Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/151663

How to cite:
Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

© 2021 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.
3D-printing to innovate biopolymer materials for demanding applications: A review

Nannan Li a,1, Dongling Qiao b,1, Siming Zhao a, Qinlu Lin c, Binjia Zhang a,*, Fengwei Xie d,**

a Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China

b Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China

c National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China

d International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, United Kingdom

* Corresponding authors. Email address: zhangbj@mail.hzau.edu.cn (B. Zhang)

** Corresponding author. Email addresses: d.xie.2@warwick.ac.uk, fwhsieh@gmail.com (F. Xie).

1 These authors contributed equally to this work.
Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>5</td>
</tr>
<tr>
<td>Abstract</td>
<td>7</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>2. Biopolymers for 3D-printed materials</td>
<td>12</td>
</tr>
<tr>
<td>2.1. Polysaccharides</td>
<td>13</td>
</tr>
<tr>
<td>2.1.1. Starch</td>
<td>13</td>
</tr>
<tr>
<td>2.1.2. Cellulose</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3. Alginate</td>
<td>15</td>
</tr>
<tr>
<td>2.1.4. Pectin</td>
<td>15</td>
</tr>
<tr>
<td>2.1.5. Carrageenan</td>
<td>16</td>
</tr>
<tr>
<td>2.1.6. Chitosan</td>
<td>16</td>
</tr>
<tr>
<td>2.1.7. Hyaluronic acid (HA)</td>
<td>17</td>
</tr>
<tr>
<td>2.1.8. Xanthan gum</td>
<td>17</td>
</tr>
<tr>
<td>2.2. Proteins</td>
<td>17</td>
</tr>
<tr>
<td>2.2.1. Collagen</td>
<td>18</td>
</tr>
<tr>
<td>2.2.2. Silk fibroin</td>
<td>18</td>
</tr>
<tr>
<td>2.2.3. Gelatin</td>
<td>19</td>
</tr>
<tr>
<td>2.2.4. Keratin</td>
<td>19</td>
</tr>
<tr>
<td>2.2.5. Casein and whey protein</td>
<td>20</td>
</tr>
<tr>
<td>2.2.6. Soy protein</td>
<td>20</td>
</tr>
</tbody>
</table>
3. Overview of 3D-printing technology for biopolymer materials .. 20
 3.1. Inkjet 3D-printing .. 21
 3.2. Extrusion-based 3D-printing .. 22
 3.3. Laser-assisted 3D-printing .. 24
 3.4. Binder jetting .. 26
4. Factors affecting 3D-printing precision of biopolymer materials ... 26
 4.1. Effect of rheological properties on printing behavior ... 27
 4.1.1. Dynamic rheology ... 27
 4.1.2. Steady rheology ... 29
 4.2. Effect of printing parameters on printing behavior ... 32
 4.2.1. Nozzle diameter ... 33
 4.2.2. Extrusion rate .. 34
 4.2.3. Nozzle moving speed ... 35
 4.2.4. Nozzle height .. 36
 4.3. Pre- and post-printing treatments ... 37
 4.3.1. Pre-printing treatment .. 37
 4.3.2. Post-printing treatment .. 40
5. Properties and emerging applications of 3D-printed biopolymer materials 46
 5.1. Mechanical properties and structures of 3D-printed biopolymer materials 46
 5.2. Biopolymer 3D-printing for food applications .. 48
 5.2.1. Starch-based food materials .. 48
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DP</td>
<td>3D printing</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational fluid dynamics</td>
</tr>
<tr>
<td>CIJ</td>
<td>Continuous inkjet</td>
</tr>
<tr>
<td>CNC</td>
<td>Cellulose nanocrystal</td>
</tr>
<tr>
<td>CNF</td>
<td>Cellulose nanofibrils, or nanofibrillated cellulose</td>
</tr>
<tr>
<td>CNTs</td>
<td>Carbon nanotubes</td>
</tr>
<tr>
<td>DHT</td>
<td>Dry-heating treatment</td>
</tr>
<tr>
<td>DIW</td>
<td>Direct ink writing</td>
</tr>
<tr>
<td>DM</td>
<td>Degree of methoxylation (of pectin)</td>
</tr>
<tr>
<td>DOD</td>
<td>Drop on demand</td>
</tr>
<tr>
<td>E</td>
<td>Young's modulus</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>FDM</td>
<td>Fused deposition modeling</td>
</tr>
<tr>
<td>G'</td>
<td>Storage modulus</td>
</tr>
<tr>
<td>G''</td>
<td>Loss modulus</td>
</tr>
<tr>
<td>GelMA</td>
<td>Gelatin methacryloyl</td>
</tr>
<tr>
<td>GMA</td>
<td>Glycidyl methacrylate</td>
</tr>
<tr>
<td>HA</td>
<td>Hyaluronic acid</td>
</tr>
<tr>
<td>HDL</td>
<td>High-density lipoprotein</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>101</td>
<td>IL</td>
</tr>
<tr>
<td>102</td>
<td>iPSC</td>
</tr>
<tr>
<td>103</td>
<td>K</td>
</tr>
<tr>
<td>104</td>
<td>LDL</td>
</tr>
<tr>
<td>105</td>
<td>MPC</td>
</tr>
<tr>
<td>106</td>
<td>n</td>
</tr>
<tr>
<td>107</td>
<td>PEG</td>
</tr>
<tr>
<td>108</td>
<td>PBS</td>
</tr>
<tr>
<td>109</td>
<td>SF</td>
</tr>
<tr>
<td>110</td>
<td>SLS</td>
</tr>
<tr>
<td>111</td>
<td>SPI</td>
</tr>
<tr>
<td>112</td>
<td>TA</td>
</tr>
<tr>
<td>113</td>
<td>$\tan \delta$</td>
</tr>
<tr>
<td>114</td>
<td>WPI</td>
</tr>
<tr>
<td>115</td>
<td>η</td>
</tr>
<tr>
<td>116</td>
<td>$\dot{\gamma}$</td>
</tr>
<tr>
<td>117</td>
<td>γ</td>
</tr>
<tr>
<td>118</td>
<td>τ</td>
</tr>
<tr>
<td>119</td>
<td>τ_y</td>
</tr>
</tbody>
</table>
Abstract

Biopolymers are widely available, low-/nontoxic, biodegradable, biocompatible, chemically versatile, and inherently functional, making them highly potential for a broad range of applications such as biomedicine, food, textile, and cosmetics. 3D printing (3DP) is capable of fabricating some customized, complex material structures composed of single or multiple material constituents that cannot be achieved by conventional methodologies (e.g. internal structures design); thus, 3DP can greatly expand the application of biopolymer materials. This review presents a comprehensive survey of the latest literature in 3DP technology for materials from biopolymers such as polysaccharides and proteins. The most commonly used 3DP techniques (i.e. inkjet printing, extrusion-based printing, stereolithography, selective laser sintering, and binder jetting) in biomedical and food fields are discussed. Critical factors affecting the quality and accuracy of 3D-printed constructs, including rheological characteristics, printing parameters (e.g. printing rate, and nozzle diameter, movement rate and height), and post-printing processes (e.g. baking, drying, and crosslinking) are analyzed. The properties and the emerging applications of 3D-printed biopolymer materials in biomedical, food, and even wider applications (e.g. wastewater treatment and sensing) are summarized and evaluated. Finally, challenges and future perspectives are discussed. This review can provide insights into the development of new biopolymer-based inks and new biopolymer-based 3D-printed materials with enhanced properties and functionality.

Keywords: Biopolymer 3D printing; Mechanical properties; Rheological properties; 3D Printability; Food application; Medical application
1. **Introduction**

Additive manufacturing (AM), commonly known as three-dimensional (3D) printing (3DP), refers to the fabrication of objects layer by layer through the deposition of a material using a printer head and nozzle onto a substrate based on a pre-design shape or geometry to create a 3D object [1, 2]. This technology is highly potential in a broad range of application areas such as construction [3], aerospace [1], food [4, 5], and biomedical fields [6-8].

