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Abstract

RNA-seq, including single cell RNA-seq (scRNA-seq), is plagued by insufficient sensitivity and lack of precision. As a result,
the full potential of (sc)RNA-seq is limited. Major factors in this respect are the presence of global bias in most datasets,
which affects detection and quantitation of RNA in a length-dependent fashion. In particular, scRNA-seq is affected by
technical noise and a high rate of dropouts, where the vast majority of original transcripts is not converted into sequencing
reads. We discuss these biases origins and implications, bioinformatics approaches to correct for them, and how biases can
be exploited to infer characteristics of the sample preparation process, which in turn can be used to improve library
preparation.
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Introduction
RNA-seq has become one of the most important tools in
molecular biology. It allows straightforward measurement of
RNA expression levels in transcriptome-wide fashion. It is now
available in countless variants that allow sequencing of different
types of RNAs, from different starting materials, using different
experimental approaches, and more [1]. Although developed
early [2], RNA-seq from single cells (scRNA-seq) increased
dramatically in its popularity recently [3]. The power of scRNA-
seq lies in its ability to potentially visualize variability that is
masked by the ensemble averaging of standard RNA-seq; it can
be used to identify allelic exclusion based on single-nucleotide
polymorphisms [4] and can reveal non-genetic heterogeneity.
The latter is believed to be important in diseases [5] and can
offer insights into transcriptional mechanisms [6, 7].

In this review, we will discuss current limitations of RNA-
seq with respect to its main application of quantifying tran-
script abundances. Since this is particularly relevant for absolute
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quantitation, we will explore how technical noise and biases
reduce both sensitivity and precision of (sc)RNA-seq specifically,
and will discuss novel insights in this regard.

From RNA to sequencing reads
The main goal of RNA-seq in most contexts is the accurate quan-
tification of the original RNAs’ abundances in a sample, whether
that refers to ‘bulk’ RNA from a homogenized cell population, or
single cells. In practice, this amounts to correctly interpreting
the number of sequencing reads that are obtained for each
transcript. This problem is non-trivial due to several confound-
ing factors preventing precise quantification, most of which are
owed to the complexity of RNA-seq sample preparation.

Several steps are necessary to convert the RNAs in cell lysates
into sequencing reads. Common to the vast majority of protocols
are selecting which RNA is to be sequenced, the cDNA pro-
duction steps of reverse transcription (RT) (often referred to as
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first-strand synthesis) and second-strand synthesis. The reason
for selecting RNA to be sequenced is that the vast majority
of RNA in cell lysates is ribosomal RNA, which is normally
undesired. Removing it allows for more reads to be used towards
the detection of less abundant RNA species of interest, such
as mRNA. This is achieved by removing rRNA (‘ribodepletion’)
or positive selection of RNAs of interest. RNA is replaced with
DNA because RNA is problematic to work with; it is subject to
degradation through RNases and metal ion catalyzed hydrolysis
at higher temperatures. It has a propensity to form secondary
structures and cannot easily be amplified due to a lack of suit-
able enzymes and its compromised stability during thermal
cycling. Synthesis of the second cDNA strand is necessary to
enable adapter ligation for next generation sequencing, unless
special adaptations are used [8]. Other protocols use the RT
step to add adapter sequences directly, for instance by using
a RT primer with overhanging adapter sequences. This idea is
taken further in scRNA-seq protocols where the RT primer is
often oligo-(dT)s (to capture polyadenylated mRNAs) with an
overhang including adapter sequences, cell barcodes and unique
molecular identifiers (see section UMIs e.g. 10x Chromium [9],
Drop-seq [10] or InDrop [11]).

The only RNA-seq strategy that avoids cDNA conversion is
direct RNA sequencing, as implemented by the ill-fated Helicos
sequencing machine [12] or nanopore sequencing [13]. The latter
is promising as a future technology producing long reads for sin-
gle molecules; it records the base sequence of individual nucleic
acid strands as they are electrophoretically pulled through chan-
nels in a membrane. The system is plagued with high error rates,
though, and most studies have exploratory character and/or
use additional second generation (e.g. Illumina) sequencing to
bolster sequencing quality [14].

RNA-seq libraries are usually fragmented by various means
and size-selected in order to produce more sequencing reads
at optimal length. This can occur before or after cDNA pro-
duction. Direct fragmentation of RNA often uses metal-ion cat-
alyzed hydrolysis at high temperatures (e.g. TruSeq) and cDNA
fragmentation often uses physical methods (e.g. sonication) or
enzymatic methods. ‘Tagmentation’ is a convenient enzymatic
way to combine fragmentation and adapter ligation [15]. It uses
transposase Tn5 to internally cleave double-stranded DNA and
ligate oligonucleotides to both resulting ends in the same reac-
tion. The material is usually further amplified by PCR. Often,
an extended first PCR cycle is used to synthesize the second-
strand. An alternative to PCR is linear amplification by in vitro
transcription (IVT), as implemented by the CEL-seq protocol [16].

Each of these steps can skew the representation of original
transcripts by sequencing reads. It is worth noting that there is a
difference between variability and bias. Statistically, the average
of a repeatedly sampled value needs to deviate from the true
value to make it an actual bias; random variation per se is not
enough. Biases in RNA-seq can have very different effects and it
is important to understand, classify and quantify these. Two key
properties that help categorize biases are their scale (local – bias
is specific to one gene or individual positions, or global – bias
occurs across genes in a systematic overall pattern) and their
visibility (can be seen on a coverage plot, e.g. Figure 1A), which are
explained in more detail below. These properties are not always
independent.

In the next section, we introduce the two major methods
for quantifying the abundance of RNA in a sample. We dis-
cuss how the sample preparation process introduces bias for
coverage-based approaches, avoids these biases for UMI-based
approaches, and how these approaches compare otherwise.

Quantitation approaches
Read numbers alone are not sufficient to quantify the abun-
dance of RNA in a sample and need to be expressed in terms
of transcript numbers to draw conclusions about biological
processes in many cases. Here, we discuss the two main
approaches, read-coverage and UMIs, and their strengths and
limitations.

Coverage-based approaches

Coverage (the number of sequencing reads that align to known
reference bases)-based approaches have characteristic biases
which are likely to affect quantitation of expression levels. These
can occur on a well-studied local scale, or an as yet under-
characterized global scale.

