/2)β−1

1

β(ν |V |)(β−1)/2π(β−1)/2
(5.31)

≤ 1

β |V |(β−1)/2 π(β−1)/2
(5.32)

Where p = 1 is substituted into the bound from equation (5.25) and the inequality

comes from that fact that Γ((x+1)/2)
Γ(x/2) ≤ √x. This bound conveniently does not

depend on the degrees of freedom ν at all.

We can therefore lower bound

exp
(
−`(β) (rt+1 = r + 1, yt+1)

)
exp

(
−`(β) (rt+1 = 0, yt+1)

) (5.33)
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exp

{
− 1
β−1

(
Γ(a0+1/2)

Γ(a0)(2b0π)1/2|I+XΣ0XT |1/2

)β−1

− 1

β|V |(β−1)/2π(β−1)/2
+

Γ(a0+1/2)βΓ((β−1)a0+(β−1)/2+a0)
Γ(a0)βΓ((β−1)a0+(β−1)/2+a0+1/2)

1

β(2πb0)(β−1)/2|I+XΣ0XT |(β−1)/2

}
if p = 1

exp

{
− 1
β−1

(
Γ(a0+p/2)

Γ(a0)(2b0π)p/2|I+XΣ0XT |1/2

)β−1

+

Γ(a0+p/2)βΓ((β−1)a0+(β−1)p/2+a0)
Γ(a0)βΓ((β−1)a0+(β−1)p/2+a0+p/2)

1

β(2πb0)((β−1)p)/2|I+XΣ0XT |(β−1)/2−

((1 + p)(β−1)p/2) exp((β − 1)(1/(6(1 + p))− p/2)) 1

β(π)((β−1)p)/2|V |(β−1)/2

}
if p > 1

(5.34)

Now fixing p, a0, b0, µ0,Σ0 and |V |min, we are interested in the values of β and

H(rt, rt+1) which ensure that

π(β)
(
rt+1 = r + 1|y1:(t+1), rt = r

)
π(β)

(
rt+1 = 0|y1:(t+1), rt = r

) ≥ 1 (5.35)

We demonstrate this for p > 1 but it is straightforward to see that it extends to

when p = 1. Rearranging the inequality in equation (5.34) gives us that (5.35) holds

providing

1

|V |(β−1)/2
≤
(

Γ(a0 + p/2)β−1

Γ(a0)β−1 (2b0π)(β−1)p/2 |I +XΣ0XT |(β−1)/2
(5.36)((

Γ(a0 + p/2)Γ((β − 1)a0 + (β − 1)p/2 + a0)

Γ(a0)Γ((β − 1)a0 + (β − 1)p/2 + a0 + p/2)

1

β
− 1

β − 1

)
+ log

(
1−H(rt, rt+1))

H(rt, rt+1)

))
β(π)((β−1)p)/2

((1 + p
2a0

)α(2a0+p−1)/2) exp((β − 1)(1/(6(2a0 + p))− p/2))

We define the set defined by inequality (5.36) as S (p, β, a0, b0, µ0,Σ0, |V |min) =

{(β,H(rt, rt+1)) : (β,H(rt, rt+1)) satisfy (5.36) for p, β, a0, b0, µ0,Σ0, |V |min}. As a

result we can see that for fixed of a0, b0, µ0,Σ0 and |V | ≥ |V |min it is always possible

to choose values of β and H(rt, rt+1) such that this holds. To see this consider fixing

β, the the upper bound is simply increasing in log
(

1−H(rt,rt+1)
H(rt,rt+1)

)
which takes values

in R and thus can be set large enough so that the inequality holds.

Theorem 11 says that one can bound the odds for a CP independently of

yt+1. The requirement for a lower bound |V |min results from the integral term in

Eq. (5.15), which dominates βD-inference if |V | is extremely small. In practice,

this is not restrictive: E.g. for p = 5, h(r) = 1
λ , a0 = 3, b0 = 5,Σ0 = diag(100, 5)

used in Figure 5.7, Theorem 11 holds for (βrl, λ) = (1.15, 100) used for inference if
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|V |min ≥ 8.12× 10−6.

These results, combined with the fact that a Student’s-t likelihood was not

sufficient to guarantee robustness for standard BOCPD, further the conclusions from

Chapter 2 that a lack of robustness is not the fault of the model but of the loss

function used for inference.

5.4.3 Robust parameter posterior

Additionally to using the βD to robustify the run-length posterior, we also use

the βD loss function to robustify the parameter posterior π(θ|y(t−l):(t−1)) used to

calculate the one-step-ahead predictive densities in Eq. (5.4), as we did in Chapter

2. This introduces βp that need not be the same as βrl. We define this robust

parameter posterior π(βp)(θ|y(t−l):(t−1)) and refer to it as the βD-Bayes posterior.

We call the combination of βD run-length inference and βD parameter inference as

Robust Bayesian On-line Changepoint Detection (RBOCPD).

5.4.4 Quasi-conjugacy

The standard BOCPD algorithms restricted inference to conjugate models in order

to guarantee the computational efficiency of the algorithm [Adams and MacKay,

2007; Knoblauch and Damoulas, 2018]. However, using the βD to robustify the

parameter posterior removes the conjugacy property of the Bayesian updating. In

Chapter 2 and previously in the literature [Ghosh and Basu, 2016; Jewson et al.,

2018], MCMC has been used to sample from the βD-Bayes posteriors. However,

it is not easy to scale these for the on-line inference. While we acknowledge the

existence of sequential Monte Carlo algorithms [Del Moral et al., 2006] that can

be tailored to online inference, we outline the following drawbacks. Any sampling

regime would first need to sample from the parameter posterior π(βp)(θ|y), use this

sample to estimate the posterior predictive P (βp)(y∗|y) and then require further

Monte Carlo methods (e.g. importance sampling) to estimate the integral term
1

β+1

∫
P (βp)(z|y)β+1dz associated with the βD loss function applied to the posterior

predictive. This will not only be slow but may also introduce two sources of added

variance to the on-line algorithm at each time-point.

To resolve this we use a special subset of GVI algorithms. For exponential

family model and corresponding conjugate prior,

f(y; θ) = h(y) exp
(
η(θ)TT (y)−A(η(θ))

)
(5.37)

π(θ; ν0,X0) = g(X0, ν0) exp
(
ν0η(θ)TX0 − ν0A(η(θ))

)
(5.38)
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we posit the conjugate prior family for the variational family when using the βD-loss.

Q =
{
q(θ; ν,X ) = g(X , ν) exp

(
νη(θ)TX − νA(η(θ))

)
: g(ν,X ) <∞

}
(5.39)

We note here we have used the traditional exponential family representation for the

likelihood rather than for the prior as we did when introducing GVI in Chapter 4.

This is to keep with convention. This variational family is well motivated by the fact

that as β → 1, βD→ KLD and therefore the exact posterior, π(βp)(θ|y(t−l):(t−1)), will

be contained within the variational family as βp → 1. In order to gain robustness

we take βp > 1. However we expect some smoothness in the behaviour of the

βD-posteriors for βp not too far from 1.

We investigate this assumption and what it means to be ‘too far from 1’ in

Section 5.4.5. For this reason we consider this a well motivated constraining family

in contrast to many applications using the ad-hoc ‘mean-field’ approximation. The

assumption of smoothness in the βD-Bayes posteriors also motivates D = KLD as

the prior regulariser. If the constraining family provides a good approximation to the

exact solution then the KLD and its associated coherence properties are desirable.