3DP possess many potential advantages over traditionally used technologies. Using this technology and aided by computer-based model design, complex structures and customized designs composed of multiple material constituents that cannot be achieved by conventional methodologies (e.g. internal structures design) can be fabricated [9]. In biomedical areas, 3DP technologies enable the design and fabrication of various shapes with a porous structure, such as porous scaffold (e.g. meniscus and bone), membranous, organs (e.g. nose and ear), or tissues (e.g. vascular and skin) [10-13]. Besides, materials with a porous structure could assist the delivery of nutrients to cells, which promote cell proliferation and differentiation and maintain cell activity for the regeneration of organs or tissues. In food areas, 3DP allows the manufacture of nutritional, healthy, and portable snacks as well as traditional food with novel shapes [14-18]. 3DP offers the possibilities to apply geometrical design for specific needs [18, 19]. In even wider areas (e.g. wastewater treatment and sensing) [20-22], compared with conventional or subtractive methodologies, 3DP technology allows the reduction of material waste and improvement in manufacture cost-effectiveness [1, 23, 24].

However, the widespread adoption of 3DP technologies has been restricted by the lack of processable, environmentally friendly, and printer-friendly materials to match the performance and
fabrication requirements [25]. Natural biopolymers including polysaccharides (e.g. starch, cellulose, alginate, pectin, carrageenan, chitosan, hyaluronic acid, and xanthan gum) and proteins (e.g. collagen, silk fibroin, gelatin, keratin, casein, whey protein, and soy protein) are widely available, biodegradable, biocompatible, even edible, chemically versatile, and inherently functional (e.g. gelation behavior, antimicrobial activity, and pH-responsiveness). Therefore, there has been a research focus on developing various high-performance and renewable biopolymers materials by 3DP with improved printing efficiency and accuracy for widened applications [27].

Biopolymer 3DP has been an emerging field, which can be demonstrated from an increasing number of related articles published from 2013 to 2020 (Fig. 1). A few reviews [25, 28-31] have been published on 3DP of biopolymers. For example, Liu and Zhang [9] have reviewed food 3DP with a particular focus on the effect of formulation including additives. Their review emphasizes that the material 3D-printing behavior is highly correlated with their rheological properties. Goel, Meher, Gulati and Poluri [28] have reviewed different 3DP techniques for biopolymer materials that can be applied for organ replacements and tissue engineering. More recently, a review on the 3DP of biopolymers by Shahbazi and Jäger [32] has covered materials, processes, and applications in pharmaceutical, bioengineering and food areas. However, the effects of printing parameters, pre-printing process, and the characteristics of biopolymers on the structure and architecture of 3D-printed materials, as well as a full array of demanding applications of 3D-printed biopolymer materials, have not been systematically reviewed before, which forms the intention of this article.
Fig. 1 Statistical data of the research articles about the topic of biopolymers for 3D printing techniques published during 2013-2019. The data was obtained from the ISI Web of Science database on 28 February 2021. Search keywords used were “biopolymer”, “polysaccharide”, “starch”, “cellulose”, “chitosan”, “chitin”, “lignin”, “hemicellulose”, “xanthan gum”, “κ-carrageenan”, “hyaluronic acid”, “vegetable”, “fruit”, “alginate”, “pectin”, “protein”, “collagen”, “polyamino acids”, “gelatin”, “whey protein”, “peptides”, “silk”, or “milk protein”, combined with “3D printing” or “additive manufacturing”.

The quality and accuracy of the printed objects are determined by material properties (e.g. mechanical strength, rheological properties, and compatibility), processing factors (e.g. printing rate, nozzle diameter, nozzle movement rate, and nozzle height), and post-printing processes (e.g. baking, drying, and crosslinking). A good understanding of these printing factors is important to achieve the required printability of 3D-printed structures and printing precision and accuracy [9, 33]. The research of 3D-printed biopolymer materials have been mainly focused on food and biomedical application, but a wider application of these materials have also been reported such as wastewater treatment and sensing areas [20, 21, 34].
This review surveys the latest literature in 3D printing technology for biopolymers such as polysaccharides and proteins. The most commonly used 3D printing techniques in the food and biomedical fields are discussed. Critical factors affecting the accuracy of 3D-printed constructs, including rheological characteristics, printing parameters, and post-printing processes are analyzed. The properties and applications of 3D-printed biopolymer materials in different applications are summarized (Fig. 2).

Fig. 2 Properties and applications of 3D-printed biopolymer materials.
2. **Biopolymers for 3D-printed materials**

Biopolymers are polymers that are directly extracted from plants [27, 29], animals [35], and microorganisms [36], mainly including polysaccharides and proteins (Fig. 3). These groups of biopolymers and their applications are summarized in Table 1. These biopolymers have received tremendous attention in materials development as they are widely available, low-/nontoxic, biodegradable, biocompatible, chemically versatile, and inherently functional. The biocompatibility of biomaterials influences the functional properties of 3D-printed tissues and organs. Cells need to adhere to the surface of implanted biomaterials to maintain their viability and proliferation, thereby promoting tissues regeneration [37]. Hence, the selection of biocompatible materials is crucial to the design of bioink formulations. In this section, the fundamental aspects of these different biopolymers are introduced, which can be linked to their processing and materials applications.

![Fig. 3 Classification of 3D-printed biopolymer materials.](image-url)
2.1. Polysaccharides

Polysaccharides are a class of biopolymers that are composed of monomer units connected via glycosidic linkages. A variety of polysaccharides such as starch, cellulose, alginate, chitosan, hyaluronic acid (HA), pectin, and carrageenan have been widely used owing to their widespread availability, low costs, and renewability [27]. They are naturally derived from various sources and have complex crystalline and amorphous structures caused by strong intra- and intermolecular hydrogen bonds within these polysaccharides.

2.1.1. Starch

Starch is isolated mainly from cereal, roots, and tubers of different origins such as maize, wheat, potato, cassava, and rice [38]. It is composed of two major constituent biomacromolecules, namely linear amylose with α(1,4)-linked D-glucose units and highly branched amylopectin with α(1,4)-linked D-glucose backbones and α(1,6)-linked branches [39-41]. These two biomacromolecules are organized to form starch granules with multi-scale structures [42-44]. The ratio of amylose/amylopectin strongly affects the physicochemical properties of starch such as gel formation and viscosity, which determine printability [45, 46].

Starch gelatinization is a process during which the ordered structure is changed into a disordered state by heating in water [47-49]. Starch gelatinization is accompanied by a series of physical changes such as granule swelling, the disruption of multi-scale order structures, and an increase in paste viscosity, allowing gel formation [47, 50]. The changes determine the functional properties of starch during processing [46]. In particular, compared with cereal starches, potato starch possesses
special gel characteristics (i.e. high peak viscosity and transparency), a slightly lower gelatinization temperature (48–67 °C), and a higher gelatinization enthalpy (10.1–11.4 J/g) [51]. Therefore, potato starch is usually used as a gelling agent and thickener in processing. Starch can be processed into films and hydrogels based on different processing methods (e.g. extrusion and film casting) [46, 52].

2.1.2. Cellulose

Cellulose is the most abundant polysaccharide on the Earth and its major sources are wood, cotton, algae, and bacteria [29, 53]. Cellulose is a linear biopolymer composed of glucose units by β(1,4)-glycosidic linkages [53] and cannot be melt-processed owing to their relatively high melt viscosity [54]. Also, cellulose is insoluble in water and common organic and inorganic solvents due to the preferential formation of intra- and intermolecular hydrogen bonds [55, 56]. Cellulose can only be dissolved in a few classes of solvent such as ionic liquids (ILs) [40, 57, 58] and N-methylmorpholine-N-oxide monohydrate (NMMO) [59, 60]. Therefore, cellulose is commonly modified to develop materials. Based on its abundant hydroxyl groups, cellulose can be modified via esterification, etherification, grafting, and crosslinking [61]. Cellulose can also be physically modified by radiation-induced treatments (e.g. electron beam and gamma radiation) to improve the accessibility of the solvent to promote the chemical modification, processing, or hydrolysis of cellulose [62]. After dissolution or modification, a series of cellulose-based materials can be fabricated, including hydrogels or aerogels [63-65], films [66], and composites [67]. Besides, several cellulose nanomaterials such as cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) have attracted great interest to develop bioink formulations due to their structural similarity mimicking the extracellular matrix (ECM) [27]. Moreover, the high mechanical properties of cellulose and cellulose
nanomaterials are a major advantage of maintaining product geometry [68, 69].

