Characterization of a glycolipid glycosyltransferase with broad substrate specificity from the marine bacterium Candidatus Pelagibacter sp. HTCC7211

Tao Wei*, Caimeng Zhao*, Mussa Quareshyb, Nan Wu*, Shen Huang*, Yuezhe Zhao*, Pengfei Yang*, Duobin Maa, Yin Chenb

a School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
b School of Life Sciences, University of Warwick, Coventry, CV4 7AL United Kingdom

Running title: New glycolipid glycosyltransferase from SAR11

Address correspondence to: Dr Wei Tao (School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China. Email, weit8008@zzuli.edu.cn or Dr Yin Chen (School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom. Email: Y.chen.25@warwick.ac.uk

Keywords Glycoglycerolipid, glycosyltransferase, GTcp, MGlc-DAG, lipid remodelling

Submission to Environmental Microbiology
Abstract

In the marine environment, phosphorus availability significantly affects the lipid composition in many cosmopolitan marine heterotrophic bacteria, including members of the SAR11 clade and the Roseobacter clade. Under phosphorus stress conditions, non-phosphorus sugar-containing glycolipids are substitutes for phospholipids in these bacteria. Although these glycolipids play an important role as surrogates for phospholipids under phosphate deprivation, glycolipid synthases in marine microbes are poorly studied. In the present study, we biochemically characterized a glycolipid glycosyltransferase (GT$_{cp}$) from the marine bacterium *Candidatus* Pelagibacter sp. HTCC7211, a member of the SAR11 clade. Our results showed that GT$_{cp}$ is able to act as a multifunctional enzyme by synthesizing different glycolipids with UDP-glucose, UDP-galactose, or UDP-glucuronic acid as sugar donors and diacylglycerol as the acceptor. Analyses of enzyme kinetic parameters demonstrated that Mg$^{2+}$ notably changes the enzyme’s affinity for UDP-glucose, which improves its catalytic efficiency. Homology modelling and mutational analyses revealed binding sites for the sugar donor and the diacylglycerol lipid acceptor, which provided insights into the retaining mechanism of GT$_{cp}$ with its GT-B fold. A phylogenetic analysis showed that GT$_{cp}$ and its homologs form a group in the GT4 glycosyltransferase family. These results not only provide new insights into the glycolipid synthesis mechanism in lipid remodelling, but also describe an efficient enzymatic tool for future synthesis of bioactive molecules.
The bilayer formed by membrane lipids serves as the containment unit for living microbial cells. In the marine environment, it has been firmly established that phytoplankton and heterotrophic bacteria can substitute phospholipids with non-phosphorus sugar-containing glycoglycerolipids in response to phosphorus limitation. However, little is known about how these glycoglycerolipids are synthesized. Here, we determined the biochemical characteristics of a glycolipid glycosyltransferase (GT_{cp}) from the marine bacterium *Candidatus* Pelagibacter sp. HTCC7211. GT_{cp} and its homologs form a group in the GT4 glycosyltransferase family, and can synthesize neutral glycolipids (MGlc-DAG and MGal-DAG) and an acidic glycolipid (MGlcA-DAG). We also uncover the key residues for DAG-binding through molecular docking, site-direct mutagenesis and subsequent enzyme activity assays. Our data provide new insights into the glycoglycerolipid synthesis mechanism in lipid remodelling.
Introduction

Phospholipids form the structural basis of all cells, but sugar-containing glycoglycerolipids are mainly restricted to marine microbes, cyanobacteria, and higher plants (1, 2). Glycoglycerolipids are found on the lipid bilayer of cell membranes and play critical roles in cell growth, cellular recognition, adhesion, neuronal repair, and signal transduction. These natural glycoglycerolipids often have unusual and sometimes unexpected biological activities, such as antitumor, antiviral, anti-inflammatory, antimalarial, immunostimulatory, and neuritogenic activities, which make them valuable molecular targets for research (3-5).

The basic structure of glycoglycerolipids is characterized by a 1, 2-diacyl-sn-glycerol (DAG) moiety with different numbers and types of sugars (glucose, galactose, mannose, rhamnose, or charged sugars like glucuronic acid or sulfoquinovose) attached at the sn-3 position of the glycerol backbone in DAG. These sugar attachments have an α- or β-anomeric configuration, and are bound via (1→2), (1→3), (1→4), or (1→6) linkages (6, 7). The common glycoglycerolipid structures in marine heterotrophic microbes and cyanobacteria are 1,2-diacyl-3-O-(β-D-galactopyranosyl)-sn-glycerol (monogalactosyl diacylglycerol, MGal-DAG), 1,2-diacyl-3-O-(α-D-glucopyranosyl)-sn-glycerol (monoglucosyl DAG, MGlc-DAG), 1,2-diacyl-3-O-(α-D-galactopyranosyl)-(1→6)-O-β-D-galactopyranosyl)-sn-glycerol (digalactosyl DAG, DGal-DAG), and 1,2-diacyl-3-O-(6-deoxy-6-sulfo-α-D-galactopyranosyl)-sn-glycerol (sulfoquinovosyl DAG, SQDG) (2,8).

Glycoglycerolipids are usually synthesized by glycosyltransferases (GTs), which are highly divergent and polyphyletic. The GTs can be categorized into 110 numbered families according to their sequence similarity and signature motifs, and the stereochemistry of the glycoside linkage formed (9). Of the 110 families, the families GT4, GT21, and GT28, which are known as glycoglycerolipid synthases, utilize sugar nucleotides as donors and contain a consensus sugar donor binding domain near the C-terminus (10, 11). Despite the wide variety of bacterial glycoglycerolipids, only a few bacterial lipid GTs have been identified and characterized so far. The GTs synthesizing MGlc-DAG and DGal-DAG have been isolated.
from the cell wall-less bacterium *Acholeplasma laidlawii*, and were found to belong to the GT4 family in the carbohydrate-active enzymes (CAZy) database (12). Other known members of bacterial GT4 include the MGlc-DAG synthases from *Deinococcus radiodurans* and *Thermotoga maritima* and the MGal-DAG synthase from *Borrelia burgdorferi*, which was the first cloned galactosyltransferase forming MGal-DAG with the α-anomeric configuration of the sugar (13, 14). A bifunctional GT (designated as Agt) from *Agrobacterium tumefaciens* was found to synthesize MGlc-DAG or MGlcA-DAG with UDP-glucose (UDP-Glc) or UDP-glucuronic acid (UDP-GlcA) as the sugar donor, respectively (7). This enzyme also belongs to the GT4 family and was the first glucuronosyl DAG synthase to be isolated. The processive GTs (Pgts), however, are members of the GT21 family, and show high sequence similarity to GT4 family GTs. The Pgts include enzymes from *Mesorhizobium loti* and *A. tumefaciens* that synthesize DGal-DAG, glucosylgalactosyl-DAG (GlcGal-DAG), and triglycosyl DAGs (15, 16). To the best of our knowledge, the structure function relationship of DAG-dependent GT4 glycosyltransferases has not been studied previously due to the lack of crystal structure of these glycoglycerolipids-producing enzymes and, as such, the binding pockets for UDP-sugars and DAG remain elusive.