Putting all this together we can write the GVI problem as follows

q̂βp(θ;y(t−l):(t−1)) := arg min
q∈Q

{
Eq(θ)

[
t−1∑
i=k

`(βp)(θ, yi)

]
+ KLD(q(θ)||π(θ))

}
. (5.40)

We term this procedure of forcing the posterior to be in the conjugate prior when

using different model based losses to the log-score, quasi-conjugacy. Quasi-conjugate

updating with the βD has several other convenient properties. It ensures that the

predictive distribution is available in closed form and we can further show broad

conditions under which the GVI objective function (or ELBO) is also available in

closed form. This result is presented in Theorem 12

Theorem 12. The GVI objective under the βD-loss function with parameter βp

and the KLD to the prior as in Eq. (5.40) of an exponential family likelihood model

f(y; θ), conjugate prior π(θ; ν0,X0) and variational family q(θ; νn,Xn) within the

same conjugate family,

f(y; θ) = h(y) exp
(
η(θ)TT (y)−A(η(θ))

)
(5.41)

π(θ; ν0,X0) = g(X0, ν0) exp
(
ν0η(θ)TX0 − ν0A(η(θ))

)
(5.42)

q(θ; νn,Xn) = g(Xn, νn) exp
(
νnη(θ)TXn − νnA(η(θ))

)
, (5.43)
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is analytically available if and only if the following three quantities have closed form

Eq(θ;νn,Xn) [η(θ)] , Eq(θ;νn,Xn) [log g(η(θ))] ,

∫
A(z)βp

[
h

(
βpT (z) + νmXm

βp + νm
, βp + νm

)]−1

dz.

for all values of (νn,Xn) and y such that(
(βp − 1)T (y) + νnXn

βp − 1 + νn
, βp − 1 + νn

)
∈ N (5.44)(

βpT (y) + νnXn
βp + νn

, βp + νn

)
∈ N (5.45)

where N is the natural parameter space of the conjugate prior family is defined as

N =

{
(ν,X ) :

∫
exp

(
νη(θ)TX − νA(η(θ))

)
dθ <∞

}
(5.46)

Proof. For ease of notation, we use βp = β. We note that

A(η(θ)) = log

(∫
h(y) exp

(
η(θ)TT (y)

)
dy

)
(5.47)

g(Xi, νi) =

(∫
exp

(
νiη(θ)TXi − νiA(η(θ)

)
dθ

)−1

(5.48)

The resulting GVI objective function is as follows

L
(
q|y, `(β),KLD

)
=

n∑
i=1

−Eq
[
`(β)(yi; θ)

]
− KLD (q (θ|νn,Xn) , π (θ|ν0,X0)) . (5.49)

The βD-loss function can be expanded to give

−`(β)(y; θ)=
1

β − 1

(
h(y) exp

(
η(θ)TT (y)−A(η(θ))

))β−1−
1

β

∫ (
h(y) exp

(
η(θ)TT (y)−A(η(θ))

))β
dz

=
1

β − 1
exp

(
(β − 1)η(θ)TT (y)− (β − 1)A(η(θ))

)
h(y)β−1−

1

β

∫
exp

(
βη(θ)TT (z)− βA(η(θ))

)
h(z)βdz. (5.50)
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Therefore L
(
q|y, `(β),KLD

)
has three integrals that need evaluating

B1=
n∑
i=1

∫
h(yi)

β−1

β − 1
exp

(
(β − 1)

{
η(θ)TT (yi)−A(η(θ))

})
q(θ|νn,Xn)dθ(5.51)

B2=
n

β

∫ {∫
h(z)β exp

(
βη(θ)TT (z)− βA(η(θ))

)
dz

}
q(θ|νn,Xn)dθ (5.52)

B3=KLD (q (θ|νn,Xn) ||π (θ|ν0,X0)) . (5.53)

Now firstly for the term B1 in equation (5.51)

B1=
n∑
i=1

∫
h(yi)

β−1

β − 1
exp

(
(β − 1)η(θ)TT (yi)− (β − 1)A(η(θ))

)
g(Xn, νn) exp

(
νnη(θ)TXn − νnA(η(θ))

)
dθ

=

n∑
i=1

h(yi)
β−1

β − 1
g(Xn, νn)∫

exp
(
η(θ)T ((β − 1)T (yi) + νnXn)− (β − 1 + νn)A(η(θ))

)
dθ

=
n∑
i=1

h(yi)
β−1

β − 1
g(Xn, νn)

1

g( (β−1)T (xi)+νnXn
β−1+νn

, β − 1 + νn)
. (5.54)

Where we know that g( (β−1)T (yi)+νnXn
β−1+νn

, β − 1 + νn) is integrable and closed form as

it represents the normalising constant of the same exponential family as the prior

and the variational posterior, provided
(

(β−1)T (yi)+νnXn
β−1+νn

, β − 1 + νn

)
∈ N .

Next we look at B2 in equation (5.52). The whole integral is the product of

two densities which must be positive and in order for the L
(
q|y, `(β),KLD

)
to be

defined it must also be integrable. Therefore we can use Fubini’s theorem to switch

the order of integration

B2 =
n

β

∫ {∫
exp

(
βη(θ)TT (z)− βA(η(θ))

)
q(θ|νn,Xn)dθ

}
h(z)βdz

=
ng(Xn, νn)

β

∫ {∫
exp

(
η(θ)T (βT (z) + νnXn)− (β + νn)A(η(θ))

)
dθ

}
h(z)βdz

=
ng(Xn, νn)

β

∫
h(z)β

g(βT (z)+νnXn
β+νn

, β + νn)
dz. (5.55)

once again provided that
(
βT (z)+νnXn

β+νn
, β + νn

)
∈ N then g(βT (z)+νnXn

β+νn
, β+νn) is the

normalising constant of the same exponential family as the prior and the variational

posterior and is thus closed form.
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Lastly we look at B3 in equation (5.53)

B3 =

∫
q(θ|νn,Xn) log

g(Xn, νn) exp
(
νnη(θ)TXn − νnA(η(θ))

)
g(X0, ν0) exp (ν0η(θ)TX0 − ν0A(η(θ)))

=log
g(Xn, νn)

g(X0, ν0)

∫
q(θ|νn,Xn)

{(
η(θ)T (νnXn − ν0X0)

)
− (νn − ν0)A(η(θ))

}
=log

g(Xn, νn)

g(X0, ν0)

{
(νn − ν0)λn +

(
(µn)T (νnXn − ν0X0)

)}
, (5.56)

where µn = Eq(θ;νn,Xn) [η(θ)] and λn = Eq(θ;νn,Xn) [A(η(θ))] are defined to be avail-

able in closed form by the conditions of the theorem. As a result we get that

L
(
q|y, `(β),KLD

)
=B1 −B2 −B3

=

n∑
i=1

1

β − 1
h(yi)

β−1g(Xn, νn)
1

g( (β−1)T (yi)+νnXn
β−1+νn

, β − 1 + νn)

−n
β
g(Xn, νn)

∫
h(z)β

g(βT (z)+νnXn
β+νn

, β + νn)
dz. (5.57)

− log
g(Xn, νn)

g(X0, ν0)

{(
(µn)T (νnXn − ν0X0)

)
− (νn − ν0)λn

}
.

The conditions of Theorem 12 are met by many exponential models, e.g. the

Normal-Inverse-Gamma, the Exponential-Gamma, and the Gamma-Gamma. This

closed form objective function allows us to use simple, off-the-shelf gradient descent

technology and not have to worry about the sampling or black box approaches re-

ferred to in Section 4.7. Our quasi-conjugate algorithm has similarities with the

algorithm of Ghahramani and Beal [2001] who demonstrate that the optimal varia-

tional posterior, factorised between parameters and missing variables, is a member

of the conjugate prior family in conjugate-exponential hidden variables. While our

algorithm emits a closed form objective function, Ghahramani and Beal [2001] pro-

duce closed form, iterative updating equations.

5.4.5 The accuracy of the quasi-conjugate Bayesian update

The quasi-conjugate GVI inference algorithm explained above was motivated by

assuming a smoothness in the βD-Bayes posterior when moving β away from 1. We

investigate this empirically for the BLR conjugate family that will be used in the

RBOCPD algorithm.

Firstly Figure 5.3 plots the bivariate posterior marginals for (µ0, µ1, σ
2) of a
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uni-variate, BVAR of lag L = 1. This is equivalent to a BLR with two predictors,

the intercept and the previous observation with coefficients µ0 and µ1 respectively.

The red contours correspond to the exact posterior, π(βp)(θ|y(t−l):(t−1)), produced by

smoothing 95,000 Hamiltonian Monte Carlo samples produced using stan [Carpenter

et al., 2016], and the blue is the GVI approximation to this, q̂βp(θ;y(t−l):(t−1)). This

shows that for βp = 1.25, quasi-conjugate GVI provides a near perfect approximation

to the exact βD-posterior.
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Figure 5.3: Exemplary contour plots of bivariate marginals for the approximation
q̂βp(θ;y(t−l):(t−1)) of Eq. (5.40) (dashed) and the target π(βp)(θ|y(t−l):(t−1)) (solid)
estimated and smoothed from 95, 000 Hamiltonian Monte Carlo samples for the
βD-Bayes posterior for a BLR with d = 1, two regressors, and βp = 1.25.