2.1.3. Alginate

Alginate is a linear polysaccharide existing as a component of the cell walls of brown seaweed or an extracellular polysaccharide of some bacteria. It consists of (1,4)-linked β-D-mannuronate (M-block) and α-L-guluronic acid (G-block) [70, 71]. Alginate can form gel via adding divalent cations (e.g. Ca\(^{2+}\)) [72, 73]. Sodium alginate is one of the most common water-soluble alginate and widely used in many areas due to its good gelling characteristic, high stability, thickening property, low cost and easy processing [74-76]. In particular in the biomedical area, alginate hydrogels have been prepared by various crosslinking methods (e.g. ionic crosslinking, covalent crosslinking, and thermal gelation) [70, 72].

2.1.4. Pectin

Pectin comes mainly from the wastes of vegetables and fruits (e.g. peel, core, and shell) and the wall of plant cells. It consists of α(1,4)-D-galacturonic acid units with different degrees of methylesterified carboxyl groups and rhamnogalacturonan [77, 78]. The applications of pectin as a gelling and thickening agent or stabilizer depends on the degree of methoxylation (DM), which can be categorized into high-methoxyl pectin (DM: > 50%) and low-methoxyl pectin (DM: < 50%) [79]. Low-methoxyl pectin gel is a food ink suitable for 3DP and generated through the formation of calcium ions crosslinks between free carboxyl groups [79].
2.1.5. Carrageenan

Carrageenan is a type of linear anionic heteropolysaccharide consisting of β(1,3)-sulfated-D-galactose and α(1,4)-3,6-anhydro-D-galactose (3-crosslinked-). They are obtained from marine red algae (Rhodophyta) [80, 81]. According to the degree of sulfation, carrageenan can be classified into three different types, namely, κ-carrageenan, t-carrageenan, and λ-carrageenan [81]. In comparison with t- and λ-carrageenan, κ-carrageenan possesses an excellent thermo-reversible gelling ability and self-sustaining capability and widely used in dairy products [81], active packaging [82], and drug delivery system [83].

2.1.6. Chitosan

Chitosan is an aminopolysaccharides obtained from the alkaline deacetylation of chitin, which is extracted mostly from the shrimp shells and other crustaceans in industry [84, 85]. Chitosan (in most cases, partially deacetylated) is composed of β(1,4)-2-acetamido-D-glucose and β(1,4)-2-amino-D-glucose units. It is insoluble in water but soluble in acidic aqueous solutions and has excellent gel-forming properties [86, 87]. Chitosan has been applied extensively in biomedical areas such as tissue engineering [88], drug delivery [89], and wound healing [90], not only because it has good biocompatibility, biodegradability and non-toxicity but because of its versatile biological activities such as antimicrobial activity and low immunogenicity [85, 89, 91]. Chitosan-based materials were fabricated into different forms such as gel [92], film [93], tablets [94], and capsules [95] by various methods (e.g. crosslinking, matrix coating, capsule shell, and solution casting) [85].
2.1.7. Hyaluronic acid (HA)

Hyaluronic acid (HA) is a repetitive di-saccharide linked by β(1,4)-D-glucuronic acid and β(1,3)-N-acetyl-D-glucosamine [96]. HA is a non-sulfated glycosaminoglycan that is the main constituent of the ECM and is isolated from skin or joints [97]. HA has excellent biocompatibility, different elastic properties, and non-immunogenicity [98]. Therefore, HA has gained much attention in biomedical areas (e.g. bone regenerative therapy, wound healing, and drug delivery) [96, 99-101].

2.1.8. Xanthan gum

Xanthan gum is a high-molecular-mass extracellular polysaccharide produced by the microorganism Xanthomonas campestris [102, 103]. It is composed of a linear backbone of β(1,4)-linked D-glycosidic units with branched polymeric chains and has good water-solubility, excellent thermal stability, and biocompatibility [104, 105]. Xanthan gum solutions exhibit very high viscosity at low concentrations and have strong shear-thinning and rapid-recovery behaviors [104]. Therefore, it has been widely applied in the food [106], cosmetics [107], drug delivery [108], and construction industries [109].

2.2. Proteins

Proteins are natural polymers in which amino acid residues joined together through peptide bonds [110]. Proteins such as silk, collagen, gelatin, keratin, milk protein, and soy protein have been used in many fields because of their excellent biocompatibility, biodegradation, functional and nutritional properties [32, 111-113].
2.2.1. Collagen

Collagen is one of the most significant structural proteins, which is the major component of the ECM [28, 114]. Twenty-eight types of collagen have been identified, of which type I collagen is the most abundant (90%) in animals [114]. Collagen molecules are composed of three α-chains (two identical polypeptide chains α1 and one chain α2) intertwined to form a collagen triple helix [115, 116]. Collagen is mainly sourced from livestock, poultry, and fish, present in skins, bones, tendons, and cartilages [115-117], and plays an important role in tissue engineering. As an ECM protein, collagen has been widely considered as the most suitable biomedical material. However, due to the low viscosity and mechanical properties of printed collagen bioinks, the structure of the printed objects can hardly be maintained. Therefore, crosslinking is required to improve the mechanical properties of collagen. A serial of crosslinking methods such as physical (using e.g. high temperature while under vacuum, which is called dehydrothermal treatment) and chemical (using e.g. genipin and glutaraldehyde) modifications are usually used in the biomedical field [118-121]. Although physical crosslinking is a non-toxic method, it may not be enough to maintain collagen materials with high strength and uniformity. Therefore, it is common to combine physical and other crosslinking methods to improve the mechanical strength of collagen material [114].

2.2.2. Silk fibroin

Silk is a natural protein fiber produced by some arthropods such as silkworms and spiders [122]. As the main component of silk, silk fibroin (SF) consists of approximately two-thirds crystalline and one-third amorphous conformations in both one heavy chain of 390 kDa and one light chain of 25
19

kDa connected through a disulfide linkage [123, 124], resulting in low solubility in water or diluted acid or common organic solvent [125]. Nonetheless, SF can be dissolved in ILs and concentrated solutions of neutral salts such as LiBr and CaCl$_2$[28, 123, 125, 126].

2.2.3. Gelatin

Gelatin is a fibrous protein derived polymer obtained from the partial hydrolysis of collagen. The sources of gelatin are bovine (from bovine hides and cattle bones), porcine (from pig skins), or fish (from fish skin) [127]. Gelatin has received much attention not only due to its unique properties such as cold-setting, thermo-reversible with a melting point close to body temperature, but also it can act as a gelling and thickening agent, which is easy to handle and use [128, 129]. Gelatin has a wide range of viscosity depending on conditions (e.g. pH, temperature, source, and concentration) [127], which allows it to be processed by 3DP [130].

2.2.4. Keratin

Keratin is a naturally derived polymer, classified into epithelial keratin and hair-cell keratin [131]. It can be obtained from discarded wool, poultry feathers, and porcine hairs, and composed of a central α-helical rod domain and variable terminal domains at its N- and C-termini [132]. Owing to its characteristics such as excellent biocompatibility, biodegradability, and very low immune reactions after implantation, keratin is widely used in bone, muscle, skin and nerve regeneration [133].
2.2.5. Casein and whey protein

Casein (80%) and whey protein (20%) are the two main ingredients in milk protein [134, 135]. Casein is a family of related phosphoproteins with supramolecular structures (hydrodynamic diameter about 150–200 nm) ensuring its physical stability in milk. Casein produces a stable heterogeneous network structure when used in combination with hydrocolloids [136]. Moreover, acid and heat will cause gelation of casein micelles, forming a 3D network structure [137-139]. Whey protein is also a mixture of proteins. In contrast to casein, whey protein has a more-ordered structure.