It is generally assumed that expected sequencing read num-
bers for a particular transcript are proportional to its length, i.e.
a linear relationship, giving rise to the RPKM/FPKM (reads/frag-
ments per kilobase transcript length per million total sequenc-
ing reads) or transcripts per million (TPM) measures [17]. These
have been recognized to be inadequate in their original con-
ception and are frequently subjected to various bias correc-
tion algorithms, although the fundamental notion of length-
proportionality is usually kept [18]. It is worth noting that appli-
cation of correction algorithms subverts the physical unit/di-
mensions character of their names.

Local biases

If the sequencing read density is plotted along gene bodies,
usually a spikey peak landscape emerges (Figure 1A). Frequently,
abrupt changes in coverage coincide for independent replicate
samples, suggesting that the local sequence environment causes
an actual bias and not just experimental variability (Figure 1A).
This corresponds to local bias that is highly visible (Figure 1B,
bottom left). Its causes are debated, but are likely to include
RNA secondary structure, non-uniform hydrolysis of RNA, RNA
binding proteins and others [19, 20]; most of these factors are
speculated to prevent cDNA production at certain spots and/or
stop cDNA production in the spots’ vicinity, thus causing free
ends that might facilitate adapter ligation (unless tagmentation
is employed).

A potentially powerful experimental solution to this problem
could be provided by reverse transcriptases found in mobile
group II introns. These introns are retroelements that are mainly
found in prokaryotes, fungal and plant organellar genomes.
They consist of an autocatalytic intron RNA and an intron-
encoded reverse transcriptase which act jointly to excise the
intron and reverse-splice it into DNA, thereby propagating them-
selves. Engineered versions of such reverse transcriptases have
been shown to have high fidelity and processivities, and are
thermostable, which permits increased incubation temperatures
during RT, thereby reducing RNA secondary structures. In addi-
tion, they exhibit template switching activity that foregoes the
need to ligate primers or adapters to the RNA [21]. However,
increasing temperatures decreases the stability of RNA [22] and
reduces processivity [23]. Therefore, a delicate balance has to be
struck between minimizing secondary structures and degrada-
tion while maximizing processivity.

The picture is not entirely conclusive, though; RNA-seq
libraries that are based on poly-A tail priming still feature many
(often short) genes with peak-valley-peak formations where the
5′ peaks are larger than the 3′ ones ( [23] and Figure 4A). This
appears hard to reconcile with the idea of obstacles to RT.
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Figure 1. (A) RNA-seq coverages by sequencing read along an example gene (Ube2s) for two biological replicates. Abrupt changes in exonic read densities (vertical

dashed lines) often coincide across samples, suggesting that the local sequence environment is responsible for this type of bias. Data from GEO, accession numbers

GSM710183 and GSM710184. (B) RNA-seq coverage along a typical transcript can be subject to bias at different scales; the schematic illustration depicts an absence of

visible bias (top left), a local bias (bottom left), a global bias (top right) and a combination of the latter two (bottom right). (C) Global bias depends on transcript lengths.

Schematic illustration of the length-dependent effects compared to a short reference transcript with no visible bias (top left). Upon considering longer transcripts in

the same sample, a global bias can appear (bottom left), which does not necessarily lead to a skewed overall representation of the transcripts (the dashed horizontal

line indicates average coverage equal to the reference). However, different lengths often do lead to unequal representation of transcripts due to global bias that might

be invisible or visible in terms of coverage (top and bottom right, respectively).

In general, this local type of bias does not necessarily have a
strong effect on quantification [24]. Although the estimation of
splice variant abundances can be skewed depending on differen-
tial inclusion of individual peaks or valleys, the local variability
might average out for longer RNAs. A related local bias concerns
the apparent non-uniform binding of random oligonucleotides
[25], which are used in some protocols to prime RT. This bias
manifests as unequal nucleotide frequencies at the ends of
sequencing reads, which probably affects coverage similarly as
the aforementioned examples for local biases.

Global biases

A reasonably well understood and intuitive bias arises from
reduced fragmentation efficiency close to the ends of DNA frag-
ments. Tagmentation requires a minimum sequence of ∼10
bases on either end of the integration sites [15]. Similarly, phys-
ical fragmentation methods, such as sonication, probably exert
higher tensile stress on longer strands which facilitates breakage
in longer DNA. The results are fewer sequencing reads from
regions with ineffective fragmentation, which causes noticeable
dips in coverage at the ends of transcripts. However, fragmen-
tation bias is more complex than it seems at first glance; cDNA

production might stop before the end of the transcript is reached
(see below), which potentially biases fragmentation internally,
making the bias less visible and harder to correct. In addition,
even in the absence of internal fragmentation bias, RNAs that are
too short for effective fragmentation will become depleted. Thus,
a global bias is introduced that affects transcript representation
in a non-linear, length-dependent way. This is an example of
a bias that is visible and has both local and global effects. In
general, different combinations of local and global bias might
occur (Figure 1B, bottom right). Potentially, a global bias severely
skews the representation of transcripts, e.g. by underestimating
long ones [20], but is invisible as far as coverage profiles are
concerned (Figure 1C).

An important example for global bias is the unequal ampli-
fication of different sequences by PCR at exponential rates [26].
This has been of particular concern for scRNA-seq, due to the
many PCR cycles that are required. This bias is well recognized
and efforts have been made to tackle it by using IVT [16] and by
employing UMIs as described below [27], albeit these measures
are not compatible with all RNA-seq protocols. In fact, the pro-
tocols themselves introduce strong global biases which warrant
a closer examination.
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Figure 2. Heatmap representation of bias. Data were simulated to contain no

bias (top left) or increasing levels of local bias (left to right) and/or global bias

(bottom row). Each heatmap displays transcripts spanning 100 bases to 10 kb

that are aligned at 5′ and 3′ ends and are ordered from shortest to longest

(top to bottom, respectively). Read coverages are indicated by color in 20 bins

along transcripts (color key, top right). The global bias exhibits non-linear length-

dependent scaling, from uniform coverage, to 5′ bias, to a bimodal distribution

(dark streaks). Typical underrepresentation of transcript ends due to inefficient

fragmentation is indicated by orange arrows (shown for one of the three bottom

plots affected by it).

The origins of global bias

Heatmaps are a convenient way to simultaneously depict the
local and global scale of a visible bias [23]; if the density of
sequencing reads along RNAs is color-coded and RNAs are
ordered by length, patterns emerge. A selection of simulated
datasets illustrates this for varying degrees and types of bias
(Figure 2). The local bias component appears as the noisy
color fluctuations throughout the center and right images
(Figure 2) and which resemble video noise. Fragmentation dips
at either RNA ends, which have both local and global character
as explained above, are visible for the bottom row of images
(Figure 2). Finally, a strong length-dependent (non-linear) global
bias is present in this example as black vertical streaks at the
ends of long transcripts (Figure 2). This type of bias appears in
similar fashion in many actual datasets and is due to the RNA-
seq library preparation process; it has substantial effects on
quantification – what is its origin?