Next we investigate this further and in higher dimensions for both the re-

sponse variable and for the parameters. Yao et al. [2018a] take inspiration from

Pareto-Smoothed-Importance-Sampling [Vehtari et al., 2015] to produce a metric
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estimating the difference k̂ between an exact posterior, say π(βp)(θ|y(t−l):(t−1)), and

a variational approximation, say q̂βp(θ;y(t−l):(t−1)), relative to some posterior ex-

pectation. Pareto-Smoothed-Importance-Sampling [Vehtari et al., 2015] attempts

to improve the quality of importance sampling estimates by fitting a generalised

Pareto distribution to the tail of importance weights of the form

ωπ,q(θ) :=
π(βp)(θ|y(t−l):(t−1))

q̂βp(θ;y(t−l):(t−1))
. (5.58)

While this was originally used to address the bias-variance tradeoff in importance

sampling, Yao et al. [2018a] are also able to interpret the shape parameter of the

fitted generalised Pareto distribution, k̂, as an estimate of the following goodness of

fit criteria:

k :=
{
k∗ > 0 : Eθ∼q̂βp

[
ωπ,q(θ)

1
k∗
]
<∞

}
(5.59)

Clearly if π(βp)(θ|y(t−l):(t−1)) = q̂βp(θ;y(t−l):(t−1)) this holds for all k∗ > 0 and the

closer the two distributions are togther the smaller the k for which this will be the

case. In fact, 1/k is the maximal parameter α such that the D(α)
AR(π(βp)||q̂βp) is finite,

where D
(α)
AR is defined in Eq. (1.29) in Section 1.3.1. Empirical studies lead Yao

et al. [2018a] to conclude that if k̂ is less than 0.5 then q̂βp is ‘close enough’ to

π(βp). The posterior expectation of interest in BOCPD algorithms is the posterior

predictive distribution. Therefore, we implement the method of Yao et al. [2018a] to

help investigate the quality of the VI approximation to the one-step-ahead posterior

predictive central to the performance of BOCPD.

In order to do so, we simulated data from BVAR models of dimension d =

5, 10, 15, 25, with lag length L = 1 and no interaction between dimensions. Each

time series is thus modelled as Xt,j ∼ N (θ1,jXt−1,j + θ0,j , σ
2), t = 1, . . . , T and

j = 1, . . . , d, θ are the model parameters and the residual variance, σ2, is shared

across dimensions. Stacking dimensions creates a BLR model as in Eq. (5.6). Jointly

modelling this results in a multivariate Gaussian likelihood function with 2d + 1

parameters. Therefore increasing d increases the dimension of both the observations

space and the parameter space. For each d we simulated fixed coefficients θ from

Unif[−0.5, 0.5] and then 50 replicates of datasets of size T = 200. Figure 5.4 plots

the estimated values of k̂, averaged across the 50 replicates of the data for different

values of βp whilst varying the dimension.

For βp close to 1 we see that the variational family is very accurate for all

dimensions. This corroborates our assumption of smoothness as βp increases from 1.

When βp = 1 the exact posterior is contained within the variational family, no mat-
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Figure 5.4: Plot of the estimate k̂ [Yao et al., 2018a], quantifying the accuracy of the
variational approximation q̂βp to the exact posterior distribution π(βp), for different
values of βp applied to a BVAR model with response dimension d and predictor
dimension 2d for d = 5, 10, 15 and 25. The grey dotted line depicts the threshold
of k̂ < 0.5 demonstrating the values of βp for which q̂βp can be considered ‘close
enough’ to π(βp) [Yao et al., 2018a].

ter what the dimension, and taking βp slightly above 1 the variational family appears

to provide an excellent approximation to the exact posterior. As βp increases the

estimated value of k̂ also increases and thus the approximation appears to get worse.

However we note that for quite a wide range of βp the estimated k̂ is less than 0.5,

the threshold specified by Yao et al. [2018a] suggesting the approximation was suffi-

ciently accurate. Figure 5.4 also shows that as the dimension of the parameter space

increase, βp needs to be taken increasingly small to ensure a good approximation of

the exact posterior by the variational family. An explanation for this is as follows:

As d increases, the magnitude of f(yt; θ,y1:(t−1)) decreases rapidly. Hence, βp needs

to decrease as d increases to prevent the βD-Bayes inference from being dominated

by the integral in Eq. (2.13) and disregarding yt, as was discussed in Section 2.7.5.

When this happens the inference is no longer learning through the conjugate like-

lihood f , but is learning through the integral term and thus the accuracy of the

conjugate variational approximation to the exact βD posterior degrades.

We additionally note that these values of β ensuring that the variational

approximation is sufficiently accurate are exactly the values of β we want to choose

for inference anyway. As was discussed in Section 2.7.5 when the integral term in Eq.

(2.13) dominates the Bayesian inferece is ignoring the data. While we want robust

learning, we still want at least the majority of the data to guide the inference. This
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is also reflected in our experiments in Section 5.5. Here we initialize βp = 0.05 and

βp = 0.005 for d = 1 and d = 29, respectively. However, as Figures 5.3 and 5.4

illustrate, the approximation is still excellent for values of βp that are much larger

than that.

We discussed at the end of Section 2.7.4 that setting a calibration weight w

using the method of Lyddon et al. [2018] could help mitigate the drop in efficiency

associated with setting β too large. We conjecture that setting w may also be able

to improve the quality of the GVI approximation to the exact posterior for large β.

However, the method to set w of Lyddon et al. [2018] requires a full pass through

the data and is therefore not suitable to be applied in the on-line setting.

5.4.6 Setting βp and βrl

While the log-score was parameterless, robustifying the run-length and parameter

posteriors introduces two further hyperparameters into the algorithm. β = 1 re-

covers the log-score and increasing β away from 1 will buy increasing robustness to

outliers. However taking β too far above 1 can down-weight the data too much and

lead to nonsensical inferences (see Section 2.7.4). As a result both βp and βrl need

to be selected carefully.

Initalisation

Firstly for initialisation we fix βI = βp = βrl. It is common in Bayesian analyses

to select hyperparameters by reverse engineering them from the prior predictive

distributions [see e.g. Gelman et al., 2017; Gabry et al., 2019]. The same can be

done for βI using the influence curves introduced in Section 2.6.7 (Figure 2.2). Under

the KLD these influence curves are increasing as an observation x moves away from

the posterior mean. Under the βD the influence curves initially increase, mimicking

the KLD, but then reach some point of maximum influence x∗β and decrease after

that. As β → 1, x∗β → ∞. The location x∗β marks the point at which the influence

observations have on the posterior starts to decrease as they move away from the

posterior mean, rather than increase. That is to say that after x∗β, observations are

increasingly considered as outliers relative to the current inferences. As a result, if

we can specify a threshold, τx, for the prior predictive after which we desire to treat

observations as outliers, we can initialise βI =
{
β : x∗β = τx

}
. When the dimension

of the observation space is small, τx could be taken to be some number of standard

deviations from the posterior mean. As the dimension of the observation space

increases it may be more useful to exploit the result of Hall et al. [2005], that we
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expect data to arrive at a Mahalanobis distance of square-root the dimension of the

observation space.
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Figure 5.5: Visualisation for the initialisation of β. A threshold of σ = 2.75 standard
deviations from the mean is chosen as the cut off to start declaring outliers. Under
the KLD-Bayes (β = 1) the influence curve is always increasing. Increasing to
β = 1.05 makes the βD-Bayes influence curve concave, but the maximum point is
much larger than σ = 2.75. Increasing again β = 1.1 brings the maximal point
closer to σ = 2.75 and increasing further to β = 1.25 makes the maximal influence
point at σ = 2.75. Thus β = 1.25 would be chosen as the initial value for β given a
σ = 2.75 threshold for outliers.

Figure 5.5 provides a pictorial representation of this initialisation process.

These show the influence plots from Section 2.6.7 for increasing values of β moving

from left to right. An outlier threshold of σ = 2.75 standard deviations from the

mean is plotted as a vertical dotted grey line along with the data generating Gaussian

density demonstrating that observations greater than this threshold can reasonably

be considered outliers. Under the KLD-Bayes (β = 1) the influence curve on the far

left is always increasing. Increasing β to β = 1.05 makes the βD-Bayes influence

curve concave, but the maximum point is much larger than σ = 2.75. Increasing

β again to β = 1.1 brings the maximal point closer to σ = 2.75 and increasing

further to β = 1.25 makes the maximal influence point at σ = 2.75. For an outlier

threshold of 2.75 standard deviations from the mean the initial value of β is chosen

at βI = 1.25

On-line updating

The on-line nature of RBOCPD allows us to additionally update our initial value of

β as the algorithm progresses which can help guard against a poorly specified prior

(or threshold). In order to do this we must first define a meta-loss-function, measur-

ing how close the model predictions at each time point Ŷt = E
[
Yt|y1:(t−1), βp, βrl

]
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are to the observed values yt, L(Ŷt, yt). We note that Ŷt does not depend on model

parameter θ or run-length rt as these have been integrated out, but it does de-

pend on the β = (βp, βrl) used to produce those posteriors. One sensible ex-

ample for this and the one used in Knoblauch et al. [2018] is the absolute loss

L(Ŷt, yt) =
∣∣∣Ŷt − yt∣∣∣. Given such a loss function, after the observation of y1:t we can

find β̂t = arg minβ
∑t

i=1 L(Ŷi, yi) and use this to update the parameter and run-

length posteriors when we observe yt+1. It is important that β̂t is used to update

beliefs using observation yt+1 and not yt to ensure the data is not used twice. The

resulting procedure is very similar to that of Caron et al. [2012] who optimise prior

hyperparameters.

