Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/151479

How to cite:
Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

© 2021 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.
SARS-CoV-2 incidence and vaccine escape

AUTHORS

R.N. Thompson1,2,3,*, E.M. Hill1,2,3,4, J.R. Gog3,5

*Correspondence to: robin.n.thompson@warwick.ac.uk

AFFILIATIONS

1Mathematics Institute, University of Warwick, Coventry, UK
2Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
3JUNIPER – Joint Universities Pandemic and Epidemiological Research, https://maths.org/juniper/
4School of Life Sciences, University of Warwick, Coventry, UK
5Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK

A recent Editorial1 described the potential for the evolution of SARS-CoV-2 variants that render vaccines less effective (vaccine escape), assisted by waning immunity following vaccination. This raises a crucial question: how can COVID-19 exit strategies be planned with only a low vaccine escape risk?
A key component of any plausible strategy towards the permanent removal of non-pharmaceutical interventions (NPIs) involves ensuring low case numbers in the short-to-mid-term using NPIs and vaccination. Assuming a fixed vaccine escape mutation probability per infection (p), the risk of a vaccine escape variant arising in a specified time period is

$$\text{Prob(vaccine escape)} = 1 - (1 - p)^N,$$

where N represents the number of cases in that period.

Crucially, this indicates that the vaccine escape risk is sensitive to background incidence: the risk of an escape variant appearing within a fixed time is an increasing function of incidence (Fig 1). Reducing cases is not only beneficial for decreasing the pressure on healthcare systems, but also for lowering the vaccine escape risk.

Of course, there are fundamental differences between using NPIs and vaccines to lower incidence. When considering vaccines that do not prevent transmission entirely, there is an interplay between reduced cases at the population-level and the potential for selection for vaccine escape variants in infected vaccinated hosts\(^2\)\(^-\)\(^4\). A related question is whether it is most beneficial to vaccinate many individuals using single vaccine doses or fewer individuals twice. “Dose-sparing” strategies could in theory lead to selection for vaccine escape variants\(^5\). However, current evidence suggests tentatively that the net vaccine escape risk is lower when more hosts are vaccinated with single doses, due to reduced cases\(^2\).
Despite its simplicity, our quantitative illustration demonstrates that strategies for mitigating the vaccine escape risk should be explored. Reducing case numbers locally should only be one component of these strategies. Travel restrictions to reduce the risk of importing novel variants should be considered. We recognise that assessing the escape variant emergence risk not only requires the variant to arise via mutation as considered here, but also to grow to appreciable frequencies. This is a stochastic process, depending on the availability of hosts to infect and the escape variant’s fitness. A reduction in cases leads to both a reduction in the risk of escape variants appearing and a reduction in their subsequent establishment through transmission around the population. Acquisition of additional mutations that are beneficial for the virus is also more likely to be suppressed if incidence rates are reduced.

In summary, high SARS-CoV-2 incidence rates act to increase the vaccine escape risk. Maintaining low case numbers using NPIs and vaccines is critical at the current time.
REFERENCES