One difference in the sample preparation process is how
RNA is selected to be sequenced; this can cause bias through
the mechanism of RNA degradation. As mentioned earlier, RNA
(compared to DNA) is an inherently unstable molecule, with
a reactive 2′ hydroxyl group which (when deprotonated) can
attack the neighboring phosphodiester bond [22], resulting in
self cleavage. This degradation is complicated further by the
presence of RNase’s in both the surrounding environment and
endogenously in the sample being studied [22]. The instability
of mRNA is one of the reasons why mRNA is converted into DNA
in the early stages of most protocols – however some degradation
is likely to still occur in the process.

A visible global bias can be introduced with RNA degradation
when RNA is selected from one end of the transcript (poly-
(A) + selection) [28]. If one mRNA strand is split in two, and
only one strand is selected for (the poly-(A) + strand), then the
other will be missed. If the assumption is made that cuts in
mRNA occur with equal probability across the whole strand, long
mRNAs will have more cuts than short mRNAs and therefore
resulting reads are more biased towards the 3′ end.

To assess this bias, we used a collection of RNA-seq
degradation datasets of human dorsolateral prefrontal cor-
tex tissue [29] that had been prepared using either poly-
(A) + selection or ribodepletion. Standard ribodepletion based
protocols work by removing ribosomal RNA through sequence
specific hybridization followed by bead separation or enzymatic
degradation. Inspection of read distribution heatmaps (Figure 3)
for these datasets show a more pronounced 3′ bias with
increased degradation times, particularly with longer genes with
pA+ selection, but not with ribodepletion. This also suggests
that 5′ to 3′ exonucleases do not cause the bias on the poly-
(A) + selected samples, because if they did, the bias would also
be present in the ribodepleted samples.

Another major difference between RNA-seq protocols con-
cerns the strategies for producing cDNA. The first step, RT, is
initiated from primers that are designed to either bind random
positions or that target the 3′ poly-A tail of mRNAs. ‘Random-
priming’ was and is common in RT-PCR and is used in strand-
specific RNA-seq systems such as the ScriptSeq or Ovation kits
(Illumina and NuGEN, respectively), while the latter, ‘oligo-(dT)
priming’ is very popular for scRNA-seq. This is because the
primers will not target rRNA and therefore eliminate the need
for purification of mRNA, thus potentially reducing losses of the
limiting starting material.

Depending on the protocol, second-strand synthesis may
once again start from a random position or from the terminus
of the first-strand. The enzymes used in these reactions, reverse
transcriptase and DNA polymerase, are both processive. This
means that large numbers of nucleotides are incorporated before
the enzyme drops off or the reaction stops otherwise (e.g. by
reaching the end of the template strand). However, the exact
stopping points cannot be predicted and are best described as
probabilities for certain positions.

These positional dependencies between first- and second-
strand priming cause global biases which have been noticed
early [30]. Attempts to fully understand these are scarce, pre-
sumably owing to their complexity, but approaches to experi-
mentally tackle them have been developed. One way to strongly
reduce cDNA bias is to perform fragmentation on the original
RNA instead of the cDNA. Since the resulting fragment length
(∼200 bp) is usually an order of magnitude shorter than the
enzyme processivities [31], internal synthesis stops become neg-
ligible. The resulting coverage is more uniform on a global scale
as simulated in the top row of heatmaps in Figure 2. However,
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Figure 3. Biases in experimental degradation datasets of human brain tis-

sue illustrated by heatmaps (data from NCBI BioProject. Accession number:

PRJNA389171, brain number: Br1385). Samples were left at room temperature

to degrade for different amounts of time and both poly(A) + and ribodepleted

libraries were sequenced. Increasing degradation times typically results in a

more pronounced coverage bias towards the 3′ end of the transcript for the

poly(A) + but not the ribodepleted libraries.

RNA fragmentation is not practiced with scRNA-seq; it risks
degradation of RNA and requires ligation of the first-strand
primer directly to RNA, which is presumably of low efficiency
since no scRNA-seq study has done it. There does not appear to
be a reference for this, though, and an actual investigation of this
might be prudent [32].

The protocol-specific global bias is thus hard to experimen-
tally avoid for scRNA-seq. However, it can be understood and
thus corrected based on its shape. In fact, the shapes of the
global bias are highly characteristic for the library preparation
protocol that was used; datasets prepared with ‘SMART’-
mechanism-based protocols (‘Smart-seq’ and its derivatives,
see below) [33], which are prominently employed in scRNA-seq
applications, resemble a Star Trek insignia on the heatmap; its
bias shifts from central to bimodal with increasing mRNA length
(Figure 4A). Subsequent improvements in this protocol resulted
in Smart-seq2 [34], shows the same global bias. We envision the
recently published Smart-seq3 [35] with further improvements
in enzymes and buffers as well as the addition of a 5′ UMI will
also show a similar bias shape as the mechanisms resulting in
the bias remain (see below). Datasets based on random-primed
first strands, as implemented by the Ovation kit (NuGEN), for
instance, display a faint ‘ridge’ slightly off center that diminishes
with increasing transcript length. Coverage profiles at different

lengths might be described as having whale-like shapes (or
perhaps the hat from ‘The Little Prince’), Figure 4B. A summary
of the major types of biases and their effects is shown in Table 1.

The effect of these non-linear length-dependent global biases
is to miscalculate expression levels when assuming a linear
relationship between expression levels and transcript length
(e.g. TPM, RPKM, FPKM). For example, using poly-(A) + selection
on degraded RNA would result in the underestimation of long
transcripts expression levels as these are missing more reads at
the 5′ end than shorter transcripts. In a similar fashion, libraries
based on Smart-seq also underestimate the expression of long
transcripts [23] (see Section Global bias estimation). The size
of this effect can be quite dramatic, for example Dyer et al.
found if a FPKM/TPM is used to compare short (200 bp) and long
(20 000 bp) transcripts on a dataset prepared with smart-seq2,
there would be a ∼9-fold error [36]. In some experiments, this
bias could be less important than others. One example could
be an experiment designed to discover differentially expressed
genes between two conditions using poly-(A) + selected mRNA.
A common pipeline would be to generate counts (the number
of sequencing reads overlapping each gene) and pass this into
a differential expression tool. Here, the global bias due to RNA
degradation might affect both samples equally and not affect
which genes are differentially expressed. However, if degrada-
tion is different between samples – the global bias will affect
quantitation. Of course, for experiments measuring expression
between genes in the same sample these global biases will have
a large effect [23, 36].