5.5 Demonstrations

In order to get the important arguments of my contribution to this project I have

presented a robustfied version of Adams and MacKay [2007] algorithm which cor-

responds to a simplification of the algorithm used in Knoblauch et al. [2018]. The

experiments in this section use the full version of this algorithm. In addition to the

algorithm presented above Knoblauch et al. [2018] implement:

• Model/Variable selection: Use the recursions in Knoblauch and Damoulas

[2018] to not only produce a robustified run length posterior, but also provide

a posterior for the model associated with each segment, allowing for structural

and temporal selection within the BVAR framework

• Optimisation of prior hyperparameters: Similarly to Knoblauch and Damoulas

[2018] the hyperperparameters of the prior for each model are optimised using

an on-line gradient descent approach of Caron et al. [2012]. This is similar

to the on-line optimisation of the loss hyperparameters (βp, βrl) discussed in

Section 5.4.6

• Stochastic optimisation of the variational parameters: In order to achieve a

trade-off between scalability and accuracy a combination of full optimisation

and stochastic optimisation is used to estimate the variational hyperparam-

eters. For small run length rt < W full optimisation is done every m ob-

servations, while when rt > W and we have enough observations to expect

each new observation to have stable impact on the variational parameters,

stochastic optimisation using a subset of the observations is used, for more

information on this procedure see Knoblauch et al. [2018]
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I derived the robust recursions, the variational inference regime and proved

Theorems 11 and 12, adapting the space and time complexity of this algorithm was

the work of my collaborator, as was implementing this full algorithm.

5.5.1 The well-log dataset

We first start with a canonical real-world example from the CP detection literature.

The well-log data set was first studied in Ruanaidh et al. [1996] and has become

a benchmark data set for univariate CP detection. However, except in Fearnhead

and Rigaill [2017] its outliers have been removed before CP detection algorithms are

run [e.g. Adams and MacKay, 2007; Levy-leduc and Harchaoui, 2008; Ruggieri and

Antonellis, 2016]. Instead, we run both the standard BOCPD and our robustified

RBOCPD on the full dataset without removing the outliers to more accurately reflect

a true on-line analysis. Similarly to previous analyses we consider a model classM
containing one BLR model of form yt = µ+ εt.

The top panel of Figure 5.6 plots the observed data. The data appears

to be well modelled by independent segments coming from different Gaussian dis-

tributions. However, many of these segments appear to have small numbers of

observations which differ massively from those either side. Fearnhead and Rigaill

[2017] states that these segments are “where the probe misfunctions”. We argue

that these observations are too few in number to be considered separate segments

and are instead outliers. The bottom 2 panels of Figure 5.6 demonstrate the run-

length posteriors provided by RBOCPD and BOCPD respectively. The bold blue

and red lines represent the MAP of the run-length at each time point and the grey-

scale represents the spread of the posterior mass. The bottommost plot shows that

the standard BOCPD is very sensitive to the outlying segments. The MAP drops

to zero 145 times, so declaring CPs online based on the run-length distribution’s

maximum [see e.g. Saatçi et al., 2010] yields a False Discovery Rate (FDR) > 90%

compared with those found when outliers were removed [e.g. Adams and MacKay,

2007; Levy-leduc and Harchaoui, 2008; Ruggieri and Antonellis, 2016]. This prob-

lem persists even with non-parametric, Gaussian Process, models [p. 186, Turner,

2012]. Even using Maximum A Posteriori (MAP) segmentation Fearnhead and Liu

[2007a], standard BOCPD mislabels 8 outliers as CPs, resulting in a FDR > 40%.

These are plotted as red dotted lines over the data on the top of Figure 5.6. This

shows that even when the data is viewed completely the standard BOCPD struggles

to differentiate outliers from true changes.

In contrast, the MAP segmentation of the RBOCPD using the βD, plotted in

thick blue, does not mislabel any outliers and still finds what appear to be ‘true’
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Figure 5.6: Maximum A Posteriori (MAP) segmentation and run-length distribu-
tions of the well-log data. Robust segmentation depicted using solid lines, CPs

additionally declared under standard BOCPD with dashed lines. The correspond-
ing run-length distributions for robust (middle) and standard (bottom) BOCPD are
shown in greyscale. The most likely run-lengths are dashed.

changes in the underlying mean. Moreover, and in accordance with Theorem 11, the

middle panel shows that its run-length distribution’s maximum never drops to zero

in response to outliers. This demonstrates that in a univariate setting the RBOCPD

is able to be robust to outlying segments of data but still be sensitive to underling

changes in the DGP.

Further, a natural by-product of the robust segmentation is a reduction in

squared (absolute) prediction error by 10% (6%) compared to the standard BOCPD.

The RBOCPD has more computational overhead than standard BOCPD, but still

needs less than 0.5 seconds per observation using a 3.1 GHz Intel i7 and 16GB

RAM.

Not only does robust BOCPD’s segmentation in Figure 5.6 match that in

Fearnhead and Rigaill [2017], but it also offers three additional on-line outputs:

Firstly, it produces probabilistic (rather than point) forecasts and parameter in-

ference. Secondly, it self-regulates its robustness via β. Thirdly, it can compare

multiple models and produce model posteriors (see Section 5.5.3). Further, unlike

Fearnhead and Rigaill [2017], it is not restricted to fitting univariate data with

piecewise constant functions.

5.5.2 Moderate dimensional simulated example

Next we consider a 5-dimensional simulated example. This serves to motivate the

need for robust methods for moderate to high dimensional applications. Here five

auto-regressions of lag L = 1 were simulated and jointly modelled as a BVAR. The
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fifth dimension was injected with additive Student’s-t noise with degrees of freedom

ν = 4. There are two true CPs at time t = 200 and t = 400. Figure 5.7 plots the five

time series stacked on top of each other. The CPs declared in the MAP segmentation

of the standard BOCPD are plotted as dotted red lines while the equivalent MAP

segmentation for the RBOCPD is plotted as solid blue lines. In addition to finding

the two actual CPs, the standard BOCPD algorithm declares 11 further CPs in the

MAP segmentation as a result of the Student’s-t contamination. In contrast the

RBOCPD with (βp, βrl) = (1.1, 1.25) finds only the CPs corresponding to actual

changes in the DGP. Although this example is artificial, it illustrates two important

points mentioned in Section 2.7.5 about high-dimensional M -open statistics. Firstly,

when inspecting Figure 5.7 it is certainly not obvious that the spurious CPs that

have been detected are a result of outliers, visualising data in more than one or two

dimensions can be tricky and as a result spotting outliers is not straightforward.

Secondly, it only took one dimension of the process to be misspecified to force the

declaration of many spurious CPs. As the dimension of the problem goes up, the

DM is required to make more and more beliefs statements, which in turn increases

the likelihood that at least some of these are misspecified in some regard. These

effects will only worsen as the dimension of the problem increases.
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Figure 5.7: Maximum A Posteriori (MAP) CPs of standard BOCPD and shown as
dashed vertical lines and RBOCPD show in soldi lines. True CPs at t = 200, 400. In
high dimensions it becomes increasingly likely that the model’s tails are misspec-
ified in at least one dimension.
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5.5.3 The London air pollution dataset

To illustrate the issues surrounding high-dimensional robustness further, we return

to the London air pollution example. We showed in Section 5.2 that when this

dataset was analysed by Knoblauch and Damoulas [2018] using traditional Bayesian

updating, 12 CPs were found in the space of a year. One of these corresponded to

the introduction of the congestion charge, but the number of CPs found questioned

the reliability of this analysis. The top two panels of Figure 5.8 correspond to this

analysis. The lower of the two shows the run length posterior with its MAP at each

time point in red and its MAP segmentation marked with grey crosses. This plot

is the same as Figure 5.2 shown in Section 5.2. Additionally, the top plot is the

corresponding model posterior for this analysis. Knoblauch and Damoulas [2018]

augmented previous BOCPD algorithms with a model universe, allowing inference

to be conducted on the model as well as the parameters. In order to analyse the

air pollution data they considered a model universe consisting of BVAR models

with different lag lengths and different spatially structured neighbourhoods for the

predictors. The top plot of Figure 5.8 shows how the posterior mass for three of

the most likely BVAR models changes throughout the time window of the data. The

model plotted in blue is clearly favoured after the introduction of the congestion

charge with a combination of the yellow and green models favoured before those.