Gels can also form from whey protein due to the combination of non-covalent and covalent bonds between denatured proteins [140]. Besides, whey protein also possesses unique emulsification and thickening properties [141, 142].

2.2.6. Soy protein

Soy protein is a natural and excellent protein that mainly composed of albumins and globulins. It can be classified into three different forms, namely soy flour, soy protein concentrate (SPC), and soy protein isolate (SPI) [143]. SPI is a highly purified form of soy protein, with a minimum protein content of 90% and has excellent properties such as heat-induced thermoplasticity, biodegradability, and biocompatibility and, thus, has been widely used in various fields [143]. Soy protein can be formed in a variety of shapes and structures due to its thermoplasticity, which is suitable for 3DP [144].

3. Overview of 3D-printing technology for biopolymer materials

Various 3DP techniques have been discussed in detail elsewhere [145]. Whereas, this section
summarizes the most commonly used 3D P techniques specifically used for biopolymers, including inkjet printing, extrusion-based printing, stereolithography, selective laser sintering (SLS), and binder jetting (see Table 2). Printing material requirements and applications are also discussed in this section, while post-processing curing is discussed in section 4.3.2.

3.1. Inkjet 3D-printing

Inkjet 3D-printing involves the deposition of ink droplets on a substrate followed by curing to realize 3D models. Inkjet 3D-printing has two working modes, namely continuous inkjet (CIJ) printing and drop-on-demand (DOD) inkjet printing [29, 146]. In CIJ systems, the liquid ink with low viscosity continuously passes through the nozzle and transforms into a droplet flow [147]. On the other hand, DOD printing is a non-contact technique as the printing is carried out using tiny ink droplets jetted with the aid of thermal actuators or piezoelectric (Fig. 4) [147]. Thermal DOD 3D-printing employs heat to generate vapor bubbles that are responsible for the forceful ejection of ink droplets. In piezoelectric DOD 3D-printing, electric stimuli are applied to a piezoelectric material to generate acoustic pulses to force the ejection of bioink droplets [145, 148]. Overall, this technique has gained much attention because of its ability to control the droplet uniformity, directionality, and size, as well as its higher printing speed and cost-effectiveness [149].
Fig. 4 Schematic diagram of a typical drop-on-demand (DOD) inkjet 3D printer. (a) Thermal actuator and (b) Piezoelectric actuation. (a) and (b) are adapted from Ref. [150] with permission from Nature Publishing Group, Copyright 2014. The original was adapted from Ref. [151] with permission from Wiley-Blackwell, Copyright 2013.

3.2. Extrusion-based 3D-printing

Extrusion-based 3DP was first introduced by Crump [152]. While this technology was initially designed for prototyping plastic or metal, it is now widely used in the food and biomedical fields as well. Extrusion-based 3DP is suitable for dealing with a variety of fluids with a viscosity ranging from 30 mPa·s$^{-1}$ to $> 6 \times 10^{7}$ mPa·s$^{-1}$ [150]. Based on the extrusion mechanism, extrusion techniques can be divided into pneumatic-based extrusion, piston-based extrusion, and screw-based extrusion [153], which all rely on the flow of a continuous ink to realize layer-by-layer deposition. Pneumatic-based extrusion can drive multiple heads while changing extrusion rates and is particularly suitable for low-viscosity materials [154]. Regarding piston-based extrusion, the extrusion rate can be adjusted easily by controlling the speed of motor movement [28]. Also, piston-based extrusion
allows high-viscosity inks to be extruded [28]. In screw-based extrusion systems, raw material is fed into the cartridge and transported by a motor-driven auger screw, and the ink flows out through the extrusion nozzle [154]. Irrespectively of type of extrusion of 3DP, the extrudate will be deposited layer-by-layer on the print bed and then solidify, and the process repeats until the final 3D prototype is obtained. Based on printing temperature, extrusion 3DP techniques can be divided into direct ink writing (DIW) and fused deposition modeling (FDM) [155]. As shown in Fig. 5, during a DIW process, a viscoelastic ink is squeezed out of the printing nozzle to form fibers at ambient temperature, which can be deposited into a specific pattern as the nozzle moves [156, 157]. In contrast, FDM is an extrusion-based technique in which a thermoplastic material is heated into a semi-liquid or melt state and extruded from a movable nozzle onto a deposition stage [24, 157]. Compared with other 3DP techniques, extrusion-based 3DP is the most commonly used method as it is simple and cost-effective and can manage a wide range of materials for manufacturing 3D objects.
Fig. 5 Schematic illustration of extrusion-based 3DP process. (a) Direct-ink-writing (DIW) printer and (b) Fused-deposition-modeling (FDM) printer. (a) is adapted from Ref. [156] with permission from Elsevier, Copyright 2019. (b) is adapted from Ref. [24] with permission from Elsevier, Copyright 2019. The original was adapted from Ref. [158] with permission from Emerald Publishing, Copyright 2014.

3.3. Laser-assisted 3D-printing

Laser-assisted 3DP techniques are based on light-dependent polymerization of polymers to fabricate 3D structures. Several light sources can be used for the polymerization of photo-curable polymers, such as UV, infrared, and visible light [28]. Stereolithography is one of the most commonly used laser-assisted printing techniques. It uses UV light to selectively cure the liquid resin via a layer-by-layer process (**Fig. 6a**) [159]. Compared with other 3DP techniques, the advantage of
stereolithography is that it can better control the dimensions and characteristics of the final printed 3D objects with high resolutions [160]. SLS, as shown in Fig. 6b, is also a laser-assisted printing technology that is a modified version of stereolithography. Unlike stereolithography using liquid resin, SLS employs an infrared/UV laser to melt a powder material at or above its melting point in order to selectively fuses the powder to form a layer of a desired shape [161].

![Schematic illustration of the laser-assisted technique.](image)

Fig. 6 Schematic illustration of the laser-assisted technique. (a) Stereolithography apparatus and (b) Selective-laser-sintering (SLS) apparatus.

(a) is adapted from Ref. [159] with permission from ACS Publications, Copyright 2017. (b) is adapted from Ref. [24] with permission from Elsevier, Copyright 2019. The original was adapted from Ref. [162] with permission from Elsevier, Copyright 2017.
3.4. Binder jetting

Binder jetting is a 3D inkjet printing technique first introduced by Sachs, Haggerty, Cima and Williams [163]. In this printing process, the powder is deposited layer by layer, and a binder material is filled between the layers (Fig. 7) [9]. The binder material should satisfy certain characteristics such as low viscosity, high binder content, and rapidly binding action in each layer so that the next layer of powder can be applied to it. The binding mechanism is caused by adhesive forces or chemical reactions between the powder and the binder. After printing, excess parts need to be removed and recycled for the next use. This technology can be used for fabricating complex 3D food structures and has the potential to produce food with varying flavors and textures [9, 163].

Fig. 7 Schematic illustration of a binder-jetting set-up.
Reproduced from Ref. [164] with permission from Elsevier, Copyright 2019.

4. Factors affecting 3D-printing precision of biopolymer materials

In this section, an overview of factors influencing 3DP processes for biopolymers materials is presented (Fig. 8). These factors are essential for creating ideal structures based on 3DP.
Fig. 8 Relationship between the rheological parameters in printability and printing parameters in precision.

4.1. Effect of rheological properties on printing behavior

Rheology is about the flow and deformation characteristics of materials under stress (τ).

Rheological properties are crucial in controlling the resolution and shape fidelity of 3D-printed structures [165, 166]. Rheological measurements should be taken into account as a key part of material characterization to determine a series of printing conditions. **Table 3** summarizes the rheological properties and their applications of 3D-printed biopolymers.