Glycoglycerolipids play important roles in marine phytoplankton and heterotrophic bacteria under phosphate deprivation. Lipid remodelling reduces the cellular requirement for phosphorus, and the glycoglycerolipids MGlc-DAG/MGlcA-DAG and SQDG replace phospholipids in marine heterotrophic bacteria and marine phytoplankton and cyanobacteria, respectively (17-20). However, little is known about how these glycoglycerolipids are synthesized. Previous studies have shown that a manganese-dependent metallophosphoesterase, PlcP, is essential for lipid remodelling in marine heterotrophs, and that the *plcP* gene is organized in an operon-like structure and a putative glycosyltransferase was found down stream of *plcP* in numerous marine heterotrophic bacteria, such as members of the SAR11 clade (18, 21). Our previous work has shown that the GT from the marine bacterium SAR11 (*Candidatus* Pelagibacter sp. HTCC7211 and HTCC1062) is
homologous to the Agt GT in *A. tumefaciens* (18). However, the activity of a SAR11 GT in the synthesis of glycoglycerolipids has not been characterized so far.

In this study, we report the detailed biochemical characterization of a glycoglycerolipid GT (GT_{cp}) from the marine bacterium *Candidatus* Pelagibacter sp. HTCC7211. Our results showed that GT_{cp} has a broad substrate specificity and can synthesize neutral glycolipids (MGlc-DAG and MGal-DAG) and an acidic glycolipid (MGlcA-DAG). GT_{cp} represents the first member of the GT4 family of lipid GTs from marine bacteria. In addition, homology modelling and site-directed mutagenesis analyses revealed details of its substrate recognition mechanism and identified key residues involved in the co-ordination of DAG in a GT4 family glycosyltransferase for lipid biosynthesis.

Results and discussion

GT_{cp} and its homologs form a new group in the GT4 family with a GT-B fold structure

The gene encoding a putative GT_{cp} (WP_008545403.1) consists of 1005 bp encoding a peptide of 334 amino acids, containing a GT4-like domain (Fig. 1A). This gene was previously hypothesized to be involved in lipid remodelling in *Candidatus* Pelagibacter sp. HTCC7211 for the synthesis of MGlc-DAG and MGlcA-DAG (17, 18). Sequence alignment (Fig. 1B) analyses showed that the GT_{cp} amino acid sequence has between 46-58% sequence identity with the putative GT from *Labrenzia aggregata*(GT_{la}, WP_040439323.1), *Thalassospira lucentensis* (GT_S, WP_062950653.1), *Methylophaga nitratireducenticsrens* (GT_{mn}, WP_014706011.1), *Desulfobulbus mediterraneus* (GT_{dm}, WP_028584068.1), *Citromicrobium bathyomarinum* JL354 (GT_{cb}, WP_010239457.1), *Kordiimonas gwangyangensis* (GT_{kg}, WP_051078133.1), and the characterized Agt (locus tag, atu2297) from *A. tumefaciens* (7).

In the phylogenetic analysis, the GT_{cp}, together with its close homologs (GT_{la}, GT_b, GT_{mn}, GT_{dm}, GT_{cb}, GT_{kg} and Agt), formed a clade in the GT4 family (Fig. 1A). Sequences from this clade showed low sequence identity (< 25%) to other members of GT4 family, which includes more than 150,000 proteins with at least 22 different enzymatic activities at the time of writing.
Purified Agt from *A. tumefaciens* has been found to synthesize MGlc-DAG or MGlcA-DAG with UDP-glucose or UDP-glucuronic acid as the sugar donor, respectively, and the expression of *agt* is known to be induced under phosphate deficiency (18). Neither GT_{cp} nor any of its homologs from marine bacteria have been purified nor characterized to date.

Due to the lack of a three-dimensional structure of DAG-dependent GT4 glycosyltransferases to date, a model of GT_{cp} was generated by homology modelling using the X-ray structure of the GT MshA co-crystalized with UDP (Protein Data Bank [PDB] entry 3C4Q; 17% sequence identity) from *Corynebacterium glutamicum* as the template (Fig. 1C) (22). MshA, also a member of the GT4 family, catalyses the first step of the biosynthesis of mycothiol in actinobacteria using UDP-<i>N</i>-acetylglucosamine (UDP-GlcNAc) as the sugar donor (22). Using the PDBeFold server, we compared the crystal structure of MshA with the modelled structure of GT_{cp}. The predicted structure of GT_{cp} includes a GT-B fold consisting of two Rossmann-like β-α-β domains, with the N-terminal domain (residues 1–160 and residues 320–332) and C-terminal domain (residues 169–315), separated by a large cleft that includes the catalytic centre. The same GT-B fold is also found in several members of the GT4 family enzymes, including MshA and PimA (Fig. 1A) (22, 23). The substrate binding site of the sugar-donor is located mainly in the C-terminal domain, where the sugar-donor forms a number of hydrogen bonds with the protein. Given that the two enzymes (*i.e.* MshA and GT_{cp}) share only 17% overall sequence identity, the alignment was manually corrected by incorporating information such as predicted secondary structures and conserved functional residues. Multiple sequence alignment of GT_{cp} and its homologs revealed that GT_{cp} contains a catalytic dyad composed of His104–Asp256, two conserved UDP-sugar binding motifs (GRVAXEKN and FPSXTDFTG), and a conserved Gly-rich motif, all of which are commonly found in the GT4 family (Fig. 1B) (24).

Cloning of putative gene encoding GT_{cp} and functional verification

The recombinant plasmid pET22b–GT_{cp} was constructed to purify the enzyme for determination of its catalytic properties. Soluble expression of His-tagged GT_{cp} was achieved
in *E. coli* BL21 (DE3) by adding 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG). The recombinant GT_{cp} was purified to homogeneity by Ni–NTA affinity followed by gel filtration chromatography using the Superdex 200 column. In SDS-PAGE analyses, the purified recombinant His-tagged GT_{cp} was visible as a major band with a calculated mass of 38 kDa (Fig. 2A). The process used to purify GT_{cp} is summarized in Table 1. The enzyme was purified 3.5-fold with a yield of 17.1% and a specific activity of 47.1 U/mg. The predicted molecular mass of the monomeric form of GT_{cp} is 38 kDa, but GT_{cp} eluted as a peak corresponding to a molecular mass of approximately 70 kDa in the gel filtration chromatography experiments (Fig. 2B). These results suggested that GT_{cp} forms a dimer in solution, consistent with the proposed mechanism that oligomerization is a major factor contributing to the biochemical function and enzymatic activity of GTs (24).

We used two methods to determine the activity of purified GT_{cp}. Previous studies have shown that thin-layer chromatography (TLC) can resolve these selected glycoglycerolipid standards (15, 16). Indeed, as shown in Fig. 3A, the products of the enzymatic reaction with MGlc-DAG, MGal-DAG, and MGlcA-DAG were observed by staining with sulfuric acid/methanol/water, and corresponded to the standard markers. These results showed that GT_{cp} is able to transfer galactose, glucose, and hexuronic acid to the DAG acceptor using the respective UDP-sugars.