See Knoblauch and Damoulas [2018] for more information on these specific models.

As we have mentioned before, we think it is possible that many of the de-

clared CPs under BOCPD result from model misspecification. We therefore, seek

to robustify the CP detection to investigate this further. Previous robust on-line

methods [e.g. Pollak, 2010; Cao and Xie, 2017; Fearnhead and Rigaill, 2017] cannot

be applied to this problem because they assume univariate data or do not allow for

dependent observations.

Contrary to BOCPD, the bottom two panels of Figure 5.8 shows that RBOCPD

finds only one CP close to the introduction of the congestion charge. This suggests

that some of the CPs declared under standard BOCPD resulted from small pertur-

bations from the underlying model. Standard BOCPD was highly sensitive to these

while RBOCPD was able to ignore them. However, the fact that RBOCPD was still

able to detect a CP around the time of the introduction of the congestion charge

demonstrates that while being robust to outlying segments, the βD is still able to

detect true changes to the underlying dynamics of pollution. In fact, the CP found

by RBOCPD occurs before the introduction of the congestion charge where BOCPD

found one after. It seems more likely to us that a change in dynamics would happen

before the charge is introduced, as people anticipate the change in policy, rather than
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Figure 5.8: Air pollution data: On-line model posteriors for three of the most likely
BVAR models (solid, dashed, dotted) and run-length posteriors (plotted in greyscale)
with most likely run-lengths dashed for standard BOCPD (top two panels) and the
RBOCPD (bottom two panels). Also marked are the congestion charge introduction,
17/02/2003 (solid vertical line) and the MAP segmentations (crosses)

after. Further, RBOCPD increases the average one-step-ahead predictive likelihood

by 10% compared to standard BOCPD.

Figure 5.8 also demonstrates the robustness-efficiency trade-off experienced

while using the βD to robustify the run-length posterior. Although the RBOCPD

detects a CP close to the congestion charge in the MAP segmentation, looking at

the run-length posterior it takes a number of observations to realise that a CP had

occurred. In order to be robust to outliers, a greater build up of evidence is required

for the run-length posterior to favour a CP. Therefore there is some delay in spotting

‘actual’ changes in the underlying system.

5.6 Conclusion

In this chapter I have shown how GVI can be used to solve an important and difficult

problem in modern statistics. Using the robust model based βD loss function and the

well motivated quasi-conjugate constraining family, GVI was able to produce robust

CP and parameter inference in a computationally efficient manner that allows for

on-line processing of data. While CP detection is a particularly salient example of

unaddressed heterogeneity and outliers leading to poor inference, the capabilities of

GVI presented extend far beyond this setting. With an ever increasing interest in
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the field of machine learning to efficiently and reliably quantify uncertainty, robust

probabilistic inference will only become more relevant. This chapter presents a

particularly striking demonstration of the inferential power that can be unlocked

through divergence-based General Bayesian inference.
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Chapter 6

Conclusion

This thesis has proposed several modifications to the applications of Bayesian analy-

sis to modern, high-dimensional problems. Chapter 2 provides a DM with the ability

to produce the most useful inference for their given problem by changing the target

parameter of their inference through the loss function. Specific attention is given

to tailoring inference to produce accurate estimates of expected utilities. Chapter

3 simplifies the task of belief elicitation for the DM. Providing a method to update

beliefs that is both implementable and provides stability across an interpretable

neighbourhood of probability models. Chapter 4 addresses the issue of computa-

tion in a Bayesian analysis, allowing a DM to tailor the inferential optimisation they

solve to produce fast and desirable inferences. Lastly, Chapter 5 provides a practical

demonstration of the methods proposed in this thesis and how they can be used to

extract useful inferences from real-world data when traditional Bayesian updating

fails. Several interesting areas of further work are outlined below.

Selecting the Divergence (hyperparameter): More work is required to advise

on the selection of the divergence used for the updating. In general we believe the

βD and γD will be more appealing for practical applications and this is reflected

in Chapters 4 and 5. However, methods to choose between these two and further,

strategies beyond those discussed in Sections 2.7.5 and 5.4.6 to select the divergence

hyperparameters are very important in order for these methods to become practi-

cally useful tools. One promising avenue here is to consider methods additional to

the influence curves of Section 2.6.7 to more clearly articulate the impact of choosing

a certain divergence and its hyperparameter. Additionally, it would be interesting

to explore whether techniques similar to Williamson et al. [2015] can exploit the

concurrence, or lack there of, of analysis using different divergences to further help
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DM’s improve their belief specifications.

Theoretical Results: Theoretical results provide a further option to more clearly

articulate the impact of the subjective selection of each divergence. The stability

results in Chapter 3 are both interesting a novel and further inspection of these could

lead to methods to help choose hyperparameters. For example results similar to that

of the insensitivity of the γD to linear ε-contamination [Hung et al., 2018] would

be useful to illustrate which model misspecifications these different divergences are

robust to. Despite the results in Chapter 3, the theoretical analysis of these methods

is far from complete and is certainly an area for further research. In order to convince

practitioners to move away from Bayes’ rule rigorous guarantees on the performance

of alternative methods must be provided.

Computation: Another issue not fully explored in the thesis is how to tailor

computational algorithms to the inferences we describe here. We discussed in Section

2.7.5 that even for simple models not minimising the KLD breaks the conjugacy

property of Bayes’ rule updating. Although Chapter 5 presented our quasi-conjugate

posterior approximation which was specifically tailored to the βD (or γD), we have

not experimented with ‘exact’ inference schemes. There exists a vast literature on

optimising MCMC algorithms to sample from traditional Bayesian posteriors and

in order to fully take advantage of the subjectivity this paper allows a statistician,

a whole new class of computational algorithms tailored to different divergences may

be required. In addition several of the divergences mentioned in Chapter 2 require

a density estimate of the underlying process. In Chapter 3 we assumed a consistent

estimate of this existed and further research into effectively doing this for complex

high dimensional datasets can only improve the performances of these methods for

real world problems.

Real-world examples: Further experimentation to that considered in Chapters

4 and 5, with complex real world data sets is also required to analyse how this

robustness-efficiency trade-off associated with the selected divergence manifests itself

in practice.

Mixture Models: Mixture models provide a particularly interesting application

domain for the methodology in this paper. Particularly as their construction is

amenable to the TVD neighbourhoods discussed in Chapter 3, i.e. if we know that 3

mixture components account for 95% of the observations but are unsure about the
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rest, this describes a TVD neighbourhood of size 0.05. However, there are several

challenges to implementing these robust minimum divergence methods with mixture

models. Firstly, for the βD and γD loss function we need to be able to calculate

the term
∫
f(z; θ)βdz. Now if f(z; θ) is a mixture model then f(z; θ)β will not be

easily available in closed form and therefore we must result to numerical methods

to calculate this integral. This integral is potentially evaluated for many values of

θ and thus numerically approximating this presents a computational challenge.

Additionally, we have been made aware of the literature of Woodard et al.

[2009a,b] who demonstrate problems with simulated and parallel tempering algo-

rithms for multi-modal targets. The problems are caused by the fact that in cases

when the modes are non-symmetric, the tempered targets do not preserve the re-

gional/modal weights. That is to say, that the rate at which the tempered modes

gain mass is connected to their variance in the original target. While this may

seem unrelated, applying the βD or γD loss functions to a mixture model likelihood

raises a multi-modal target to a power almost always less than 1. This phenomenon

above could well cause problems with finite sample efficiency in the M -closed world

and require some investigation of exactly what the βD minimising mixture model

approximation might look like in the M -open world. If such problems exist one could

appeal to the solutions in the statistical simulation literature [e.g. Tawn et al., 2018].

The variational/constraining family: Chapter 2 focused on the loss function,

one input into the GVI loss function and Chapter 4 focussed on the uncertainty

quantifying divergence. The third component of our generalised representation of

Bayesian inference is the admissible set of densities for posterior. Chapter 4 stuck

to default variational families, however we feel that viewing these as a constraining

family rather than an approximating family opens up several interesting area of

research.

Can we define principled constraining families? Are there subjective judge-

ments that DMs cannot input into their prior or model but could go into the con-

straining family? The posterior regularisation of Ganchev et al. [2010] provides one

example. Another situation could be the label switching scenario depicted in Figure

4.9. Here, the DM would surely prefer univariate posteriors even when the exact

posterior is bivariate. This scenario is usual solved by post processing as by en-

coding an ordering of coefficients is difficult a priori [Marin and Robert, 2007]. A

further example of this could be the ‘quasi-conjugate’ setting introduced in Section

5.4.4 where the posterior is forced into the same family as the prior.