4.1.1. Dynamic rheology

Polymers can be fluids or solids based on molecular mass and temperature and involve both viscosity and elasticity [167]. Storage modulus (\(G'\)) and loss modulus (\(G''\)) represents the elastic solid-like behavior and the viscous response of a material, respectively [167]. They are important indexes to judge material viscoelastic behavior, which can be measured by oscillatory amplitude.
sweep test [155]. In general, at low strain (amplitude), the small deformation is insufficient to disturb the internal structure (entangled and coiled state) of the polymer molecules as they have enough time to relax (elastic behavior, $G' > G''$). In this case, G' remains constant, as reflected by a linear viscoelastic region. As strain (γ) increases, the internal structure of molecules is destroyed resulting in liquid-like behaviors ($G' < G''$) [167]. In addition to G' and G'', loss tangent (tan $\delta = G''/G'$) could better reflect whether a material is suitable for extrusion-based 3DP [168]. Inks with tan $\delta > 1$ are predominantly viscous and can flow and be extruded; with tan $\delta < 1$, the ink has an elastic solid-like structure [45, 169]. Markstedt, Mantas, Tournier, Martinez Avila, Hagg and Gatenholm [170] investigated the effect of different ratios of CNF/alginate (90:10, 80:20, 70:30, and 60:40, w/w) on rheological properties by frequency oscillation. Higher G' and G'' were observed with increasing CNF proportion in the bioink. Moreover, all bioinks showed tan $\delta < 1$, indicating that the inks had solid-like structures [170].

Polymers particularly have viscoelasticity and their flow behaviors are highly affected by external conditions (e.g. concentration and temperature) and internal situations (e.g. molecular interaction). The viscoelasticity of extruded materials highly depends on ink concentration and printing temperature. For example, to improve the structural integrity of 3D-printed cell-laden bioinks, Berg, Hiller, Kissner, Qazi, Duda, Hocke, Hippenstiel, Elomaa, Weinhart, Fahrenson and Kurreck [171] mixed various contents of Matrigel (0, 5, 20, and 50%, w/v) with alginate (2%, w/v)/gelatin (3%, w/v) to form bioinks. G' increased significantly with the Matrigel concentration from 0% to 5% (w/v), and a further increase in the Matrigel concentration from 5% to 20% (w/v) resulted in a slight increase in G'. However, when the Matrigel concentration was increased to 50%
Roehm and Madihally [172] investigated the effect of concentration and temperature on the rheological properties of 3D-printed chitosan/gelatin hydrogels. The results showed that, as the chitosan and gelatin concentration increased, G'' increased proportionally, especially at lower temperatures. Additionally, G' and G'' significantly increased with temperature increasing from 26 °C to 47 °C [172]. Liu, Chen, Zheng, Xie and Chen [33] showed that 3D-printed potato starch samples with 15–25% (w/w) concentration at 70 °C had preferable G', which can ensure the flowability of the ink during printing and the self-supporting strength after extrusion.

Very recently, computational fluid dynamics (CFD) was chosen as a method for describing the dynamic viscosity of printing material by the Bird-Carreau model. Guo, Zhang and Devahastin [173] studied the rheological properties of five kinds of coarse grains (black rice, Job’s tears seeds, mung bean, brown rice, and buckwheat) via comparing CFD simulation and real printing experiments. This model shows a more accurate evaluation of the extrusion flow behavior of grain gels [173]. Thus, this method could allow a fast and accurate material evaluation for extrusion-based food 3DP [173].

By understanding the impact of rheological properties on printability, it is helpful to better guide the application of 3D P technology in biopolymers.

4.1.2. Steady rheology

Steady shear viscosity (η) is the most important rheological parameter in polymers for describing the flow. Polymer viscosity is sensitive to shear rate ($\dot{\gamma}$) as increasing the shear rate can promote disentanglement and orientation of polymer chains [167]. As a result, polymer inks generally have a shear-thinning behavior and exhibit reduced viscosity under higher shear rates [174]. The desired
viscosity should be both low enough to exhibit shear-thinning behavior for easy extrusion through the nozzle and high enough to form self-supporting layers for layer-by-layer deposition [175].

However, when the shear rate is low enough, the material does not exhibit shear-thinning behavior, which may cause the nozzle clogging; if the shear rate is excessively high, the ink viscosity is significantly reduced, resulting in insufficient mechanical strength to maintain the printed shape.

Therefore, for high shape fidelity, the viscosity of the printing inks is an important consideration [176]. Besides, after extrusion, a short time for bioinks to return to the original state is also necessary for achieving ideal shape fidelity [174, 177]. Kim, Lee, Jung, Oh and Nam [178] observed that the viscosity of an alginate/κ-carrageenan/CaSO₄ hydrogel was increased with increasing κ-carrageenan concentration, with shear-thinning behavior. Besides, the recovery behavior of the alginate/carrageenan/CaSO₄ hydrogel at a low shear rate (0.1 s⁻¹) mimicked the stationary state with a recovery time of 60 s, while the recovery time at a high shear rate (100 s⁻¹) was just 10 s [178].

Based on the power-law relationship between \(\dot{\gamma} \) and \(\eta \), some researchers used the power-law index \(n \) and flow consistency \(K \) as the indicators of flow behavior to predict ink printability [34]. An ink exhibits shear thinning behavior with \(n < 1 \) and shear thickening with \(n > 1 \); when \(n \) approximates 1, the ink behaves like a Newtonian fluid [46, 176]. Liu, Bhandari, Prakash, Mantihal and Zhang [104] found that for a multicomponent gel system, \(n \) reduced significantly with the addition of xanthan gum and potato starch, especially at 35 °C and 45 °C, indicating more pronounced shear thinning behavior.

Yield stress \((\tau_y) \) is another very important variable affecting the rheological properties of inks. At low \(\tau \), the polymer materials are found to behave as elastic solids, while they tend to flow above a
critical value of τ, namely τ_y [176, 179]. According to Karyappa and Hashimoto [155], τ_y is determined by η and shear stress (σ). With $\sigma < a$ (the shear stress value at the intersection of the two tangents of the curve, see Fig. 9a), the ink experiences elastic deformation but no flow occurs; with $\sigma \geq a$, the ink began to flow [155]. However, Liu, Bhandari, Prakash, Mantihal and Zhang [104] indicated that τ_y is the crossover point of G' equal to G'' in stress sweep tests (see Fig. 9b). Suitable τ_y is highly important for inks to squeeze out smoothly but stay with high shape fidelity. Pulatsu, Su, Lin and Lin [180] found that the τ_y of cookie doughs was affected by recipe and higher τ_y was favorable for maintaining the 3D shapes after printing. However, a higher milk content led to reduced τ_y, resulting in samples being more liquid-like and could not hold the desired shape [180]. Liu, Chen, Zheng, Xie and Chen [33] demonstrated that increasing potato starch concentration from 10 wt% to 30 wt% significantly increased τ_y (from 44.41 Pa to 883.19 Pa), which could ensure printing accuracy and strength. These results indicated that τ_y is strongly dependent on the content of ingredients in the formulation [33].
Methods to determine yield stress: a) from a typical plot of viscosity as a function of shear stress using the intersection of two tangent lines; and b) the crossover point of elastic modulus (G') equal to loss modulus (G'') in a strain sweep test.

For thermo-reversible behavior materials (such as κ-carrageenan), temperature also affects τ_y. Liu, Bhandari, Prakash, Mantihal and Zhang [104] found that the τ_y of an ink composed of κ-carrageenan (1 wt%)/xanthan (0.5 wt%)/potato starch (2 wt%) decreased from 553.1 Pa to 36.9 Pa with temperature increasing from 35 °C to 45 °C. However, for the κ-carrageenan (1 wt%)/xanthan (0.5 wt%) sample without starch, higher temperature led to the inks with liquid-like behavior, which could not form self-supporting layers [104].