One way to tackle bias is via spike-in controls [37]. Spike-
ins are RNA molecules of known concentrations and lengths
that are added to samples at early stages of library preparation.
After sequencing, the reads aligning to these spike-ins can be
then compared to their known concentrations to correct for dif-
ferences in library preparation efficiency between samples (see
section Technical noise in scRNA-seq for further information on
the uses of spike-ins in (sc)RNA-seq).

In theory, the length-dependent global biases present in bulk
and scRNA-seq could also be monitored and corrected by using
spike ins. This could be achieved by comparing known con-
centrations against sequencing reads for different lengths of
spike-ins and adjusting sequencing reads up/down depending
on their lengths [23]. Unfortunately, these spike in probes are
fairly short; for instance, ERCC probes, which dominate use
in existing datasets [37], are roughly between 250 and 2000
nucleotides in length and so cannot be currently used for mea-
suring global bias in long RNAs. Longer alternatives are now
becoming available, though [38].

Analysis approaches to combat bias

Multiple computational methods have been developed to com-
bat some of the biases in RNA sequencing experiments to more
accurately quantify expression levels in coverage-based proto-
cols. As mentioned before, the spiky peak landscape arising from
local biases may not have a strong effect on quantitation, partic-
ularly in longer genes where this might average out – we do note
that isoform quantitation will be affected by this, though [39, 40].

For a gene with only one isoform and in the absence of any
sources of bias, coverage would be uniform across exons. Local
and global biases mean this often is not the case. Roberts et al.
(2011) address the local bias by redistributing reads within a
transcript to make the coverage more uniform. Many tools either
implement this strategy directly (Cufflinks [41], Salmon [40]) or
take similar approaches [17, 42, 43]. A problem with this course of
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Figure 4. Biases in experimental datasets as illustrated by heatmaps and sections of fitted theoretical models. (A) Typical bias resulting from a Smart-seq based dataset

(Encode project accession number ENCSR096STK). Heatmap (left) as in Figure 3 LiBiNorm software [36] was used to fit a bias model to the data whose predicted coverages

are shown for two transcript lengths (right). (B) As A, for a typical random priming based (Ovation® system, NuGEN; GEO accession number GSE84724) dataset. Typical

global pattern and coverage shapes are indicated in orange for Smart-seq and random priming in A and B, respectively.

Table 1. Different types of biases and their properties. The information was collated based on basic logics, heuristic considerations and literature
examples where it was available. Note that some issues addressed in this review have not been systematically researched yet

Types of bias Visibility in
coverage

Local Global Non-linear
length-scaling

Strength of bias References

Fragmentation efficiency Yes Yes Yes Yes Moderate [23]
PCR No No Yes Potentially Strong [123]
Random priming Potentially Yes No No Moderate [23]
Sequence-specific Yes Yes No No Small [25] [24]
Processivity random priming Yes No Yes Yes Moderate [23] [30]
Processivity SMART Yes No Yes Yes Strong [30] [23, 36]
RNA degradation Yes No Yes Yes Strong [28], this review

action is that it ignores the non-linear global length dependent
bias and does not change expression estimates for single isoform
genes. This results in the underestimation of long genes’ expres-
sion levels for SMART and poly-(A) + selected samples [23].

Some protocols use random hexamers to prime RT, which
causes sequence specific bias [25]. This results in preferential
sequencing of fragments starting with particular motifs and
cannot be corrected by simply trimming the ends of reads as this
will result in the bias shifting to sequences next to the random
hexamer bias. The standard approaches to tackle this are algo-
rithms that try to ‘learn’ bias patterns, that is, find sequences
associated with lower or higher count density around the start
of a read, and then adjust read counts up or down accordingly.

Examples for this include variable length Markov models [44]
(implemented in Cufflinks [41], kallisto [45] and Salmon [40]),
Bayesian networks (seqbias [46]) and recurrent neural networks
[47].

GC content can also contribute to under-representation of
sequences, presumably due to incomplete PCR amplification,
which can also be modeled and corrected for [39, 40].

Global bias estimation

There are few tools which attempt to understand and correct for
global biases. Maxcounts [48] tries to avoid this bias altogether
by taking the maximum number of overlapping reads that is
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Anti-bias training for (sc)RNA-seq 7

found at a position along a transcript to measure its expression
level. The downside of this approach is its rejection of the
majority of sequencing reads, which could otherwise provide
useful insights, and its potential vulnerability to local biases [36].

Wan et al. [49] model the non-linear global bias as an expo-
nential decrease from the 5′ end, which appears to be an over-
simplification, though, given the presence of 5′ bias, or clear
bimodal biases on both the 5′ and 3′ ends of many datasets
(Figure 4). The Flux simulator tool [50], can simulate enzymatic
reactions in library preparation and in silico reproduces aspects
of the global bias, but does not provide any bias correction and
uses a model with some shortcomings [23].

Our group has developed the tool LiBiNorm [36] which fol-
lows from the work of Archer et al. [23] and fundamentally
differs from the vast majority of existing software tools for
bias correction. Here, the probabilistic aspects and logics of the
enzymatic conversion steps of different protocols are taken into
account, which allow the construction of mathematical mod-
els that predict certain coverage shapes. Fitting the predicted
coverages to datasets yields parameter values for characteris-
tics of the RNA-seq library preparation process, such as the
processivity estimates. This information can be used to derive
improved estimates for the relative expression levels of the
original mRNAs. Importantly, this approach is based on infer-
ence of reaction mechanisms underlying the library preparation,
which thus provides biochemical reasons for systematic under-
or over-representation of transcripts by sequencing reads.

This is exemplified by Smart-seq and similar SMART-based
protocols, where underrepresentation of long transcripts is
expected based on the library preparation logics; SMART refers
to the ‘Switching Mechanism At the 5’ terminus of the RNA
Transcript,’ which introduces the second-strand primer at the
end of the first-strand [33]. Due to the SMART mechanism and a
PCR selection step [51], incomplete first strands, where RT fails to
reach the mRNA’s 5′ end, are not targeted for PCR amplification.
This occurs more frequently for long mRNAs, which get depleted
in the process.

The protocol also leads to more even coverage, which serves
to render the global bias less obvious.

However, imperfections in the protocol such as the spurious
occurrence of the SMART mechanism inside of some transcripts
(and not at 5′ ends only), usually yield non-uniform coverage
of the observed shape (Figure 4A). This allows fitting models
which produce estimates for enzyme processivities and similar
parameters, in turn allowing for correction of the length bias and
also providing a way to diagnose potential library preparation
issues.