For structural identification, the glycoglycerolipids were analysed by liquid chromatography-mass spectrometry (LC-MS). LC-MS analyses (in the positive ion mode) detected an ammonium adduct (Fig. 3B-D) and fragmentation spectra for monohexuronosyl DAGs (MGlc-DAG and MGal-DAG) and MGlcA-DAG were obtained from the products of the GT_{cp}-catalysed reactions. The calculated m/z of the parental ion of MGlc-DAG, MGal-DAG, and MGlcA-DAG was 756.3, 756.3, and 770.4, respectively. The two species differed in the neutral loss corresponding to the polar head group (179.0 and 193.1 m/z for the loss of the hexosyl group and the hexuronic acid group, respectively). In each case, this loss yielded a DAG-16:0/18:1 (m/z 577.3 or 577.4). A further two peaks corresponded to monoacylglycerol with glyceryl-16:0 (m/z 313.3 or 313.5) and -18:1 (m/z 339.3 or 339.4) fatty acids,
respectively. These results demonstrated that GT$_{cp}$ shows high enzymatic activity towards the synthesis of MGlc-DAG, MGal-DAG, and MGlcA-DAG from DAG and UDP-sugars. Several bacterial lipid GTs from *M. loti*, *A. tumefaciens*, *Mycoplasma pneumonia*, and *Mycoplasma genitalum* have been found to synthesize different glycocephalysids (DGal-DAG, GlcGal-DAG, and triglycosyl DAGs) using UDP-Glu and UDP-galactose (UDP-Gal) as sugar donors (15, 16, 25, 26). The *A. tumefaciens* GT Agt, which synthesizes neutral glycocephalysid (MGlc-DAG) and acidic glycocephalysid (MGlcA-DAG) with UDP-Glc or UDP-GlcA as the sugar donor, respectively, has been isolated and characterized (18). To the best of our knowledge, GT$_{cp}$ is the first bacterial lipid GT acting as a multifunctional enzyme to synthesize MGlc-DAG, MGal-DAG, and MGlcA-DAG with different UDP-sugars as donors. It remains to be seen whether bi-functional/multifunctional GT4 enzymes involved in glycocephalysid synthesis are a common trait in this group. At least one member of this family, the GT4 homologue in *Pseudomonas* sp. appears to be specific for UDP-glucose and does not accept UDP-galactose nor UDP-glucuronic acid as the substrate (Supplementary Figure S1).

Catalytic properties of GT$_{cp}$

The catalytic activity of GT$_{cp}$ was tested with UDP-Glc as the sugar donor substrate and DAG as the potential acceptor substrate. The effect of temperature on GT$_{cp}$ activity was determined in the range of 10–50°C (Fig. 4A). GT$_{cp}$ showed maximum activity at around 35°C and more than half of maximum activity at 20–45°C. Calculation of the activation energy E_a using the Arrhenius plot in a semi-logarithmic form (ln(k)→1/T) was shown in Fig. 4B, and the slope of the plot was used to calculate the activation energy which was $E_a = 44.9$ kJ mol$^{-1}$.

The thermostability of GT$_{cp}$ was evaluated at three different temperatures (30°C, 40°C, and 50°C) with increasing incubation times up to 120 min. Most of the enzyme activity was maintained after incubation at 40°C for at least 120 min, whereas incubation at 50°C for 30 min reduced activity by approximately 50% (Fig. 4C). To investigate the effect of pH on the
enzymatic activity of GT_{cp}, the enzymatic reaction was evaluated in different buffers (pH 7.0–11.0). The maximum activity of GT_{cp} was at pH 8.5, and it retained more than 50% of maximum activity between pH 7.5 and 9.0 (Fig. 4D). Considering the significance of NaCl for marine enzymes, enzyme activity was determined in the presence of NaCl at different concentrations. The recombinant GT_{cp} maintained 54% of its maximum activity in the presence of 1.5 M NaCl and 30% of its maximum activity when the NaCl concentration was increased to 4 M (Fig. 4E).

To investigate the substrate specificity of GT_{cp} for DAGs, different species of varying chain length of DAGs were tested (Table 2). The k_m and k_{cat} values of GT_{cp} were calculated from Hanes-Woolf plots and the Michaelis-Menten equation. For the DAGs with saturated fatty acid chains (di8:0, di10:0, di12:0, di14:0, di16:0, and di18:0), the k_m, k_{cat}, and k_{cat}/k_m values increased with increasing acyl chain length. GT_{cp} showed the higher activities for the unsaturated DAGs than for the saturated DAGs. The most preferred DAG substrate for GT_{cp} was C16:0/C18:1 DAG, consistent with the fact that C16:0 and C18:1 fatty acids are common in marine bacteria (17, 18).

The Michaelis-Menten kinetic parameters for GT_{cp} were determined using UDP-Glc, UDP-Gal, and UDP-GlcA as the sugar donors (Table 3). The K_m value for UDP-Glc (82 μM) was higher than those for UDP-Gal and UDP-GlcA, consistent with the fact that UDP-Glc is the preferred substrate at physiological condition (27). The K_{cat}/K_m value for GT_{cp} toward different sugar donors followed the order UDP-Glc (71.4±2.7) > UDP-GlcA (59.6±3.6) > UDP-Gal (32.2±2.9). UDP-xylene, UDP-rhamnose, UDP-mannose and UDP-fructose were also tested with C16:0/C18:1 DAG, which showed no activity. Thus, GT_{cp} exhibited the highest enzymatic activity for UDP-Glc among the sugar donors tested. In contrast with GT_{cp}, the Pgt from M. loti and A. tumefaciens favour uridine UDP-Gal over UDP-Glc (15, 16). A comparison of GT_{cp} kinetics with other biochemically characterized GT4 glycosyltransferases is listed in Table 4 (22, 28-33).

Metal ions improve enzyme activity of GT_{cp}

Metal ions improve enzyme activity of GT_{cp}
The effect of various metal ions on the enzyme activity of GT_{cp} is shown in Fig. 4F. Among the tested metal ions (5 mM), Mg²⁺, Ca²⁺, and Mn²⁺ significantly stimulated GT_{cp} activity by up to 223%, 125%, and 138%, respectively, although the as-isolated enzyme is already active. Furthermore, EDTA did not significantly affect the enzymatic activity of GT_{cp} after incubation for 60 min at room temperature. The activity of GT_{cp} was decreased by Ba²⁺, Cu²⁺, and Fe²⁺ to 52%, 23%, and 35%, respectively. Moreover, Hg²⁺, Cd²⁺, Ni²⁺, and Co²⁺ completely abolished enzyme activity. This may have resulted from the binding of these metal ions to the -SH, -CO, and -NH moieties of the amino acids of GT_{cp}, leading to structural changes and inactivation.

Given that Mg²⁺ markedly improved the activity of GT_{cp}, we determined metal content of the purified enzyme by inductively coupled plasma-mass spectrometry (ICP-MS) and found that Mg²⁺: protein molar ratio was < 0.03 (supplementary table 1). Similarly, no substitution amount of Ca, Mn or Zn was found in GT_{cp}, suggesting that this enzyme is unlikely a metalloprotein. The kinetic parameters were subsequently determined using purified GT_{cp} in the presence and absence of Mg²⁺ (Table 3). In the presence of excess DAG, the <i>K_m</i> value of GT_{cp} decreased from 82 μM to 58 μM with the addition of Mg²⁺, indicating that GT_{cp} has a higher affinity for UDP-Glu in the presence of Mg²⁺. The catalytic efficiency was nearly 2.0-fold higher than that in the absence of Mg²⁺. In the presence of excess UDP-Glc, the <i>K_m</i> was almost unchanged with/without Mg²⁺. Metal ions are important regulators of physiological functions and contribute to the preservation of the structural integrity of some proteins (35). In contrast to GT-A fold GTs, GT-B fold GTs, including GT_{cp}, are metal ion-independent (24).