Bernstein von Mises theorems tell us that the majority of posterior distribu-
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tions are going to be reasonably approximated by a Gaussian (though we note that

notable exceptions to apply) and as a result the poor performance of approximate

inference methods comes from unaccounted for correlation. There is clearly a trade-

off between capturing correlation and computational efficiency, every correlation

considered is another variational hyperparameter. Methods such as Papaspiliopou-

los and Rossell [2017] have considered this trade-off in linear regression scenarios

and propose ways to optimise it.

Lastly GVI’s increased flexibility to define its prior regulariser allows for

the incorporation of penalised optimisation of hyperparameters. The VI objective

function is often optimised for hyperparameters but the KLD prior regulairser asso-

ciated with the KLD posterior approximation provides no room to penalise point

estimates. These can now simply be added on to the GVI objective function,

D(q(θ)||π(θ)) +R(λ)

Prior robustness: A further unexplored part of Chapter 4 is the prior robustness

that can be gained by considering the prior regularising divergence to be any of the

Rényi-αD, βD and γD. This was observed and compared empirically within the

chapter but not thoroughly analysed. Further work could look at the theoretical

properties of this and whether it could solve some of the undesirable results associ-

ated with Bayes’ rule for misspecified priors [e.g. Gustafson and Wasserman, 1995].

In particular, it appeared as though the βD prior regularising divergence was able to

produce posterior uncertainty quantification that was almost completely invariant

to the prior. Much research has gone into ‘objective-Bayes’ and the specifications of

prior distributions providing objective posterior uncertainty quantification [see, e.g.

Jeffreys, 1961; Zellner, 1977; Bernardo, 1979; Berger and Bernardo, 1992; Jaynes,

2003; Berger, 2006]. Although the objectivity and uncertainty quantification associ-

ated with the GVI and the βD prior regulariser is not yet sufficiently well-understood,

we believe it could be a very promising avenue for research in this area. Additionally

methods to set the hyperparameter associated with these prior divergences have not

been fully explored.

Robust model selection We believe the most exciting area for further work

stemming from Chapter 5 comes from the connection between the BOCPD run-

length posterior and the marginal-likelihood. The likelihood in the standard BOCPD

algorithm corresponded the the marginal-likelihood of the data given the last CP

which is the same quantity used in Bayes’ Factor model selection [Kass and Raftery,

1995]. The lack of robustness in the standard BOCPD algorithm suggests that Bayes’
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Factor model selection will have the same deficiencies.

Model selection with scores other than the log-score have been attempted

before Dawid et al. [2015]; Shao et al. [2019] but these have been mainly motivated in

the setting of an unnormalised prior rather than robustness to outliers. We believe

applying the βD loss could prove powerful here. Specifically Gaussian graphical

modelling, where models selection is done on models indexed by their conditional

independence statements, could provide a salient example. Here Gaussianity is

assumed because it has the convenient property that zeros in its precision matrix,

Λ = Σ−1, correspond to statements of conditional independence, rather than because

the assumption of Gaussian observations is reasonable. Gaussian distributions are

well-known to be non-robust [e.g. O’Hagan, 1979; Berger et al., 1994] and it is

straightforward to construct an example where one observation forces the traditional

Bayes factor to declare dependence between two dimensions when in fact there is

none.

Dawid et al. [2015] prove model selection consistency for the general scoring

function when used in a prequential (predictive sequential) manner [Dawid, 1984].

Under the prequential approach the focus of statistical inference is to make sequen-

tial probability forecasts about future observations rather than learning about model

parameters. A convenient property of the log-score is that the same score is calcu-

lated if the data is viewed prequentially or together, this will not be the case for

other scores [Fong and Holmes, 2019]. In the BOCPD setting above the prequential

score naturally arises in the likelihood, however this may not be the case in wider

model selection applications.
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Chapter 7

Appendix

7.1 Extending Theorems 3, 4, 5 and 6 to non-equal pa-

rameter spaces

Here we extend the results of Chapter 3 to the situation where the parameter space

Θf and Θh of likelihood models {f(x; θf ) : θf ∈ Θf} and {h(x; θh) : θh ∈ Θh} are

such that Θf 6= Θh. Firstly we start with Condition 2, concerning the posterior

concentration

Condition 3 (Concentration of the posterior). The data set x1:n ∼ g(·) is of suffi-

cient size and regularity, and the priors πDf (θ) and πDh (θ) have sufficient prior mass at

θDf and θDh and that there exists θ∗f\h and θ∗h\f such that the posteriors πDf (θf |X1:n)

and πDh (θh|X1:n) have concentrated to ensure∫
Θf

D(g, h(·;
{
θU,f , θ

∗
h\f

}
))πDf (

{
θU,f , θf\h

}
|x1:n)dθU,fdθf\h

≥
∫

Θh

D(g, h(·;
{
θU,h, θh\f

}
))πDh (

{
θU,h, θh\f

}
|x1:n)dθU,hdθh\f (7.1)∫

Θh

D(g, f(·;
{
θU,h, θ

∗
f\h

}
))πDh (

{
θU,h, θh\f

}
|x1:n)dθU,hdθh\f

≥
∫

Θf

D(g, f(·;
{
θU,f , θf\h

}
))πDf (

{
θU,f , θf\h

}
|x1:n)dθU,fdθf\h. (7.2)

where θf =
{
θU,f , θf\h

}
and θh =

{
θU,h, θh\f

}
We require the introduction of θ∗f\h and θ∗h\f when the size of the parameter

spaces for the two likelihood models are not equal and thus we cannot immediate

use the posterior for one model in combination with the likelihood of the other. The

way in which we define our prior neighbourhoods in these scenarios, makes defining
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these values straightforward. Now we prove the extend version of Theorems 3, 4, 5

and 6.

Theorem 13 (Stability of the posterior predictive using divergence metrics). Con-

sider the following conditions:

• Divergence DM (·, ·) satisfies Condition 1

• We have two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh},
data generating process g, priors π(θf ) and π(θh) and data x1:n such that

Condition 3 holds for divergence DM (·, ·)

• For the two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh} there

exists ε > 0 such that f, h ∈ NDM
ε as defined in Definition 15.

Then for mDM
f and mDM

h as defined in Eq. (3.7)

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤ RDM (g, f, h, x1:n) + ε, (7.3)

where

RDM (g, f, h, x1:n) := (7.4)

2 min

{∫
(DM (g(·), f(·; θf )))πDMf (θf |x1:n)dθf ,

∫
(DM (g(·), h(·; θh)))πDMh (θh|x1:n)dθh

}
.

Proof. Jensen’s inequality can be adapted to show that for convex function ψ, and

any function ρ such that EX [|ρ(X)|] and EX [|ψ(ρ(X))|] are finite, then

ψ(EX [ρ(X)]) ≤ EX [ψ(ρ(X))]. (7.5)

Consider applying this with θf as the random variable of interest with distribution

πDMf (θf |x1:n), ρ(θ) = f(y; θ) for some fixed y and with ψ(f) = DM (g, f), where

g is some fixed probability density, as a convex function. Both ρ(·) and ψ(·) are

positive functions so Jensen’s inequality is valid providing the Bayesian predictive

distribution is defined,

mDM
f (z|x1:n) = E

π
DM
f (θf |x1:n)

[f(z; θf )] =

∫
f(z; θf )πDMf (θf |x1:n)dθf <∞, ∀z

(7.6)
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and that

E
π
DM
f (θf |x1:n)

[DM (h(·), f(·; θf ))] =

∫
DM (h(·), f(·; θf ))πDMf (θf |x1:n)dθ <∞. (7.7)

We note that by symmetry we could exchange f for h above. Therefore, by the

convexity of DM (·, ·), Jensen’s inequality can be applied as described above, first to

mDM
h (·|x1:n) and then to mDM

f (·|x1:n). Therefore,

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤
∫
DM (mDM

f (·|x1:n), h(·; θh))πDMh (θh|X1:n)dθh

(7.8)

≤
∫ {∫

DM (f(·; θf ), h(·; θh))πDMf (θf |X1:n)dθf

}
πDMh (θh|X1:n)dθh. (7.9)

The triangle inequality associated with DM (·, ·) gives that

DM (f, h) ≤ DM (f, g) +DM (g, h) = DM (g, f) +DM (g, h), (7.10)

which can be used to show that

DM (mDM
f (·|x1:n),mDM

h (·|x1:n)))

≤
∫ {∫

DM (f(·; θf ), h(·; θh))πDMf (θf |X1:n)dθf

}
πDMh (θh|X1:n)dθh

≤
∫ {∫

DM (g, f(·; θf )) +DM (g, h(·; θh))πDMf (θf |X1:n)dθf

}
πDMh (θh|X1:n)dθh

(7.11)

=

∫
DM (g, f(·; θf ))πDMf (θf |X1:n)dθf +

∫
DM (g, h(·; θh))πDMh (θh|X1:n)dθh.