While local bias is too strong to permit precise bias esti-
mation in many cases, we found LiBiNorm to perform well on
Smart-seq2 datasets; these are prepared using additional mea-
sures to reduce local bias [34] and allow improved quantitation
upon LiBiNorm processing and global bias correction [36].

A summary of bias correction tools is in Table 2.

(Faux) ‘Gold standards’

Many bias correction methods use RT-PCR as a gold standard
to measure the success of the correction and benchmark data
to other tools. However, RT-PCR involves cDNA production as
well and is therefore subject to the global bias, too. Employing
a different gold standard might be advisable, such as datasets
prepared with the ‘TruSeq’ protocol that fragments RNA (not
cDNA), thus reducing the bias in RT (although we note here

that RNA degradation can still cause 3′ bias in TruSeq sam-
ples – Figure 3), or data derived from RNA fluorescent in situ
hybridization (FISH) or the Nanostring nCounter® system. In
fact, some popular bias correction tools (Cufflinks [41], Mix2

[52]) are effective when RT-PCR is used as (faux) ‘gold standard’
but often perform worse than even simple linear TPM when
benchmarking on RNA-fragmented data (e.g. TruSeq) [36].

Model-driven insights

Ideally, the model and tools employed will be able to correct
biases and provide insight into how the latter occur. This will
help to develop experiments to test these insights, enabling
better understanding of the biology and make improvements
into RNA sequencing protocols based on model predictions –
a particularly pressing issue to resolve the zero-inflation con-
troversy in scRNA-seq (see section Dropouts). Whilst most tools
make little attempt to explain these technical issues, some do –
which we will briefly touch upon.

For example, the global bias is interpreted as RNA degradation
in Wan et al. [49]. This makes the prediction that increased degra-
dation conditions will increase 3′ bias, and whilst this is true
for the poly-(A) + selected samples, it is not for the ribodepleted
samples (Figure 3). This suggests that degradation does not only
occur from the 5′ end.

The approach taken by Archer et al. [23] showed that careful
modeling of the sample preparation (in this case enzyme proces-
sivities) admits to tests of the model; modulating reaction condi-
tions in one part of the protocol (altering reaction temperatures
for first or second strand synthesis) changed the resulting global
bias in line with predictions of the underlying model. Exploiting
these insights allowed improving the experimental protocols, in
this case by boosting enzyme processivity via decreased reaction
temperatures. This in turn improves conversion of RNA into
cDNA, along with a reduction of global bias, and was adapted
by subsequent studies on full-length RNA sequencing protocols
(e.g. RamDA Seq [53]).

UMIs

UMIs are random oligonucleotide tags which are designed to
label each individual mRNA molecule. When the length of the
random oligos increases, there is an exponential increase in the
number of possible distinct UMIs (4λ, where λ = UMI length),
meaning that each RNA is very unlikely to be tagged with
the same sequence. When sequenced, reads bearing the same
UMI are counted once only, thus removing the potential bias
of unequal PCR-amplification [54]. Ideally this allows inferring
absolute molecule numbers [54], although in reality molecules
are often under/over-estimated [55]. The process of using UMIs
and their effect on the data can be illustrated using simple
simulations of the library preparation process [55], as shown
in Figure 5.

This notion has to be treated with some caution though,
as rates of reaction are what determine biochemical processes,
and these are defined by concentrations and not numbers of
transcripts [56]. Thus, differences in transcript numbers between
cells could be due to a cell size difference (an interesting phe-
notype in its own right) with no changes in rates of reactions.
Ideally this would be accounted for, and whilst it is possible on
the scale of a few genes with RNA FISH, through microscopy
[57] or flow cytometry [58] and even transcriptome-wide with
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Table 2. Selection of bias correction software tools. The list is intended to give an overview of the landscape and is not exhaustive and subject
to limitations in the descriptions etc

Name Protocol type Bias type addressed Comments Reference

LiBiNorm Coverage based,

specifically

Smatseq2

Global Only current tool that addresses cDNA-related global bias [36]

Wan et al. Coverage Global Interprets global bias as RNA degradation only [49]

Flux simulator Coverage Local and global Captures some simplified features of global bias, but only for

simulation, not correction; only model that at least in principle

considers cDNA priming/synthesis as bias source

[50]

RNASeqBias R package Coverage Local and global Assumes independence between expression level and gene/RNA

length and thus corrects globally

[24]

Sailfish Coverage Local and global Method is based on [24] [124]

AIDE Coverage Local Focus on isoforms [125]

BCseq Coverage,

specifically

scRNA-seq

Local and dropouts Focus on scRNA-seq and addresses dropouts [126]

Bento-seq Coverage Local Focus on splicing [127]

iReckon Coverage Local Focus on isoforms [128]

kallisto Coverage Local Focus on sequence specific bias, uses a similar method to [44] [100]

Maxcounts Coverage Local Novel approach; appealing in its simplicity; limited in its power [48]

Mix2 Coverage Local Focuses on positional biases using mixture models, closed source

C++ implementation

[52]

CEM Coverage Local Focus on isoforms and transcriptome assembly [129]

Howard and Heber Coverage Local Focuses on positional biases for isoform quantitation [42]

Wu et al. Coverage Local Focus on isoforms [43]

Huang et al. Coverage Local Focus on isoforms [130]

Liu et al. Coverage Local Focus on sequence specific bias [131]

Alnasir and Shanahan Coverage Local Focus on sequence specific bias [132]

Zhang et al. Coverage Local Employs deep learning for sequence specific bias correction [47]

Jiang and Salzman Coverage Local Focus on isoforms [133]

Roberts et al. Coverage Local Implemented in several software tools (CuffLinks, kallisto, etc.) in

various iterations

[44]

NLDMseq Coverage Local Focus on isoforms [134]

PBSeq Coverage Local Focus on positional and sequence specific biases [135]

PennSeq Coverage Local Focus on isoforms [136]

PGseq Coverage Local Considerers positional and sequence specific biases [137]

PM-seq Coverage Local Uses mixture models [138]

RSEM Coverage Local Concentrates on positional bias [17]

Salmon/Alpine Coverage Local Uses the method of [44] for positional and sequence specific bias,

with additional GC bias correction

[39]

seqbias Coverage Local Concentrate on sequence specific bias [46]

Sequgio Coverage Local Focus on isoforms [139]

SparseIso Coverage Local Focus on isoforms [140]

WemIQ Coverage Local Focus on isoforms [141]