However, some studies have found that metal ions also change GT-B fold activity, such as GGT58A1 from <i>Absidia coerulea</i> (36), UGT59A1 from <i>Rhizopus japonicas</i>, Bs-PUGT from <i>Bacillus subtilis</i> P118 (37), and human POFUT2 (38). In some cases, metal ion simultaneously interacts with both the enzyme and the sugar donor in the active site, which causes the glucosyl donor to realign in the active site, and thus affects the activity of the enzyme (39). Interestingly, although human POFUT2 is not a metalloprotein, Mg²⁺, Mn²⁺ and Ca²⁺ are also known to enhance the enzyme activity by facilitating the release of product from...
the enzyme (38). Therefore, it is tempting to speculate that the addition of Mg$^{2+}$ may also help enhance GT$_{cp}$ catalysis in a similar manner.

Insights into structure and glycosylation mechanism of GT$_{cp}$

GT$_{cp}$, along with the previously characterized Agt, form a group in the GT4 family and are GT-B fold GTs (Fig. 1, Fig. 5A). The GT-B fold GTs are thought to employ the so-called retaining glycosylation for adding the sugar unit to the substrate although some researchers have proposed an alternative internal return (S_{N1}-like) mechanism (24, 40). In the latter model, the nucleophilic attack and the departure of the leaving group occur on the same face of the sugar, and involve the formation of a short-lived oxocarbenium-like transition state with asynchronous acceptor glycoside bond formation and phosphate bond breakdown (41-43).

According to this latter model, two conserved amino acid residues are important for catalysis (e.g. Glu316 and His109 in MshA). In MshA, Glu316 and His109 act as catalytic nucleophiles in the S_{N1}-like mechanism, and form hydrogen bonds with the OH-3 and OH-6 of the glucosyl moiety, respectively (22). Indeed, we also found the corresponding residues (Asp256, His104) in GT$_{cp}$ (Fig. 1B). Asp256 and His104 fulfil a critical role in GT$_{cp}$ catalysis, because their substitution to Ala completely abolished catalytic activity (Fig. 5B). Interestingly, mutation of the conserved Asp residue at position 256 to Glu (D256E) reduced activity by more than 90% even though both Asp and Glu residues have a carboxylic acid moiety. Asp256 is essential for the enzymatic activity of GT$_{cp}$ and cannot be replaced by Glu, indicating that the length of the side chain of this residue is important for the activity of GT$_{cp}$. These results suggested that Asp256 and His104 play important functions in glycosyl transfer while maintaining the α-configuration of the anomeric carbon. To confirm the glycosylated position and the anomeric stereoselectivity, MGlc-DAG was purified and analysed by 1H-nuclear magnetic resonance (NMR) (Fig. 5C). The glucosyl moiety of the glycolipid was suggested by the characteristic signals for Glc-H1 (δH 5.17, 1H) and Glc-H2–6 (δH 3.20 to 3.70, 6H) by 1H NMR. The location of the glucosyl moiety was indicated by the correlation between Glc-H1 and C-3 (δH 136.0) in the heteronuclear multiple bond correlation (HMBC) spectrum. The
large coupling constant (J=3.7Hz) of Glc-H1 revealed the α-D-configuration of the glucosidic linkage.

In terms of the donor binding pocket, GT4 family GTs have two highly conserved sequence motifs in their C-terminal domain that are involved in the binding of the sugar nucleotide with the UDP moiety (23, 29, 44). The sequence alignment analyses indicated that GTcp and its homologs have these two conserved motifs in the donor binding pocket (Fig. 1B), consistent with other GT4 proteins. The highly conserved sites were further investigated to illuminate the mechanism of sugar donor binding (Fig. 5A). Each of the potential active sites in the donor binding pocket (Gly16, Gly82, Gly85, Arg190, Lys195, Thr257, Phe258, Gly259, and Glu264) was mutated to Ala. Enzymatic activity of GTcp in all the mutants was almost completely abolished, supporting our assumption from the homology model that these residues are integral to the sugar donor binding site (Fig. 5B). Thr257 in the structure of GTcp corresponds to MshA residue Ser317, which interacts with the 4-OH of the sugar moiety and forms hydrogen bonds (22). When the residue at position 257 (Thr) in GTcp was substituted with Ser (T257S), the T257S mutant exhibited approximately 1.6-times higher activity than that of wild-type GTcp. Compared with the parental residue Thr, Ser has one fewer methyl group; therefore, there is more free space between the Ser residue and the substrate (45). The generated space might allow more room for the appropriate interaction between the Ser residue and the sugar donor. These findings indicate that the mechanism of the sugar donor recognition of GTcp is similar to that of known GT-B fold GTs, such as MshA. That is, the conserved key residues would form hydrogen bonds with the UDP part and interact with the sugar moiety of the sugar donor.

In order to identify potential residues involved in binding of DAG, we docked C16:1/C18:0 DAG into the homology model of GTcp. DAG is predicted to lay in the groove of the open structure in the model (Fig. 6A, B). Docked DAG interacts with several key residues primarily through hydrophobic interactions but also some polar interactions e.g. His104, Thr162 and Arg163 and Trp320 (Fig. 6C), of which His104, Arg163 and Trp320 are strictly conserved in GTcp in a range of bacteria (Fig. 1B). Indeed, the His104, Arg163 and Trp320 mutants are
inactive, supporting a key role in GT_{cp} catalysis (Fig. 5B). Subsequent independent docking of the three UDP-sugars predicted the identical binding pocket for all three (Fig. 6D) in the presence of already docked DAG and with UDP-galactose as an example we observe the DAG and UDP-sugars positioned parallel to one another in the ‘open state’ (Fig. 6E). To the best of our knowledge, our study provides the first insight of the binding pocket of DAG in a GT4 glycosyltransferase involved in glycoglycerolipid biosynthesis.

In MshA, the hydrophobic residue Leu76 helps to stabilize the dimer (22). This residue corresponds to Leu56 in GT_{cp} (Fig. 1B). To investigate the role of Leu56 in GT_{cp}, a site-directed mutant to Ala was made. The mutant L56A protein was loaded onto a Superdex 200 column to analyse its oligomeric state. The eluted peaks of L56A mutant corresponded to the monomer of GT_{cp} (38 kDa) according to their elution volumes (Fig. 2B). No difference was observed between the wild-type profile and the other mutants during protein purification (data not shown). The mutant L56A showed approximately 85% of wild-type GT_{cp} activity.

Structural studies revealed that most of the residues involved in oligomerization are conserved with related GTs, and they appear to be primarily hydrophobic and aromatic residues that form an extensive hydrophobic interface between the monomers (46). These results demonstrated that residue Leu56 is essential for the stable dimerization of the protein, but does not play a direct role in the catalytic reaction of GT_{cp}.