4.2. Effect of printing parameters on printing behavior

There have been limited studies on the 3DP parameters for biopolymers and most of these studies were about food 3DP. The process of 3DP begins with the consideration of the printed shape, which is influenced by both printer- and material-related factors. Printer-related factors involve...
nozzle diameter, extrusion rate, nozzle moving speed, and nozzle height. Material-related factors generally include bioink formulation and printing temperature. These factors are discussed in detail in the following subsections. By adjusting printing parameters (e.g. printing temperature, printing time, and ink concentration and formation), the rheological characteristics of bioinks, good printability, and shape fidelity can be regulated [181, 182]. Table 4 summarizes printing parameters for biopolymers with related applications. In general, a 0.41–2 mm nozzle diameter and a 2–70 mm/s printing speed were found to be appropriate for 3DP of food constructs. For biomedical and tissue engineering, 3D-printed structures can be achieved with a nozzle diameter of 0.15–0.6 mm and a printing speed of 0.03–80 mm/s.

4.2.1. Nozzle diameter

Previous studies [183] demonstrated that nozzle diameter determined the accuracy and the roughness of printed samples. Inks are required for extrusion through the narrow nozzle without the occurrence of clogging [184]. A large nozzle diameter facilitates ink extrusion but may result in relatively rough and poorly-structured printed models, while a small nozzle diameter means a longer time to print [183, 185]. Therefore, an appropriate nozzle diameter is essential for 3DP. In general, a 0.41–2 mm nozzle diameter was found to be appropriate for the 3DP of food constructs. For 3D-printed structures for biomedical and tissue engineering applications, a nozzle diameter of 0.15–0.6 mm could be suitable. Yang, Zhang, Bhandari and Liu [183] studied the influence of nozzle diameter on the quality of 3D-printed constructs based on lemon juice gel (Fig. 10a). They found that a nozzle diameter of 1.0 mm was better than other diameters (0.5, 1.5, and 2.0 mm), leading to a fast printing process (about 200 s) to produce cylinder models with the highest resolution and accuracy [183].
Wang, Zhang, Bhandari and Yang [186] used fish surimi and NaCl to form a gel via extrusion 3D printing. The researchers optimized the printing parameters to prepare surimi gel with high accuracy and dimension. It was shown that the optimal nozzle diameter was 2.0 mm. The choice of suitable nozzle diameter is usually the first consideration for different formulations to be successfully printed [16].

![Fig. 10](image)

Fig. 10 3D-printed lemon juice gel and fish-suremi gel samples at varying printing parameters: (a) Nozzle diameter; (b) Extrusion rate; (c) Nozzle moving speed; (d) Nozzle height. (a), (b), and (c) are adapted from Ref. [183] with permission from Elsevier, Copyright 2018. (d) is adapted from Ref. [186] with permission from Elsevier, Copyright 2018.

4.2.2. Extrusion rate

Extrusion rate influences printing accuracy as well. Yang, Zhang, Bhandari and Liu [183] further
investigated the relationship between extrusion rate and extrudate geometry for lemon-juice gels by line test and cylinder test at different extrusion rates from 20 mm3/s to 28 mm3/s (Fig. 10b). A high extrusion rate (28 mm3/s) resulted in a greater overlap and a larger diameter of the printed filament and, thus, a higher amount of deposited material when 3D structures of significant height were being printed [183]. While a low extrusion rate (20 mm3/s) induced decreased extrusion pressure, leading to extrudates to be droplets instead of continuous lines. The optimal extrusion rate was 24 mm3/s, at which condition a smooth line and consistent lemon-juice gel could be obtained [183]. Wilson, Cross, Peak and Gaharwar [187] indicated that there was a positive relationship between cell survival rate and extrusion rate, and higher printing rates could reduce printing time that could improve cell survival, especially for manufacturing larger constructs.

4.2.3. Nozzle moving speed

Printing accuracy could also be largely affected by nozzle moving speed. Similarly, Yang, Zhang, Bhandari and Liu [183] also investigated the influence of nozzle moving speed on the quality of printed lemon juice gel (Fig. 10c). It was found that a too-low nozzle moving speed (15 mm/s) could result in deformation or collapse of the 3D-printed constructs under excessive deposition [183]. Besides, extruded-filament drag occurred when the nozzle moving speed was too high (35 mm/s), resulting in the breakage of the extruded slurry filament, which caused inaccuracies in the 3D-printed product [183]. Finally, the results revealed that 1 mm nozzle diameter, 24 mm3/s extruded rate, and 30 mm/s nozzle movement speed were the optimal parameters to print 3D lemon-juice-gel samples [183]. Wang, Zhang, Bhandari and Yang [186] optimized the nozzle moving speed of surimi gel, indicating that the nozzle moving speed of 28 mm/s was most suitable with a higher resolution
and accuracy compared with other nozzle moving speeds (20, 24 and 32 mm/s). Moreover, they indicated that as other parameters remained unchanged, the critical height of the nozzle would be affected by nozzle moving speed [186].

4.2.4. Nozzle height

Nozzle height, the distance of the nozzle tip from the printed layer, could greatly influence the geometry of 3D-printed constructs [185]. The nozzle height (hc) can be determined by the following equation [188]:

\[h_c = \frac{V_d}{v_n D_n} \]

where \(h_c \) is the optimal nozzle height (mm), \(V_d \) is volume extrusion rate (cm³/s), \(v_n \) is nozzle moving speed (mm/s), and \(D_n \) is nozzle diameter (mm). For a given set of \(V_d \) and \(v_n \), a nozzle height higher than \(h_c \) would result in a smaller filament diameter than that of the nozzle, and the space for the deposited slurry is too large to form the desired geometry of the extrudate. In contrast, a nozzle height lower than \(h_c \) would lead to a greater filament diameter than that of the nozzle and, as a result, the slurry forced out of the nozzle causes swelling of the extruded filament [188]. Thus, a suitable nozzle height is required for successful printing.

In a previous study [186], a series of nozzle heights for fish surimi gel was investigated. The results indicated the printed object could not be deposited due to the low nozzle heights, while the printed objects achieved the desired uniform shape with the highest fidelity when the nozzle height was 5 mm [186] (Fig. 10d). For different materials, with \(h_c \) optimized, the desired shape and fidelity of printed objects could be maintained. Göhl, Markstedt, Mark, Håkansson, Gatenholm and Edelvik [189] investigated the effect of nozzle height for two inks namely 3 wt% CNFs/3 wt% alginate...
The research revealed that a nozzle height of 0.5 mm was desired to achieve a better resolution for 4 wt% CNF [189]. However, for the other ink, the most favorable nozzle height was 0.3 mm or 0.4 mm, which allowed the retaining of the highest printing fidelity and resolution [189]. Wilson, Cross, Peak and Gaharwar [187] prepared a κ-carrageenan (2.5 wt%)/nanosilicate (5 wt%) bioink using a syringe-type 3D printer. They found that the fiber diameter was affected by nozzle height. At a nozzle height of 350 μm, the printed fiber diameter was 343 μm, which was close to the nozzle diameter (337 μm) and provided a high resolution [187]. However, when the nozzle height was 400 μm, the printed bioink could not be properly deposited on the substrate [187]. Thus, the optimized nozzle height could be the filament diameter, which is close to that of the nozzle diameter.

4.3. Pre- and post-printing treatments

4.3.1. Pre-printing treatment

Pre-treatment refers to processing the material before printing for maintaining the shape accuracy and stability of the final objects. Pre-treatment like microwave-assisted treatment [190], water-bath heating [191], pulsed electric fields [192], dry heating [193], and ultrasonication [194] can modify material properties and improve self-supporting performance. An example of microwave-assisted treatment is shown in Fig. 11(a), in which case the effects of salt addition (20 ml, 3.5%, w/v) and microwave pre-treatment (power: 30, 50, and 70 W) on SPI-strawberry inks were investigated [195]. With the microwave power increased to 70 W, the final salted sample obtained the best self-supporting behavior and printing accuracy. Moreover, the addition of salt also promoted the shape
stability of the printed objects [195]. **Fig. 11(b)** shows a study of the effect of water-bath pre-processing (temperature: 72, 76, 80, and 84 °C; time: 2, 4, 6, 8, and 10 min) on the printing behavior of egg yolk-based food [196]. Among all the conditions, the egg yolk pastes heated at 76 °C for 8 min exhibited the most desirable shape after printing [196]. Jiang, Yao, Liang, Gao, Chen, Xia, Mi, Jiao, Wang and Hu [194] used DIW to form lignin-based structural scaffolds. The lignin-based inks were prepared by ultrasonication (in water) and crosslinking (using Pluronic F127) pre-treatment, which softened the rigid structure of lignin and enabled the inks to be successfully printed with the required stiff and self-supporting properties. Furthermore, the 3D-printed lignin-based structures showed higher stability in water and under heat as well as UV-blocking performance compared to printed cellulose structures [194].
Fig. 11 Images of 3D-printed samples involved in different pre-treatments. (a) 3D-printed soy protein isolate (SPI)/strawberry by different microwave power without or with salt (3.5%, w/v). (b) 3D-printed egg yolk paste by different heat treatment.