XAEM Coverage Local Focus on isoforms [142]

bayNorm scRNA-seq Dropouts Bayesian approach and non-zero inflated binomial distribution [111]

MAGIC scRNA-seq Dropouts Dropout recovery by sharing information from neighborhood cells [108]

Qju et al. scRNA-seq Dropouts Cell classifier based on dropout co-occurrence [112]

SAVER scRNA-seq Dropouts Empirical Bayes approach for dropout imputation based on intergenic

correlation

[83]

scImpute scRNA-seq Dropouts Bayesian approach to rescue dropout gene using information from

similar cells

[109]

ScVI scRNA-seq Dropouts Neural network approach for scRNA-seq data processing [87]

ZIFA scRNA-seq Dropouts Dimension reduction accounts for dropouts [85]

ZINB-WaVE scRNA-seq Dropouts Imputation method based on zero-inflated model [86]

Buttner et al. scRNA-seq Batch correction Benchmark batch correction methods [93]

Xi et al. scRNA-seq Doublet

discrimination

Benchmark doublet discrimination methods [96]

SoupX scRNA-seq Ambient gene

expression

Use empty droplets to learn model [97]

EmptyDrops scRNA-seq Empty droplets Model ambient RNA pool to detect empty droplets [100]

barcoding [59] – this is laborious and expensive. Recently, scRNA-
sequencing combined with cell imaging measurements using
microfluidic devices has been demonstrated [60, 61].

To prevent ‘over-counting,’ multi-labeling of single tran-
scripts with different UMIs must be avoided. This makes the
poly-A tail a preferred target for labeling an individual mRNA
uniquely using oligo-(dT) – UMI concatenates, thus restricting

detection to poly-(A) + transcripts. There is also a trade-off with
sensitivity; UMI usage restricts quantification of a transcript to
the single fragment (usually from the RNA’s 3′ end) bearing the
UMI, whereas other fragments are lost. Therefore, for studying
any processes away from the 3′-end, such as alternative splicing,
UMI-based methods are not useful. This problem may be solved
in the future with greatly increasing sequencing lengths, ideally
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Figure 5. Schematic illustration of RNA library preparation and sequencing

using UMIs produced using simulations, similar to [55]. (A) Initial number of

RNA molecules in sample, colors indicate different genes. (B) Molecules get

‘captured’ by UMI tags (dots). Non-captured RNA molecules are lost (dashed

lines). (C) Captured molecules are amplified by PCR. (D) Sequencing of cDNA

library, sequencing depth determines how many copies are lost (transparent).

(E) Reads to mRNA counts relationship is noisy due to stochastic effects during

amplification and sequencing, as well as PCR efficiency variation between genes.

Color brightness indicates PCR amplification efficiency, with darker colors indi-

cating lower efficiency. (F) Sequenced UMIs are used to remove duplicate reads,

improving the estimation of the initial RNA molecules.

resulting in full length UMI labeled transcripts being sequenced.
For now, coverage based methods (or combining coverage based
methods with UMIs [35]) still have to be used to answer these
types of questions.

Restricting this quantification to the single fragment at the
3′ end means that the global length dependent biases of degra-
dation and processivity are irrelevant. However, whilst we have
said that local biases might not have a strong effect on quan-
titation for coverage-based protocols, the opposite may be true
for UMI based ones. This is because restricting quantitation to
only a single fragment means that local peaks or valleys in that
fragment will not be averaged with reads from the rest of the
transcript (unlike coverage-based protocols). Worse still, it will
be an invisible type of bias.

Single cell
Sequencing at a single cell level has recently gained huge trac-
tion in a variety of fields (see [62] for a review). The major advan-
tage of scRNA-seq over bulk RNA sequencing is that the identity
of the individual cells in a population is preserved. This allows
for a heterogeneous population such as those found in biomedi-
cal samples to be dissected into its constituent sub-populations
after sequencing, which can be used to detect diseases at early
stages [63–65], or track the progression of differentiation and

development [66–68]. Similarly, differences in the expression lev-
els between cells of homogeneous populations can be measured,
which can be useful for interpreting the underlying stochastic
mechanisms of gene expression. Therefore, mRNA distributions
that can be obtained with scRNA-seq are a much richer source of
information than the average RNA expression conferred by bulk
RNA sequencing.

UMIs are particularly useful in scRNA-seq, where PCR ampli-
fication efficiency varies between single cells as well as between
genes. For this reason, the next section is focusing on single
cell sequencing methods using UMIs. However, it is important
to note that the same technical effects also apply to coverage
based single cell studies.

Technical noise in scRNA-seq

scRNA-seq suffers from several additional sources of technical
noise, which contribute to the observed variation between single
cells [69, 70]. The first relates to the sampling or ‘counting’
error associated with the number of RNA molecules captured
by the library preparation process. This results in an intrinsic
source of technical noise which poses a limit to the precision
of scRNA-seq. While sampling error is present in bulk RNA-seq
too, it is negligible in practice due to the much higher amount
of input material. In contrast, sampling error gains significance
in scRNA-seq due to the low number of RNA molecules per cell.
Modeling techniques can be used to account for this source of
technical noise [70, 71].

In addition to sampling error, scRNA-seq suffers from varia-
tion in the library preparation efficiency between cells, resulting
in a variable fraction of RNA molecules per cell being con-
verted to cDNA [46]. This can be due to subtle differences in
the concentration of primers and library preparation enzymes
between cells, as well as variation in cell lysis efficiency [47].
As a consequence, a technical source of variation is introduced
into the total size of single cell cDNA libraries. This is another
type of error which is well known from bulk RNA-seq, where it
is accounted for by expressing RNA counts in terms of reads per
million (RPM) [72]. In scRNA-seq, the total RNA per cell is often
assumed to be constant, and the libraries are scaled based on a
group of genes which are assumed to be stably expressed [73, 74].

However, relying on such normalization methods ignores the
likely variation in transcriptome size between biological groups,
or single cells in the case of scRNA-seq, which is a natural source
of library size variation. As highlighted by others [72, 75], doing so
can lead to vastly different interpretations of the data. Ref. [76]
showed that by accounting for changes in transcriptome size,
more than 6000 genes were found to be induced during yeast
aging, as opposed to only the few hundred identified previously
[77]. The implications are even greater for scRNA-seq, where
often the aim is to compare the expression between cells in a
heterogenous population, consisting of cells of different type,
volume and cell-cycle stage, all of which are expected to affect
the natural size of the transcriptome [78].