To conclude, our data show that the activity of purified GT_{cp} from the marine bacterium <i>Candidatus</i> Pelagibacter sp. HTCC7211 is sufficient for the synthesis of several glycoglycerolipids, including MGlc-DAG, MGal-DAG and MGlcA-DAG. The ability to synthesize MGlc-DAG and MGlcA-DAG suggest that GT_{cp} may play an important role in lipid remodelling in natural marine systems. GT_{cp} and PlcP, a manganese-dependent metallophosphoesterase, are organized in an operon-like structure in numerous marine heterotrophic bacteria (17, 18). Upon phosphorus (P) deficiency, PlcP selectively degrades phospholipids such as phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) to DAG, which then serves as the substrate for the biosynthesis of these glycolipids by GT_{cp}.
using UDP-Glc, UDP-Gal, or UDP-GlcA as sugar donors (Fig. 7). Both the phospholipid PG and the glycosylglycerolipid MGlc-DAG are anionic under physiological conditions and it is likely that they could be interchangeable while maintaining the desirable biophysical properties of the membrane. Indeed, this has also been documented in the SAR11 strain HTCC7211 (17, 18). Similarly, substitution of PG by the anionic sulfur-containing glycolipid SQDG has also been shown for marine cyanobacteria and phytoplankton (47). Together, our work thus points to the important role of glycosyltransferases as key enzymes in the synthesis of glycosylglycerolipid in marine bacteria.

Materials and Methods

General materials and microorganisms

We purchased UDP-glucose (UDP-Glc), UDP-galactose (UDP-Gal), UDP-glucuronic acid (UDP-GlcA), UDP-xylene, UDP-rhamnose, UDP-mannose, UDP-fructose and diacylglycerol (DAGs) from Sigma-Aldrich Co. (St. Louis, MO, USA). Nickel column and Superdex 200 gel filtration columns were from GE Healthcare (Buckinghamshire, UK). All other chemicals were of the highest reagent grade and were obtained from Sangon (Shanghai, China). The E. coli strains JM109 for DNA manipulation and BL21-CodonPlus (DE3)-RIL for protein expression were obtained, respectively, from TaKaRa Bio, Inc. (Dalian, China) and Stratagene (La Jolla, CA, USA).

Cloning, expression, and purification of GT_{cp}

The gene GT_{cp} from Candidatus Pelagibacter sp. HTCC7211 was codon-optimized and chemically synthesized by Sangon (Shanghai, China). Several site-directed GT_{cp} mutants (encoding mutations G16A, L56A, G82A, G85A, H104A, T162A, R163A, R190A, K195A, D256A, D256E, T257A, T257S, F258A, G259A, E264A and W320A) were constructed using the overlapping PCR method with the common primers as for the wild-type GT_{cp} and two site-specific primers for each mutant (Table 5). The genes were then cloned into the pET22b expression vector using NcoI and SalI restriction sites, and transformed into the host E. coli.
BL21-CodonPlus (DE3)-RIL for gene expression. The transformed cells were grown in LB medium containing 100 mg/l ampicillin and 34 mg/l chloramphenicol at 37°C with shaking at 180 rpm. When the cultures reached an OD 600 of 0.6, IPTG was added to a final concentration of 0.5 mM. After a further 4 h of growth at 37°C, the cells were harvested by centrifugation and lyophilized by vacuum-freezing. The harvested cells were re-suspended in buffer A (50 mM Tris–HCl, pH 7.9, 50 mM NaCl), with 1% (w/v) of triton X-100, and then disrupted by sonication. The cell mixture was then centrifuged at 12,000×g for 30 min, and the soluble fraction was loaded onto a nickel column (GE Healthcare) pre-equilibrated with buffer A. The recombinant enzymes were eluted with elution buffer (20 mM Tris–HCl, pH 7.9, 500 mM NaCl, 300 mM imidazole) and dialyzed overnight in buffer A to remove imidazole. For further purification, the enzymes were loaded on a Superdex 200 (16/60) gel filtration column (GE Healthcare), which was pre-equilibrated with buffer B (50 mM Tris–HCl, pH 7.9, 200 mM NaCl). The fraction size was 0.5 ml and the flow rate was 0.5 ml/min. The peak fractions were collected, concentrated, and analysed by SDS-PAGE (12% polyacrylamide). The protein concentration was determined using the Bradford method. The purified protein was stored in buffer A containing 25% glycerol at −80°C. SDS-PAGE gels and circular dichroism (CD) spectroscopy analyses of the purified protein and the mutants are shown in supplementary Figure S2.

Bioinformatics and homology modelling

A putative GT gene encoding GT_{cp} was identified in the genome of *Candidatus* Pelagibacter sp. HTCC7211 (GenBank accession no. WP_008545403.1). ClustalW2 software (http://www.ebi.ac.uk/Tools/clustalw2/index.html) was used for multiple sequence alignment analysis of GT_{cp} (48). For the phylogenetic analysis, we used the neighbour-joining method and Molecular Evolutionary Genetic Analysis 7.1 software (MEGA, version 7.1) (49). The three-dimensional model structure of GT_{cp} was generated using tools at the Phyre 2 protein modelling server (50) and the crystal structure of MshA (Protein Data Bank [PDB] entry 3C4Q) from *C. glutamicum* as the template. Docking of UDP-Gla/UDP-Glc/UDP-GlcA with GT_{cp} was...
predicted using the Flexible Docking module in Accelrys Discovery studio (51, 52), and the
protein model was imported into Flare (v3.0, Cresset) for docking the DAG substrate and
firstly energy minimized with 2000 iterations with a cut off of 0.200 kcal/mol/A. The DAG lipid
was imported as a ligand and energy minimized in Flare before being docked into the active
site and the best scoring pose selected. Thereafter we utilised the DAG docked ligand with
the model as the basis for the follow up in silico docking of UDP-sugars in the presence of the
DAG.

Enzyme activity assay

The enzymatic activity of GT_{cp} was measured using 0.1 mM UDP-Glc (or UDP-Gal, or
UDP-GlcA) and 0.1 mM DAG as the substrate and 2.0 µM purified enzyme in 10 mM
Tricine/KOH, pH 8.5, 2 mM DTT. The resulting mixture (500 µl) was incubated at 35°C for 60
min with constant shaking at 200 rpm. The products (glycoglycerolipids and DAGs) were
extracted using the Flocch method with methanol-chloroform-water at a ratio of 1:2:0.6
(vol/vol/vol). The lipid extract was dried under nitrogen as at room temperature. The dried
lipids were resuspended in acetonitrile and ammonium acetate (10 mM, pH 9.2) at a ratio of
95:5 (vol/vol) and analysed by LC-MS. One unit of enzymatic activity was defined as the
amount of enzyme required to catalyse the conversion of 1 µmol DAG per min under the
standard conditions. The measurements were corrected for background hydrolysis in the
absence of the enzyme. The <i>K_m</i> and <i>V_{max}</i> values were calculated using Hanes-Wolff plots
with various concentrations of substrate (0.02 to 1.0 mM) and three replicates.