(a) is adapted from Ref. [195] with permission from Elsevier, Copyright 2020. (b) is adapted from Ref. [196] with permission from Elsevier, Copyright 2020.
4.3.2. Post-printing treatment

After the 3DP process, post-printing treatment is usually required to retain the printed shape without collapse and to avoid changes in shape dimensions. Common post-printing treatment methods include baking, drying, and crosslinking.

4.3.2.1 Baking and drying

Baking could allow a series of chemical reactions to occur (e.g. protein denaturation and the Maillard reaction), which change the color, flavor, and texture of food [154]. Although baking may cause some changes in the product shape, the unique flavor produced in this process for baked food cannot be obtained by other processing methods; and the influence may be reduced by adjusting the ink formulation or processing parameters [15]. Pulatsu, Su, Lin and Lin [180] optimized the 3D-printed cookie dough recipe by a post-printing baking process. The result revealed that the best formulation was tapioca flour (100 g), sugar (37.5 g), milk (32.5 g), and shortening (62.5 g), which resulted in easier printing and high shape-retention capacity after baking [180].

Drying is also a commonly used post-printing treatment method, and the drying methods affect the shape stability of printed objects. Lille, Nurmela, Nordlund, Metsä-Kortelainen and Sozer [15] compared the effects of two different post-printing drying methods (i.e. oven drying and freeze-drying) on the shape stability and printability of 3D-printed mixtures of protein, starch, and fiber-rich materials, as shown in Table 5. Compared with the sample immediately after printing, further oven-drying at 100 °C led to partial shrinkage and color change, possibly due to heat-induced Maillard
reaction [15]. The freeze-dried samples were found to show greater printed-structure stability than
the oven-dried samples [15].

Håkansson, Henriksson, de la Peña Vázquez, Kuzmenko, Markstedt, Enoksson and Gatenholm
[63] investigated the effect of different drying processes (i.e. air-drying, air-drying with surfactants,
solvent exchange before drying, and freeze-drying) on 3D-printed structures based on CNFs, as
shown in Fig. 12A. While all four drying methods caused different degrees of shrinkage, freeze-
drying allowed the retaining of the desired complicated shapes and highly porous structure [63]. Li,
Dunn, Zhang, Deng and Qi [65] suggested that a DIW 3D-printed CNC aerogel subjected to freeze-
drying had minimal structural shrinkage or damage, suitable for application in tissue scaffold and
packaging. Therefore, freeze-drying could be a suitable drying method for 3D-printed cellulose-
based materials. Besides, Thibaut, Denneulin, Rolland du Roscoat, Beneventi, Orgeas and Chaussy
[197] investigated the effects of two different drying methods on cellulose-based paste after 3DP by
extrusion. Their results indicated that the printed objects treated by ethanol (95%) for 2 h had better
shape retention than that air-dried at 23 °C and 50% relative humidity for 48 h (see Fig. 12B) [197].
Moreover, Lam, Mo, Teoh and Hutmacher [198] indicated that for starch-based 3D-printed porous
scaffolds by a rapid prototyping technique, post-printing drying at 100 °C for 1 h could maintain the
integrity and increase the strength of the scaffolds.
Fig. 12 Drying method of 3D-printed structures. A) Solidification of 3D-printed cellulose nanofibril (CNF)-based hydrogel. (a) CNF-based hydrogel after printing. (b) Images of dried 3D structures by four different drying processes. (c) Scanning electron microscopy images of the 3D structure after drying. B) 3DP of cellulosic paste–based spiral vase dried by air (23 °C for 48 h) or ethanol bath (95% for 2 h).

(A) is reproduced from Ref. [63] with permission from Wiley-Blackwell, Copyright 2016. (B) is reproduced from Ref. [197] with permission from Elsevier, Copyright 2019.
Solidification enables the fabricated layers to form self-supporting platforms, which have sufficient strength to support the weight of its own and subsequent layers [199]. In particular with hydrogel-forming polymer, crosslinking is required to solidify the 3D-printed objects. Typical types of crosslinking include physical crosslinking, ionotropic crosslinking, enzymatic crosslinking, and photo-crosslinking (see Table 6). Moreover, crosslinking could occur before printing, during printing, and after printing. The pre-crosslinked bioink can provide sufficient stability to maintain its shape after printing, which facilitates the post-crosslinking step to fully cure the 3D-printed structure.

Physical crosslinking occurs by polymer chain entanglement or through chain interactions such as hydrogen bonding [200]. The cell-laden collagen scaffolds were crosslinked via forming hydrogen bonding with various tannic acid (TA) concentrations (0.1, 0.25, 0.5, 1, and 3 wt%) for 10 min and the results indicated that 0.5 wt% TA could significantly enhance the mechanical strength and biocompatibility of the 3D-printed porous cell-laden collagen structure [201]. Compaan, Song and Huang [202] developed an ink based on 5% (w/v) gelatin and 2% (w/v) alginate in phosphate-buffered saline (PBS), which was deposited in a 0.5% (w/v) gellan gum fluid gel to form a stabilized gelatin-based hydrogel 3D structure by cooling, during which physical crosslinking (aggregation of helical structures) would occur (Fig. 13a). Moreover, to avoid the use of toxic chemicals for crosslinking, a crosslinker-free bioink was developed using two different types of SF with self-gelling ability blended with gelatin [200]. A bioink network could be formed through entanglement between SF and gelatin (Fig. 13e), which possessed good print fidelity for application in cartilage tissue engineering such as the human ear [200].
Fig. 13 Schematic diagram of different crosslinking methods: (a) Temperature-dependent physical crosslinking; (b) Calcium ionic crosslinking; (c) Enzymatic crosslinking; and (d) UV covalent crosslinking. (e) Schematic of silk fibroin (SF) and gelatin forming a gel ((A) Bioink formulation; (B) Entanglement and interaction of SF and gelatin).

(a), (b), (c) and (d) were reproduced from Ref. [202] with permission from ACS Publications, Copyright 2019. (e) is reproduced from Ref. [200] with permission from ACS Publications, Copyright 2019.

Although weak gels can be formed with physical interactions, these interactions are rarely strong enough for tissue engineering applications or layer-by-layer manufacturing. Therefore, the strength of hydrogels is usually enhanced by additional ionic interaction, electrostatic interactions, or chemical crosslinking [203].

Ionotropic crosslinking is an electrostatic interaction between polyanions and cations or between polycations and anions [203]. Ionotropic crosslinking can provide good self-healing ability, beneficial for many food and biomedical applications [203]. As shown in Table 6, CaCl$_2$ is a common crosslinking agent to maintain a 3D structure during printing. Appropriate concentrations of
CaCl\textsubscript{2} can induce crosslinking in a low-methoxyl pectin gel, which is a promising edible ink for the 3DP of food simulants. CaCl\textsubscript{2} solution was used to crosslink the low-methoxyl pectin gel based on two methods: a) 3D-printed pectin objects were incubated in a 300 mM CaCl\textsubscript{2} solution for 10 min [79]; and b) coaxial extrusion of a CaCl\textsubscript{2} solution (30–150 mM, outer flow) and pectin ink (15 and 35 g/L, inner flow) [204]. Compaan, Song and Huang [202] deposited the 3D-printed sodium alginate structure in a gellan gum fluid gel and then stabilized by ions crosslinking (Ca2+) (see Fig. 13b).