Correcting for technical variation in library size is therefore
a crucial step in the pre-processing of scRNA-seq data. Similar
to bulk RNAseq, this can be achieved by using an internal [79]
(e.g. housekeeping genes) or external (RNA spike-ins) reference
point [69], with respect to which the individual libraries can
be scaled. In the former case, a certain group of genes which
is assumed to be non-differentially expressed between cells is
defined, and any variation in the number of counts for these
genes is ascribed to technical sources, allowing the libraries to
be scaled accordingly. The validity of this assumption however
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is not always easy to ascertain, especially in single cells, where
gene expression stochasticity can lead to a variable degree of
expression even for stably expressed genes [80, 81]. This method
is preferred in droplet-based methods, where the application of
spike-ins is unfavorable (see below and [81]).

Using RNA spike-ins, the library sizes can be normalized
between cells without requiring any assumptions about their
gene-expression profile. The assumption underlying the use of
spike-ins is that the same amount is added to each cell, and that
the variation in capture efficiency between cells is similar for
endogenous and spike-in RNA. While the use of spike-ins has
been criticized for use in bulk RNA-seq [82], systematic analysis
in plate-based scRNA-seq has shown that they are a reliable
method for normalization [81].

Using RNA spike-ins for normalization also has certain lim-
itations. For example, as spike-ins can only be added once the
cells have been lysed, they do not reflect the error arising from
variation in lysis efficiency between cells [71]. Furthermore, a
pilot experiment is advisable to determine the optimal amount
of spike-in RNA to be added (5–10% of library size) [81]. Criti-
cism regarding the commonly used ERCC spike-ins [37], whose
gene and polyA tail lengths are shorter than many endoge-
nous transcripts, have also been raised [83]. These however
are mostly relevant to absolute quantification of mRNAs rather
than library normalization between cells. In either case, spike-
ins remain the only way currently to normalize between single
cell libraries without making strong assumptions about gene
expression variation between cells, and have therefore been
strongly recommended for this purpose [84].

Perhaps the biggest limitation of spike-ins is that they can-
not easily be used with current droplet-based scRNAseq, thus
limiting their use to plate-based scRNA-seq [81]. This is in part
because the highly diluted cell suspension required to minimize
the number of doublet encapsulations results in a high frac-
tion of empty droplets. In the absence of spike-ins, the empty
droplets do not contribute to the sequencing cost. When spike-
ins are used however, spike-in cDNA is produced for every single
empty droplet, which can double the cost of sequencing [85].
Recently, a drop-seq device which enables ordering of the cells
into a line prior to encapsulation has been shown to achieve
much higher working concentrations of cell suspensions and
thus fewer empty droplets [86]. Improvements in this area are
likely to make the use of spike-ins in droplet-based sequencing
more cost-effective.

Due to the popularity of droplet-based scRNA-seq methods
(see [87] for a review), driven in part by the lower cost compared
to plate-based scRNA-seq, several spike-in free normalization
methods have been proposed which account for the natural vari-
ation in transcriptome size. By modeling the RNA molecule cap-
turing process by UMIs and by randomly assigning plausible cap-
ture efficiencies to each cell, Ye et al. [88] produced estimations of
the molecule counts per cell without spike-ins, which were com-
parable to results from spike-in based normalization. However, a
requirement of this method is that genes are assumed to have a
zero-inflated (see below) negative binomial distribution, which
may not hold for all genes, conditions and systems. Instead,
Wang et al. [78] use a more flexible prior for the gene-expression
distribution, allowing for the shape of the biological distribution
to be inferred while accounting for changes in the transcriptome
size. Systematic comparisons between these and other methods
are required to establish when each is most suited for.

Other sources of technical noise affecting scRNA-seq include
batch effects, the presence of doublets and multiplets, ambi-
ent gene expression and gene dropouts, the latter of which is

discussed in more depth in the next section. Accounting for
these effects is part of the standard pre-processing and quality
control of most scRNA-seq experiments, an overview of which
can be found in [89].

Batch effects, also known from bulk RNA-seq, occur when
cells from different biological groups are processed separately.
In such cases, technical variation during each step of the process
(cell culture, capture and sequencing) introduces biases which,
if not accounted for, can confound data analysis [90]. The best
way to deal with batch effects is to design the experiment in
a way that avoids them all together. For example, batch effects
can be avoided when using plate-based scRNA-seq by ensuring
that cells from each biological group are equally represented
on each plate [91], something that can be easily achieved using
fluorescence activated cell-sorting.

This is not possible for all scRNA-seq protocols, however.
Specifically in droplet-based sequencing, the standard balanced
experimental design cannot be easily achieved as cells need to
be encapsulated and sequenced separately for each sample, in
order to retain each sample’s identity [90]. Of note are recent
developments in cell-tagging methods (cell ‘hashing’), which
allow cells from different samples to be pooled together prior to
encapsulation and sequencing [92]. The reads from cells belong-
ing to different groups can be subsequently demultiplexed, thus
avoiding batch-effects altogether. In cases where this is not
possible, correction needs to be performed at the analysis stage
(see [93] for a comparison of existing methods, also [94]).

Doublets result when two cells are co-encapsulated in the
same droplet or land in the same well of a multi-well plate
in the case of plate-based scRNAseq. The result is that reads
from these cells cannot be de-multiplexed, leading to artificial
transcriptomes in the data. While these can often be identi-
fied by their unusually high number of associated transcripts,
inherent variation in transcriptome size often found in cell
populations means arbitrarily setting a threshold also intro-
duces a bias [95]. Recent computational models developed to
account for the presence of doublets in an unbiased way are
compared in [96].

Ambient gene expression refers to extracellular RNA which
becomes encapsulated into the same droplet as a cell or
accompanies a cell in the same well, leading to contamination
of a cell’s resulting transcriptome. The presence of extracellular
RNA in the sample results from RNA leaking from damaged
cells during the sample preparation process, and unless it is
accounted for leads to biases in the interpretation of the data.
While it is difficult to completely remove non-endogenous
RNA from the sample prior to library preparation [9], novel
methods exist which can filter these RNA molecules at the
analysis stage.

Methods such as SoupX [97] use the existence of empty
droplets (or wells) to calibrate a cell-free RNA model, which
can be used to correct the data. In the case of plate-based
scRNA-seq, this can easily be achieved by sequencing several
wells into which only cell suspension buffer has been dispensed.
For droplet-based sequencing on the other hand, distinguishing
empty droplets is not a trivial task. While a common approach
is to set a threshold on the minimum number of RNA counts
[9, 98], this introduces another bias.