Lipid analysis by TLC and LC-MS

The GT_{cp}-synthesized glycoglycerolipids were analysed by TLC using a Camag
Automatic TLC Sampler III (Camag, Muttenz, Switzerland) for spotting. Glycoglycerolipids
were separated on silica gel 60 (Merck, Darmstadt, Germany) with
chloroform/methanol/water (65:35:4 vol/vol), and stained with sulfuric acid/methanol/water
(45:45:10 vol/vol) for visualization. The resulting solutions were further analysed by

17
high-performance liquid chromatography using a 1290 Infinity II UPLC instrument (Agilent Corp., Santa Clara, CA, USA) coupled with an AB SCIEX Triple Quad™5500 (AB SCIEX, Framingham, MA, USA) equipped with an electrospray-ion (ESI) detector. A BEH Amide XP column (2.5-µm inner diameter, 3 mm by 150 mm, Waters, Milford, MA, USA) was used for chromatographic separation. The mobile phase consisted of acetonitrile (solvent A) and 10 mM ammonium acetate, pH 9.2 (solvent B). The column was equilibrated for 10 min with 95% A: 5% B prior to sample injection. The separation was conducted using a stepwise gradient starting from 95% A: 5% B to 70% A: 30% B after 15 min with a constant flow rate of 150 µl min⁻¹. Mass spectrometric analysis was performed in the ESI positive ion mode with the ion spray voltage at 3500 V and temperature at 350°C. The nebulizer gas and heater gas were set at 40 psi. The analytical data were processed by Analyst software (version 1.6.3).

Inductively coupled plasma-mass spectrometry (ICP-MS)

The metal content of GT₆₀ was measured by using an ICP-MS (Agilent Technologies 7900 ICP-MS). The standards for calibration were freshly prepared by diluting Ca, Mg, Mn, Zn and S stock solution (at 1000 mg·L⁻¹; Sigma-Aldrich, Saint Louis, MO, USA) with 1% (v/v) nitric acid with concentrations from 0.1 to 2.0 mg·L⁻¹ for Ca, Mg, Mn, Zn, and from 1 to 25 mg·L⁻¹ for S. About 3.0 mg protein was digested in 1% (v/v) nitric acid matrix for metal analyses. The content of S was quantified in order to determine the protein concentration. The contents of Ca, Mg, Mn, Zn and S were measured using the emission lines of 396.847 nm (Ca), 280.270 nm (Mg), 259.373 nm (Mn), 213.856 nm (Zn) and 180.669 nm (S) respectively.

Nuclear magnetic resonance spectroscopy (NMR) spectroscopy

NMR spectroscopy experiments were carried out in CDCl₃ with tetramethylsilane as an internal standard. ¹H, ¹³C, DEPT, COSY, HSQC, HMBC and ROESY experiments were recorded at 298 K with 600 MHz spectrometer (Bruker Avance 600, Bruker). Bruker standard software Topspin 3.2 was applied to acquire and process all the spectra data. COSY and ROESY experiments were recorded using data sets (t₁ by t₂) of 2048 by 256 points, COSY
Characterization of recombinant GT$_{cp}$

The optimum temperature of GT$_{cp}$ was measured in Tricine/KOH buffer (pH 8.5) in the range of 10–50 °C. The buffer was adjusted to pH 8.5 for each of the assayed temperatures. The activation energy of the cleavage reaction was calculated using the logarithmic form of the Arrhenius equation: $\ln k = \ln k_0 - \frac{E_a}{R \cdot T}$. The effect of pH on enzymatic activity was tested at 35°C for pH values in the range of 7.0–11.0. The following buffers were used: sodium phosphate (pH 6.0–7.5), Tricine/KOH (pH 7.5–9.5), and N-cyclohexyl-3-aminopropanesulfonic acid (CAPS, pH 9.5–11.0). The thermostability of the purified GT$_{cp}$ was examined by incubating the enzyme in 50 mM Tricine/KOH buffer (pH 8.5) at three different temperatures (30, 40, and 50 °C). Samples (80 µL) of the enzyme were collected after incubation periods of 30, 60, 90, and 120 min at each temperature and the residual activity of each sample was assayed under standard conditions. The enzymatic activity of GT$_{cp}$ was also measured in the presence of various metal salts (MnCl$_2$, ZnCl$_2$, MgCl$_2$, CaCl$_2$, BaCl$_2$, CdCl$_2$, HgCl$_2$, CuCl$_2$, FeSO$_4$, NiSO$_4$, and CoCl$_2$) at 5 mM or 5 mM EDTA. To determine the salt stability of the enzyme, 0–4 M NaCl (final concentration) was added to the reaction mixture and enzyme activity was determined using optimum conditions.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 726116), Royal Society International Exchanges 2017 Cost Share (China) (IEC:NSFC:170213; grant agreement no. 170213), Program for Science &Technology...
Innovation Talents in the Universities of Henan Province (18HASTIT040) and Projects of science and technology activities for overseas students from department of human resources and social security of Henan Province (2019-3)

References

27. Forget SM, Shepard SB, Soleimani E, Jakeman DL. 2019. On the catalytic activity of a

Table 1 Purification of the recombinant GT_{cp} from *Candidatus* Pelagibacter sp. HTCC7211

<table>
<thead>
<tr>
<th>Step</th>
<th>Total protein (mg)</th>
<th>Total activity (U)</th>
<th>Specific activity (U/mg)</th>
<th>Purification fold</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude cell extract</td>
<td>34.8</td>
<td>469</td>
<td>13.4</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Ni-NTA affinity</td>
<td>1.9</td>
<td>85</td>
<td>44.7</td>
<td>3.3</td>
<td>18.1</td>
</tr>
<tr>
<td>Superdex-200 gel filtration</td>
<td>1.7</td>
<td>80</td>
<td>47.1</td>
<td>3.5</td>
<td>17.1</td>
</tr>
</tbody>
</table>

Table 2 Kinetic parameters of GT_{cp} using UDP-Glc, UDP-Gal and UDP-GlcA as sugar donors and different DAG as acceptors.^a