(7.12)

Now we decompose the parameter for each model into the part shared by the two

likelihood models and what is left over. We therefore consider

θf =
{
θU,f , θf\h

}
(7.13)

θh =
{
θU,h, θh\f

}
. (7.14)
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As a result, we can equivalently write

DM (mDM
f (·|x1:n),mDM

h (·|x1:n)))

≤
∫
DM (g, f(·; θf ))πDMf (θf |X1:n)dθf +

∫
DM (g, h(·; θh))πDMh (θh|X1:n)dθh

=

∫
DM (g, f(·;

{
θU,f , θf\h

}
))πDMf (

{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h (7.15)

+

∫
DM (g, h(·;

{
θU,h, θh\f

}
))πDMh (

{
θU,h, θh\f

}
|X1:n)dθU,hdθh\f .

Now given the first part of Condition 3, equation (7.1)

DM (mDM
f (·|x1:n),mDM

h (·|x1:n)))

≤
∫
DM (g, f(·;

{
θU,f , θf\h

}
))πDMf (

{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h

+

∫
DM (g, h(·;

{
θU,h, θh\f

}
))πDMh (

{
θU,h, θh\f

}
|X1:n)dθU,hdθh\f

≤
∫
DM (g, f(·;

{
θU,f , θf\h

}
))πDMf (

{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h

+

∫
DM (g, h(·;

{
θU,f , θ

∗
h\f

}
))πDMf (

{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h (7.16)

=

∫ (
DM (g, f(·;

{
θU,f , θf\h

}
)) +DM (g, h(·;

{
θU,f , θ

∗
h\f

}
))
)

πDMf (
{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h. (7.17)

We can add and subtract DM (f(·;
{
θU,f , θf\h

}
), h(·;

{
θU,f , θ

∗
h\f

}
)) inside the integral

to give

DM (mDM
f (·|x1:n),mDM

h (·|x1:n)))

≤
∫ (

DM (g, f(·;
{
θU,f , θf\h

}
)) +DM (g, h(·;

{
θU,f , θ

∗
h\f

}
))

−DM (f(·;
{
θU,f , θf\h

}
), h(·;

{
θU,f , θ

∗
h\f

}
)) (7.18)

+DM (f(·;
{
θU,f , θf\h

}
), h(·;

{
θU,f , θ

∗
h\f

}
))
)
πDMf (

{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h.

Finally applying the triangle inequality once more gives us that

DM (g, f) +DM (f, h) ≥ DM (g, h)⇒ DM (g, f) ≥ DM (g, h)−DM (f, h) (7.19)

which in combination with the definition of the neighbourhood NDM
ε can be used
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to show that

DM (mDM
f (·|x1:n),mDM

h (·|x1:n)))

≤
∫ (

DM (g, f(·;
{
θU,f , θf\h

}
)) +DM (g, h(·;

{
θU,f , θ

∗
h\f

}
))

−DM (f(·;
{
θU,f , θf\h

}
), h(·;

{
θU,f , θ

∗
h\f

}
))

+DM (f(·;
{
θU,f , θf\h

}
), h(·;

{
θU,f , θ

∗
h\f

}
))
)
πDMf (

{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h.

≤
∫ (

2DM (g, f(·;
{
θU,f , θf\h

}
)) + ε

)
πDMf (

{
θU,f , θf\h

}
|X1:n)dθf (7.20)

= 2

∫
(DM (g, f(·; θf )))πDMf (θf |X1:n)dθf + ε. (7.21)

We note that we could have applied the second part of Condition 3, equation (7.2), to

exchange θf =
{
θU,f , θf\h

}
for
{
θU,h, θ

∗
f\h

}
in line (7.16) and the triangle inequality

also gives us that

DM (g, h) +DM (f, h) ≥ DM (g, f)⇒ DM (g, h) ≥ DM (g, f)−DM (f, h). (7.22)

Which, in turn can be used to show that

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤ 2

∫
(DM (g, h(·; θh)))πDMh (θh|X1:n)dθh + ε

(7.23)

and thus

DM (mDM
f (·|x1:n),mDM

h (·|x1:n))) ≤ RDM (g, f, h, x1:n) + ε. (7.24)

where RDM (g, f, h, x1:n) is defined in Eq. (7.4).

Theorem 14 (Limiting predictive stability using divergence metrics). Consider the

following conditions:

• Divergence DM (·, ·) satisfies M1 and M2 from Condition 1

• For the two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh} there

exists ε > 0 such that f, h ∈ NDM
ε as defined in Definition 15.

Then ∣∣∣DM (g, f(·; θ̂DMf ))−DM (g, h(·; θ̂DMh ))
∣∣∣ ≤ ε (7.25)
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for all data generating densities g, where θ̂DMf = arg minθDM (g, f(·; θ)) and θ̂DMh =

arg minθDM (g, h(·; θ)).

Proof. First we decompose

θ̂DMf =
{
θ̂DMU,f , θ̂

DM
f\h

}
(7.26)

θ̂DMh =
{
θ̂DMU,h , θ̂

DM
h\f

}
(7.27)

where in principle it need not be the case that θ̂DMU,f = θ̂DMU,h .

Using the triangle inequality and the definition of NDM
ε gives us that ∀

θU ∈ ΘU , θf\h ∈ Θf\h and θh\f ∈ Θh\f

DM (g, f(·;
{
θU , θf\h

}
)) ≤ DM (h(·;

{
θU , θh\f

}
), f(·;

{
θU , θf\h

}
)) (7.28)

+DM (g, h(·;
{
θU , θh\f

}
))

≤ ε+DM (g, h(·;
{
θU , θh\f

}
)) (7.29)

DM (g, h(·;
{
θU , θh\f

}
)) ≤ DM (h(·;

{
θU , θh\f

}
), f(·;

{
θU , θf\h

}
)) (7.30)

+DM (g, f(·;
{
θU , θf\h

}
))

≤ ε+DM (g, f(·;
{
θU , θf\h

}
)). (7.31)

Now by the definition of the parameter θ̂DMh and θ̂DMf as the parameters of the

likelihood models minimising divergence DM we have

DM (g, f(·;
{
θ̂DMU,f , θ̂

DM
f\h

}
)) ≤ DM (g, f(·;

{
θ̂DMU,h , θ̂

DM
f\h

}
)) (7.32)

≤ ε+DM (g, h(·;
{
θ̂DMU,h , θ̂

DM
h\f

}
)) (7.33)

DM (g, h(·;
{
θ̂DMU,h , θ̂

DM
h\f

}
)) ≤ DM (g, h(·;

{
θ̂DMU,f , θ̂

DM
h\f

}
)) (7.34)

≤ ε+DM (g, f(·;
{
θ̂DMU,f , θ̂

DM
f\h

}
)) (7.35)

⇒
∣∣∣DM (g, h(·; θ̂DMh ))−DM (g, f(·; θ̂DMf ))

∣∣∣ ≤ ε. (7.36)

Theorem 15 (Limiting predictive stability of βD inference). Consider the following

conditions:

• 1 < β ≤ 2

• We have two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh},
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data generating process g such that

max {ess sup f, ess suph, ess sup g} ≤M <∞ (7.37)

• For the two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh} there

exists ε > 0 such that f, h ∈ NDM
ε as defined in Definition 15.

Then ∣∣∣D(β)
B (g||f(·; θ̂(β)

h ))− D
(β)
B (g||h(·; θ̂(β)

f ))
∣∣∣ ≤ Mβ−1

β − 1
ε (7.38)

where θ̂
(β)
f = arg minθ D

(β)
B (g||f(·; θ)) and θ̂

(β)
h = arg minθ D

(β)
B (g||h(·; θ)).

Proof. First we decompose

θ̂
(β)
f =

{
θ̂

(β)
U,f , θ̂

(β)
f\h

}
(7.39)

θ̂
(β)
h =

{
θ̂

(β)
U,h, θ̂

(β)
h\f

}
(7.40)

where in principle it need not be the case that θ̂
(β)
U,f = θ̂

(β)
U,h.