Specifically, certain types of cells (usually smaller cells) will
also have fewer counts than the average cell and can thus be mis-
takenly excluded from the analysis. The opposite problem also
exists – empty droplets containing cell-free RNA can be mistaken
for a distinct cell type. This has motivated the development of
methods which model the profile of empty cells to efficiently
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exclude them from analysis [99, 100] without removing genuine
cells with low RNA counts. Combining such an approach with
existing models for cell-free RNA such as SoupX could be a
powerful way to tackle both filtering of empty droplets and
cell-free RNA from the data.

Dropouts

Because of the finite size of the single cell starting material,
often genes with moderate or low expression level will not be
detected, which leads to the over representation of zero counts of
gene expression in the final scRNA-seq datasets. This ‘dropout’
phenomenon has been an actively discussed topic since the first
emergence of the scRNA-seq itself [70, 101, 102] and is commonly
ascribed to technical reasons (e.g. capture efficiency, sampling
noise or PCR bias) and deemed an obstacle for quantitative
analysis [103].

(While this section has a focus on UMI methods, low
capture efficiency can affect coverage-based single cell RNA
sequencing datasets too. For example; in a particular cell, a
gene with two isoforms, both expressed at the same level, can
wrongly appear as though only one isoform is being expressed
in scRNA-seq experiments with low capture efficiency. This
is especially important when the expression levels are low
[104].)

It is thus common to process scRNA-seq data using zero-
inflated distribution models for deconvoluting meaningful bio-
logical variance from high counts of zeros due to technical noise.
Therefore, many ‘imputation’ algorithms have been proposed to
‘rescue’ scRNA-seq data from the inflated zero counts for down-
stream applications [78, 101]. For instance, dimension reduction
based on zero-inflated distributions was used on scRNA-seq
datasets to extract informative variables for further analysis
(e.g. ZIFA [105], ZINB-WaVE [106] or ScVI [107]). Other imputation
methods such as MAGIC [108], SAVER [102] or scImpute [109]
‘fill in’ the undetected RNA counts by exploiting gene–gene
expression relationships and information from neighboring cells
sharing similar expression profiles. Although these approaches
are potentially powerful tools to address the dropouts prob-
lem, their proclivity to introduce artifacts [109] and/or erase
existing differences by over-smoothing the data is known
[102].

Recently, it was argued by Svensson [110] that at least for
a range of droplet-based UMI scRNA sequencing methods (e.g.
10x Chromium [9], Drop-seq [10] or InDrop [11]), complex zero-
inflated model based analysis might not be necessary. The
dropout events (zero counts) could be explained well enough
by rather simple Poissonian distributions (gamma-Poissonian
mixture or negative binomial distribution) and correspond
to biologically meaningful information rather than technical
noise, according to the author. Based on this simpler binomial
distribution and taking a Bayesian approach, Tang et al. [111]
developed bayNorm – an integrated package for processing
scRNA-sequencing data and showed accurate reconstruction
of experimental data by their simulation.

However, this might hold true only for the latest generation
of UMI low-volume emulsion techniques as opposed to earlier
methods, owing to improvements in capture efficiencies. All the
same, high-dropout rates are still observed in modern method-
ologies and compatibility with Poissonian models does not prove
genuinely biological origins. Moreover, the evidence collected
from pure RNA control solutions might not convincingly explain
sequencing data derived from cellular RNA samples, which exist
in more complex environments.

The assumption that at least some of the zero counts
reflect biological variance is supported by recent work from
Qiu [112], who presented a cell type classifier based on
dropout co-occurrence patterns alone. Furthermore, the author
demonstrated that such a classifier is as powerful as classifica-
tion algorithms based on high count mRNA molecules. This
further supports the argument that dropout events contain
meaningful biological information, rather than being purely
an artifact.

In conjugation with other techniques

A further issue with scRNA-seq datasets is illustrated well by
the differing conclusions obtained from these compared to alter-
natives, such as single molecule RNA FISH (smFISH) [57] or
live cell imaging [80]; whereas scRNA-seq data suggest that
the vast majority of genes feature relatively little variability,
consistent with a Poisson distribution of transcript numbers [11],
imaging data usually shows variability higher than a Poisson’s
(e.g. [58, 80, 113]).

One field of note here is spatial transcriptomics, where
researchers combine measuring RNAs with their positional
contexts. Here, imaging data such as smFISH appear well suited
to the task, e.g. [114–116], however, as mentioned previously, it
is difficult to measure more than a few genes simultaneously
with this method. To combat this challenge, some methods use
known positional information from ‘marker genes’ to calibrate
results from scRNA-seq and define the spatial location of each
cell [117, 118]. A problem with this calibration approach is that
it requires prior knowledge of marker genes and their locations
and can be biased by the choice of these genes. Technologies
such as slide-seq [119] and Visium [120] allow the spatial
transcriptome to be measured without using ‘marker genes’ by
adding spatially barcoded RNA capture probes to a slide, upon
which fresh-frozen tissue samples are placed. This results in
cDNA containing the spatial barcode, which can then be used to
assign the spatial location of the original mRNAs.

Concluding remarks
(sc)RNA-seq is a rapidly maturing technology, with technical
improvements continuing to increase the output in terms of
numbers of samples/cells sequenced at an exponential rate
[121]; it is now commonplace, with many easily accessible (com-
mercial) implementations and bioinformatic tools to support
data processing and analysis.

While for many biological questions, high sensitivity, preci-
sion or absolute quantification might not be necessary, biases
are still present and underappreciated, which can skew the esti-
mation of transcript abundances and influence the conclusions
that are made.

Furthermore, for more complex aims such as analyses of
non-genetic heterogeneity [6], gene regulatory network infer-
ence, or even quantitative descriptions of a whole cell [122], the
best possible measurement of expression levels in all respects is
required. Even in situations where relative expression levels only
are of interest, fold changes can be meaningless if they concern
very low expression levels, requiring estimation of the latter.

By highlighting them here, we hope researchers will consider
these issues when designing experiments and continue to
develop methods for dealing with them. These methods can
be experimental, such as using spike-ins, employing UMIs
to combat the PCR amplification bias and fragmenting RNA
to combat RT bias, or computational, such as improving
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expression level estimation by modeling the sample preparation
process.

Key points
• RNA-seq is subject to trade-offs between sensitivity

and single transcript labeling
• Coverage bias can be local or global, visible or invisible
• Global bias can cause systematic and length-

dependent over- or underestimation of transcripts,
with protocol dependent patterns

• scRNA-seq in particular is affected by technical noise
and dropouts

• These biases can be explained, understood, and par-
tially corrected by novel analysis approaches
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