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(k_{cat}) (min<sup>-1</sup>)</th>
<th>(K_m) (μM)</th>
<th>(k_{cat}/K_m) (min<sup>-1</sup> mM<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP-Glc/ DAG (C16:0/C18:1)</td>
<td>5.9±0.4</td>
<td>82.0±0.3</td>
<td>71.9±2.7</td>
</tr>
<tr>
<td>UDP-Gal/ DAG (C16:0/C18:1)</td>
<td>1.0±0.3</td>
<td>32.0±0.4</td>
<td>31.3±2.9</td>
</tr>
<tr>
<td>UDP-GlcA/ DAG (C16:0/C18:1)</td>
<td>4.1±0.1</td>
<td>68.0±0.5</td>
<td>60.3±3.6</td>
</tr>
<tr>
<td>UDP-Glc/DAG (C18:0/C20:4)</td>
<td>4.8±0.2</td>
<td>77.1±0.4</td>
<td>62.2±0.9</td>
</tr>
<tr>
<td>UDP-Glc/DAG (C18:0/C18:2)</td>
<td>6.2±1.5</td>
<td>102.5±0.8</td>
<td>60.5±1.8</td>
</tr>
<tr>
<td>UDP-Glc/DAG (di18:1)</td>
<td>5.0±0.8</td>
<td>90.5±1.6</td>
<td>55.2±2.2</td>
</tr>
<tr>
<td>UDP-Glc/DAG (di18:0)</td>
<td>3.6±0.7</td>
<td>75.3±1.2</td>
<td>47.8±1.3</td>
</tr>
<tr>
<td>UDP-Glc/DAG (di16:0)</td>
<td>1.7±1.4</td>
<td>55.2±0.9</td>
<td>30.8±2.5</td>
</tr>
<tr>
<td>UDP-Glc/DAG (di14:0)</td>
<td>1.0±2.2</td>
<td>45.9±1.1</td>
<td>21.7±2.8</td>
</tr>
<tr>
<td>UDP-Glc/DAG (di12:0)</td>
<td>0.5±0.4</td>
<td>21.6±0.8</td>
<td>13.9±1.7</td>
</tr>
<tr>
<td>UDP-Glc/DAG (di10:0)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>UDP-Glc/DAG (di8:0)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>UDP-Glc/DAG (C16:0/C18:1)<sup>b</sup></td>
<td>8.3±0.3</td>
<td>58.0±0.6</td>
<td>143.1±3.9</td>
</tr>
</tbody>
</table>

^aThe values are means of three independent experiments ± standard deviations. ND, not detectable.

^bThe kinetic parameters were determined using purified GT_{cp} in the presence of Mg²⁺ (5 mM).

Table 3 Kinetic parameters of GT_{cp} using UDP-Glc, UDP-Gal and UDP-GlcA as sugar donor and C16:0/C18:1 DAG as acceptor.^a

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(k_{cat}) (min<sup>-1</sup>)</th>
<th>(K_m) (μM)</th>
<th>(k_{cat}/K_m) (min<sup>-1</sup> mM<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP-Glc</td>
<td>5.85±0.4</td>
<td>82±0.3</td>
<td>71.4±2.7</td>
</tr>
<tr>
<td>UDP-Gal</td>
<td>1.03±0.3</td>
<td>32±0.4</td>
<td>32.2±2.9</td>
</tr>
<tr>
<td>UDP-GlcA</td>
<td>4.05±0.1</td>
<td>68±0.5</td>
<td>59.6±3.6</td>
</tr>
</tbody>
</table>
UDP-Glc (with 5 mM Mg²⁺) 8.25±0.3 58±0.6 142.2±3.9

*The values are means of three independent experiments.

Table 4 Kinetic parameters of GT_{op} in comparison with GT4 glycosyltransferases using different sugar donors.<

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GT<sub>op</sub></th>
<th>PimA</th>
<th>PimB</th>
<th>MshA</th>
<th>TarM</th>
<th>BshA</th>
<th>GtfA</th>
<th>PgLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor substrate</td>
<td>UDP-Glc</td>
<td>GDP-Man</td>
<td>UDP-GlcNAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K<sub>m</sub> (μM)</td>
<td>82±0.3</td>
<td>18±2</td>
<td>19.0±4.6</td>
<td>0.208±0.017</td>
<td>65±10</td>
<td>180±50</td>
<td>11.8±1.5</td>
<td>2.6±0.3</td>
</tr>
<tr>
<td>k<sub>cat</sub> (min<sup>-1</sup>)</td>
<td>5.8±0.4</td>
<td>126±10</td>
<td>78.6</td>
<td>7.35±0.42</td>
<td>4.4±0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k<sub>cat</sub>/K<sub>m</sub> (min<sup>-1</sup>μM<sup>-1</sup>)</td>
<td>71.4±2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The values are means of three independent experiments. UDP-GlcNAC: UDP-N-acetylglucosamine; GDP-Man: GDP-mannose

Table 5 Primers used for PCR amplification in this study

<table>
<thead>
<tr>
<th>Vectors</th>
<th>Upper primers<sup>‡</sup></th>
<th>Lower primers<sup>‡</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>GT<sub>op</sub></td>
<td>5'-GGCGTGACATAGGTGATATTAAG-3' (SalI)</td>
<td>5'-GGCGTGACATAGGTGATATTAAG-3' (SalI)</td>
</tr>
<tr>
<td>G16A</td>
<td>5'-CCACGTGGAATAGCTAGTTGCAAC-3'</td>
<td>5'-GTTGCACTACAGCATCCACAAGTG-3'</td>
</tr>
<tr>
<td>L56A</td>
<td>5'-GAAATAGAGCATCAATATAATGTTG-3'</td>
<td>5'-GTTGCACTACAGCATCCACAAGTG-3'</td>
</tr>
<tr>
<td>G82A</td>
<td>5'-CATATTGACACAGAAGCCACTTTG-3'</td>
<td>5'-CCAAGAGTGTTCTTGTGCAATATG-3'</td>
</tr>
<tr>
<td>G85A</td>
<td>5'-GGGACCTCTTTGGCTTTATGCGAAG-3'</td>
<td>5'-CTTGCCATAAAAAGAAGAGTCCC-3'</td>
</tr>
<tr>
<td>H104A</td>
<td>5'-CAACAGGGTTTCTACACAGATTG-3'</td>
<td>5'-CAACAGGGTTTCTACACAGATTG-3'</td>
</tr>
<tr>
<td>T162A</td>
<td>5'-GTTTACATGGGCATAGGGGAAGTAAAT-3'</td>
<td>5'-CAACAGGGTTTCTACACAGATTG-3'</td>
</tr>
<tr>
<td>R163A</td>
<td>5'-GGTCACTAGGGTACAGGGGAATCATGGA-3'</td>
<td>5'-CAACAGGGTTTCTACACAGATTG-3'</td>
</tr>
<tr>
<td>R190A</td>
<td>5'-GGTATAGCTGTCGTTGCTGAGTG-3'</td>
<td>5'-CAACAGGGTTTCTACACAGATTG-3'</td>
</tr>
<tr>
<td>K195A</td>
<td>5'-GCCATTTGCAAGCAATAATTAAGC-3'</td>
<td>5'-GCTTCAATTTTGGCTTCAAGCTC-3'</td>
</tr>
<tr>
<td>D256A</td>
<td>5'-CCCTAGCAAAAACGAGCAGCACTTTTGG-3'</td>
<td>5'-CCTAGCAAAAACGAGCAGCACTTTTGG-3'</td>
</tr>
<tr>
<td>D256E</td>
<td>5'-CCCTAGCAAAAACGAGCAGCACTTTTGG-3'</td>
<td>5'-CCTAGCAAAAACGAGCAGCACTTTTGG-3'</td>
</tr>
<tr>
<td>D257A</td>
<td>5'-CCCTAGCAAAAACGAGCAGCACTTTTGG-3'</td>
<td>5'-CCTAGCAAAAACGAGCAGCACTTTTGG-3'</td>
</tr>
<tr>
<td>D257S</td>
<td>5'-CCCTAGCAAAAACGAGCAGCACTTTTGG-3'</td>
<td>5'-CCTAGCAAAAACGAGCAGCACTTTTGG-3'</td>
</tr>
<tr>
<td>F258A</td>
<td>5'-CTTCTTCTTTGGCTTTGATGAG-3'</td>
<td>5'-CTTCTTCTTTGGCTTTGATGAG-3'</td>
</tr>
<tr>
<td>G259A</td>
<td>5'-CCGATATTTCTGCTTTGATGAG-3'</td>
<td>5'-CCGATATTTCTGCTTTGATGAG-3'</td>
</tr>
<tr>
<td>E264A</td>
<td>5'-GTGGTTTTGGAGCTTTTTTGAG-3'</td>
<td>5'-GTGGTTTTGGAGCTTTTTTGAG-3'</td>
</tr>
<tr>
<td>W320A</td>
<td>5'-GCTAAAAATATATGCAGGAAGAC-3'</td>
<td>5'-GCTAAAAATATATGCAGGAAGAC-3'</td>
</tr>
</tbody>
</table>