Firstly, by the definition of θ̂
(β)
f and θ̂

(β)
h as the parameters of the likelihood

models f(·; θf ) and h(·; θh) minimising the βD we have that for all θf\h ∈ Θf\h and

θh\f ∈ Θh\f

D
(β)
B (g, f(·;

{
θ̂

(β)
U,f , θ̂

(β)
f\h

}
)) ≤ D

(β)
B (g, f(·;

{
θ̂

(β)
U,h, θf\h

}
)) (7.41)

D
(β)
B (g, h(·;

{
θ̂

(β)
U,h, θ̂

(β)
h\f

}
)) ≤ D

(β)
B (g, h(·;

{
θ̂

(β)
U,f , θh\f

}
)). (7.42)

Next, using the triangle type inequality proven in Lemma 4 and the definition of

N TVD
ε shows that

D
(β)
B (g, f(·;

{
θ̂

(β)
U,h, θf\h

}
))

≤M
β−1

β − 1
TVD(f(·;

{
θ̂

(β)
U,h, θf\h

}
), h(·;

{
θ̂

(β)
U,h, θ̂

(β)
h\f

}
)) + D

(β)
B (g, h(·;

{
θ̂

(β)
U,h, θ̂

(β)
h\f

}
))

≤M
β−1

β − 1
ε+ D

(β)
B (g, h(·;

{
θ̂

(β)
U,h, θ̂

(β)
h\f

}
)) (7.43)

D
(β)
B (g, h(·;

{
θ̂

(β)
U,f , θh\f

}
))

≤M
β−1

β − 1
TVD(f(·;

{
θ̂

(β)
U,f , θ̂

(β)
f\h

}
), h(·;

{
θ̂

(β)
U,f , θh\f

}
)) + D

(β)
B (g, f(·;

{
θ̂

(β)
U,f , θ̂

(β)
f\h

}
))

≤M
β−1

β − 1
ε+ D

(β)
B (g, f(·;

{
θ̂

(β)
U,f , θ̂

(β)
f\h

}
)). (7.44)
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Combining these two inequalities results in

⇒
∣∣∣D(β)

B (g, h(·; θ̂(β)
h ))− D

(β)
B (g, f(·; θ̂(β)

f ))
∣∣∣ ≤ Mβ−1

β − 1
ε (7.45)

Theorem 16 (Stability of the posterior predictives under the βD learning). Con-

sider the following conditions:

• 1 < β ≤ 2

• We have two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh},
data generating process g satisfying

max {ess sup f, ess suph, ess sup g} ≤M <∞, (7.46)

and priors π(θf ) and π(θh) and data x1:n such that Condition 3 holds for

divergence D(·, ·) = D
(β)
B (·||·)

• For the two likelihood models {f(·; θf ) : θf ∈ Θf} and {h(·; θh) : θh ∈ Θh} there

exists ε > 0 such that f, h ∈ NDM
ε as defined in Definition 15.

Then

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n)) (7.47)

≤ Mβ−1

β − 1
ε+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh

D
(β)
B (m

(β)
h (·|x1:n)||m(β)

f (·|x1:n)) (7.48)

≤ Mβ−1

β − 1
ε+

∫ ∫
R(g||h(·; θh)||f(·; θf ))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh.

where R(g||f ||h) and R(g||h||f) were defined in Lemma 3 to be

R(g||f ||h) =

∫
(g − f)

(
1

β − 1
hβ−1 − 1

β − 1
fβ−1

)
dµ (7.49)

R(g||h||f) =

∫
(g − h)

(
1

β − 1
fβ−1 − 1

β − 1
hβ−1

)
dµ. (7.50)

Proof. By the convexity of the βD for 1 < β ≤ 2 (Lemma 5) we can apply Jensen’s
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inequality as we did in the proof of Theorems 3 and 13 to show that

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n))) ≤
∫

D
(β)
B (f(y|X1:n)||h(·; θh))π

(β)
h (θh|X1:n)dθh

(7.51)

≤
∫ {∫

D
(β)
B (f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθf

}
π

(β)
h (θh|X1:n)dθh. (7.52)

Now the three-point property associated with the βD (Lemma 3) gives us that

D
(β)
B (f ||h) = D

(β)
B (g||h)− D

(β)
B (g||f) +R(g||f ||h) (7.53)

where R(g||f ||h) is defined in Eq. (7.49) and using this here provides

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n))) (7.54)

≤
∫ {∫

D
(β)
B (f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθf

}
π

(β)
h (θh|X1:n)dθh

=

∫ {∫ [
D

(β)
B (g||h(·; θh))− D

(β)
B (g||f(·; θf ))

+R(g, f(·; θf ), h(·; θh)]π
(β)
f (θf |X1:n)dθf

}
π

(β)
h (θh|X1:n)dθh (7.55)

=

∫
D

(β)
B (g||h(·; θh))π

(β)
h (θh|X1:n)dθh −

∫
D

(β)
B (g||f(·; θf ))π

(β)
f (θf |X1:n)dθf

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh. (7.56)

Now we decompose the parameter for each model into the part shared by the two

models and what is left over. We therefore consider

θf =
{
θU,f , θf\h

}
(7.57)

θh =
{
θU,h, θh\f

}
. (7.58)
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We can then equivalently write

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n)))

≤
∫

D
(β)
B (g||h(·; θh))π

(β)
h (θh|X1:n)dθh −

∫
D

(β)
B (g||f(·; θf ))π

(β)
f (θf |X1:n)dθf

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh (7.59)

=

∫
D

(β)
B (g||h(·;

{
θU,h, θh\f

}
))π

(β)
h (
{
θU,h, θh\f

}
|X1:n)dθU,hdθh\f

−
∫

D
(β)
B (g||f(·;

{
θU,f , θf\h

}
))π

(β)
f (
{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh. (7.60)

Now given the first part of Condition 3, Eq. (7.1), applied for the D = D
(β)
B allows us

to exchange π
(β)
h (
{
θU,h, θ

∗
h\f

}
|X1:n) for π

(β)
f (
{
θU,f , θf\h

}
|X1:n) in the first integral

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n)))

≤
∫

D
(β)
B (g||h(·;

{
θU,h, θh\f

}
))π

(β)
h (
{
θU,h, θh\f

}
|X1:n)dθU,hdθh\f

−
∫

D
(β)
B (g||f(·;

{
θU,f , θf\h

}
))π

(β)
f (
{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh

≤
∫

D
(β)
B (g||h(·;

{
θU,f , θ

∗
h\f

}
))π

(β)
f (
{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h

−
∫

D
(β)
B (g||f(·;

{
θU,f , θf\h

}
))π

(β)
f (
{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh (7.61)

=

∫ (
D

(β)
B (g||h(·;

{
θU,f , θ

∗
h\f

}
))−

∫
D

(β)
B (g||f(·;

{
θU,f , θf\h

}
))

)
π

(β)
f (
{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh. (7.62)

The last line above has simply collected the two terms now involving θf =
{
θU,f , θf\h

}
into one integral. We can now apply the triangle type inequality from Lemma 4,
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Eq. (3.73)

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n)))

≤
∫ (

D
(β)
B (g||h(·;

{
θU,f , θ

∗
h\f

}
))−

∫
D

(β)
B (g||f(·;

{
θU,f , θf\h

}
))

)
π

(β)
f (
{
θU,f , θf\h

}
|X1:n)dθU,fdθf\h

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh.

≤
∫
Mβ−1

β − 1
TVD(h(·;

{
θU,f , θ

∗
h\f

}
), f(·;

{
θU,f , θf\h

}
))π

(β)
f (θf |X1:n)dθU,fdθf\h

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh. (7.63)

Which given the neighbourhood of likelihood models defined by N TVD
ε in Eq. (3.12)

can be rewritten as

D
(β)
B (m

(β)
f (·|x1:n)||m(β)

h (·|x1:n)))

≤
∫
Mβ−1

β − 1
TVD(h(·;

{
θU,f , θ

∗
h\f

}
), f(·;

{
θU,f , θf\h

}
))π

(β)
f (θf |X1:n)dθU,fdθf\h

+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh.

≤M
β−1

β − 1
ε+

∫ ∫
R(g||f(·; θf )||h(·; θh))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh. (7.64)

We note that we could have instead considered D
(β)
B (m

(β)
h (·|x1:n)||m(β)

f (·|x1:n))), ap-

plied the corresponding version for the three-point property of βD divergences, with

remainder R(g||h||f) =
∫

(g−h)
(

1
β−1f

β−1 − 1
β−1h

β−1
)
dµ and used the second part

of Condition 3, to show that

D
(β)
B (m

(β)
h (·|x1:n)||m(β)

f (·|x1:n)))

≤M
β−1

β − 1
ε+

∫ ∫
R(g||h(·; θh)||f(·; θf ))π

(β)
f (θf |X1:n)dθfπ

(β)
h (θh|X1:n)dθh. (7.65)
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