<sup‡</sup>The sites of mutations are underlined.
Figure 1 Multiple sequence alignment and functional domain analyses of GT cp protein. (A) A phylogenetic tree of GT cp and its homologs with known 3-dimensional X-ray structure of GTs. Sequences and structures of GTs are obtained from the NCBI database and the PDB database, including GT1 (calG3, SnogD, CalG1, SpnG, UrdGT2, OleD, CalG2, CalG4, GtfD, GtfA, Vinc, UGT78G1, UGT78K6, UGT85H2, UGT71G1 and UGT72B1), GT3 (CeGs), GT5 (Gbs1 and SSI), GT9 (WaaC, WaaF and Vpar 0760), GT28 (MurG), GT30 (WaaA and KdtA), GT35 (AtPHS2, MalP and GlgP), GT68 (POFUT2), GT80 (Pdst and Bst), GT4 (PimA, PimB, WsaF, GtfA, TarM, PglH, MshA, BshA and WaaG), GT cp and its homologs (GT la, GT tl, GT mn, GT cb, GT kg, GT al, GT bb, GT pa, and Agt). GT pa is the GT4 glycosyltransferase of Pseudomonas sp. PA14 (Supplementary Figure S1). (B) Multiple sequence alignment for GT cp and its homologs using Clustal W program with manual adjusting: GT cp from Candidatus Pelagibacter sp. HTCC7211 (WP_008545403.1); GT la from Labrenzia aggregata (WP_040439323.1); GT tl from Thalassospira luteoentensis (WP_062950653.1); GT mn from Methylphaga nitratireducenticrescens (WP_014706011.1); GT dm from Desulfobulbus mediterraneus (WP_028584068.1); GT cb from Citromicrobium bathymarinum JL354 (WP_010239457.1); GT kg from Kordiimonas gwangyangensis (WP_051078133.1); the characterized Agt from A. tumefaciens (atu2297) and MshA from C. glutamicum (WP_143854623.1). Red bars represent α-helical regions and blue arrows represent β-sheet from MshA (Protein Data Bank [PDB] entry 3C4Q). Residues interacting with UDP-sugar and DAG are indicated by the closed black circles and squares, respectively. Catalytic dyad composed of His104-Asp256 is shaded in grey. Black boxed regions and red boxed regions in the alignment indicated two conserved UDP-sugar binding motifs of GRVAXEKN and FPSXTDTFG and a conserved Gly-rich motif, respectively. (C) Homology modelling showing the predicted structure of GT cp and the catalytic dyad composed of His104-Asp256. The signature glutamate residue in MshA (Glu316) is substituted to an aspartate residue (Asp256) in GT cp.
Figure 2 (A) Over-expression and purification of GT_{cp} proteins from Candidatus Pelagibacter sp. HTCC7211. M, protein molecular weight marker. Lane 1 cell-free supernatant induced with Isopropyl β-D-1-thiogalactopyranoside (IPTG), lane 2 cell-free supernatant without IPTG induction and lanes 3-4, purified GT_{cp} (molecular weight estimated to be ~ 38 kDa). (B) Gel filtration analysis of the wild-type GT_{cp} and the mutant L56A. The red arrows indicate the eluted position of GT_{cp} and the L56A mutant, the black arrows indicate protein markers (from left to right): alcohol dehydrogenase (150 kDa, 12.35 ml), albumin (66 kDa, 15.83 ml) and carbonic anhydrase (29 kDa, 17.95 ml).

Figure 3 Functional characterization of recombinant GT_{cp}. (A) TLC of the enzymatic reaction products with different UDP-sugar donors and diacylglycerol (DAG) as the acceptor by staining with sulfuric acid/methanol/water (45:45:10). (B-D) LC-MS of fragmentation spectra for monohexuronosyl DAGs (MGl-DAG and MGal-DAG) and MGlcA-DAG were obtained from the products of the GT_{cp}-catalysed reaction.

Figure 4 Biochemical characterization of GT_{cp}. (A) Effect of temperature on the activities of GT_{cp}. (B) Arrhenius plot of GT_{cp}. The activation energy of the reaction <i>E_a</i> = 44.9 kJ mol⁻¹ could be determined from the slope of the regression curve with data from 15 °C to 30 °C (<i>R</i>² = 0.97). At higher temperatures, enzyme activities decreased, likely due to denaturation of the enzyme. (C) Thermostability of GT_{cp}. The residual enzyme activity was measured after incubation of the purified enzyme at 30°C (diamonds), 40°C (triangles), and 50°C (boxes), respectively. (D) Effect of pH on the activities of GT_{cp}. (E) Effect of NaCl on the activities of GT_{cp}. The enzyme was incubated in buffers containing different concentrations of NaCl (0 to 4 M) at 4°C for 1 h. Residual activity was measured under optimal conditions. F) Effect of metal ions (5 mM) on the activities of GT_{cp}. The values are means of three independent experiments.

Figure 5 Homology modelling prediction of the UDP-sugar donor binding pocket in the GT_{cp}.
Figure 6 Identification of key residues for diacylglycerol (DAG) binding in the GT_{cp}. A) Homology modelling prediction of the open model based on template 2R60. The arrow indicates the wide cleft. B) C16:1/C18:0-DAG (green) docked in GT_{cp} in the groove (shown as a transparent surface). C) A detailed depiction of key coordinating hydrophobic (black) and polar (light blue) residues for DAG. His104, Thr162, Arg163, Trp320 are crucial for enzyme activity (Fig. 5B). D) An overlay of UDP-glucose (Blue), UDP-galactose (Cyan) and UDP-glucuronic acid (Green) showing all three ligands can occupy the same binding site in similar poses in the DAG-docked GT_{cp}. E) A top-down view of DAG and UDP-galactose shown docked parallel to each other in their respective binding pockets/grooves.

Figure 7 Proposed pathway of the synthesis of non-phosphorus glycosylglycerolipids through PlcP and GT_{cp} in Candidatus Pelagibacter sp. HTCC7211. PlcP converts phosphatidylglycerol (PG) or phosphatidylethanolamine (PE) to generate diacylglycerol (DAG), and GT_{cp} can synthesize different glycosylglycerolipids MGl-DAG, MGal-DAG and MGlC-A-DAG with UDP-Glc, UDP-Gal, or UDP-GlcA as sugar donors and DAG as the acceptor.
A

B

C

D

E