Enzymes are usually used for pre-printing crosslinking to generate the intra- or intermolecular covalent bonds and improve the stability of protein-based materials [205, 206]. Typical enzyme crosslinkers are tyrosinase and transglutaminases for crosslinking SF and/or gelatin to form covalent linkages (Fig. 13c) [202, 207-209]. Chameettachal, Midha and Ghosh [207] demonstrated the applicability of tyrosinase as a crosslinking agent for SF/gelatin bioink for 3DP of cartilage constructs. The 3D-bioprinted constructs could extend cellular survivability in vitro and reduced hypertrophy, which makes tyrosinase crosslinked silk/gelatin hydrogels excellent candidates for tissue-engineering cartilage constructs [207]. Enzymatic crosslinking has a huge demand for hydrogel crosslinking for tissue engineering due to their mild reaction, high efficiency (7 to 20 min), and excellent biocompatible [210, 211]. However, enzymatic reactions require special substrates and expensive crosslinkers, which may limit their use in 3DP.

Taking advantage of rapid polymerization in vivo or in vitro, photo-induced (using UV or visible light) crosslinking strategies (Fig. 13d) have found many applications in the engineering of bone-equivalent tissue [212], cartilage [213], liver [119], and membranes [214]. The mechanism of photo-
crosslinking is that a polymer undergoes photolysis while being irradiated, that is, some bonds are broken, free radicals are generated, and activated molecules are bonded together, leading to a network structure [215]. When choosing a photoinitiator, its cytotoxicity, water solubility, and stability should be considered. Besides, the ink should have enough photo-responsivity [216].

The printed geometry can also be enhanced by other crosslinking agents such as TA [201], alginic acid [217], and N-hydroxysuccinimide/1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (NHS/EDC) [92]. Moreover, xylan was modified with different degree of substitution by tyramine groups to be crosslinkable, and then mixed with CNFs to form stable gels via crosslinking using horseradish peroxidase and H$_2$O$_2$ [218]. The resulting inks showed suitable mechanical strength and excellent printing properties [218].

5. Properties and emerging applications of 3D-printed biopolymer materials

Biopolymers have appealing properties such as biodegradability, biocompatibility, and non-cytotoxicity, making them potential for a broad range of applications such as food [79, 219], biomedicine [29], wastewater treatment [20], and electronics [21]. These different applications, which are linked to their properties and functionality, are discussed in this section, with a particular focus on food and medicinal areas.

5.1. Mechanical properties and structures of 3D-printed biopolymer materials

Mechanical properties are crucial in determining the sensory properties of food. Table 7
summarizes the textural properties of 3D-printed food, including compression strain (25–65%), hardness (1.407–1949.995 g or 0.02–36 N), springiness (0.222–0.98), cohesiveness (0.224–1.16), and gumminess (22.47–982.682).

The mechanical properties of printed objects could be largely determined by their structural characteristics [18, 220]. Table 8 shows the pore size, porosity, infill level (the percentage of internal structure filling inside the printed object), and compression Young’s modulus (E) of different printed objects for food applications. By varying these parameters, various patterns can be obtained. For example, Vancauwenberghe, Delele, Vanbiervliet, Aregawi, Verboven, Lammertyn and Nicolaï [221] designed four hexagonal honeycomb porous structures with different porosity and cell sizes and they found the E value of the honeycomb structure increased with increasing porosity but decreasing cell size. Liu, Zhang and Yang [45] fabricated cuboid-shape samples (32×32×16 mm) based on either strawberry juice gel and mashed potato with different infill levels. With infill level increasing from 40% to 100%, the printing time decreased from 614 s to 465 s and the E value and firmness increased significantly [45]. Liu, Zhang and Yang [45] also found that the hardness, cohesiveness, and gumminess of the printed material decreased with the height of each material layer (controlled via varying the number of layers). However, the variation of the internal shape structure (triangle, square, regular, hexagon, or round shape) at a 100% infill level did not alter the hardness and gumminess of the printed objects [45].

Table 9 provides the main mechanical characteristics parameters relevant to 3D-printed hard and soft tissues for biomedical applications. In biomedical areas, porous or customized scaffolds of various shapes are particularly important, because of the need to match the complex geometry of
defect sites. Besides, the mechanical properties of 3D-printed scaffolds should preferably match with the native scaffolds [222]. For example, for meniscus repair, Bandyopadhyay and Mandal [12] used an SF/gelatin-based bioink to fabricate scaffolds with different infill forms. Compared with the full-thickness tri-layered meniscus scaffold (147±4.8 kPa), the scaffolds with different filling shapes possessed different compression modulus: grid infill (188.5±25.4 kPa), concentric infill (152.4±31.1 kPa), and lamellar infill (130±6.5 kPa). All the scaffolds were still stable after 200 cycles of compression [12]. Thus, for SF/gelatin materials for tissue engineering, a suitable filling form should be selected according to the requirement of mechanical strength of 3DP objects.

Besides, 3D-printed scaffolds with suitable pore sizes have been considered as benchmarks in tissue engineering applications such as for skin, cartilage, and bone [223, 224]. Table 10 lists the pore size, porosity, and mechanical properties of 3D-printed porous structures for biomedical applications. The pore diameter was 10–2125 µm and porosity 15.82–98%. Although these pores may reduce the mechanical properties of the scaffolds, they could benefit the nutrient supply to cells and the removal of metabolic waste out of the scaffolds in tissue regeneration. Moreover, macropores could promote cell migration while micropores could facilitate cell attachment and result in better mechanical properties [65, 225, 226].

5.2. Biopolymer 3D-printing for food applications

5.2.1. Starch-based food materials

Starch is widely used as a major component in food due to its gelatinization behavior [227]. For hot-extrusion 3DP, potato, rice and corn starches at a concentration of 15–25% were reported to
show shear-thinning behavior and self-supporting capability [228]. However, unmodified starches produce weak gels that could not maintain desired shapes. Consequently, modification of starch or addition of other gelling substances is necessary for obtaining strong gels based on starch (Fig. 14A).

For example, Maniglia, Lima, Matta Junior, Le-Bail, Le-Bail and Augusto [52] modified cassava starch by pre-printing dry-heating treatment (DHT) to obtain 3D-printed hydrogels that displayed lower peak viscosity and better gel strength, higher resolution, and greater printability than the unmodified counterpart, with the hydrogel subject to DHT for 4 h showing the best results (Fig. 14A(a)).

![Fig. 14 A) 3D-printed starch-based constructs. (a) Cassava starch hydrogel produced with dry-heating treatment (DHT) for 4 h at 65 °C; (b) 3D-printed mashed potato construct with a “honeycomb” infill pattern (infill level: 40%); (c) 3D-printed mashed potato with color change 2.5 h after printing (the first layer was mashed potato with 15% potato flakes under acidic condition; the]
second layer was mashed potato with 23% potato flakes under neutral condition; the third layer was mashed potato with 27% potato flakes under alkaline condition; and the last layer was purple sweet potato puree). B) 3D-printed protein-based constructs. (a) 3D-printed object from heat treatment (76 °C, 8 min) of egg yolk paste; (b) 3D-printed turtle model based on milk protein concentrate (MPC) gel (total protein contents: 450 g/L) after storage for 4 h; (c) 3D-printed surimi gels with 0.5 g/100 g NaCl; (d) 3D-printed mouse model based on MPC and whey protein isolate (WPI) (5:2 w/w).

A): (a) is adapted from Ref. [52] with permission from Elsevier, Copyright 2020. (b) is adapted from Ref. [17] with permission from Elsevier, Copyright 2018. (c) is adapted from Ref. [229] with permission from Elsevier, Copyright 201300. B): (a) is adapted from Ref. [196] with permission from Elsevier, Copyright 2020. (b) is adapted from Ref. [230] with permission from Elsevier, Copyright 2019. (c) is adapted from Ref. [186] with permission from Elsevier, Copyright 2018. (d) is adapted from Ref. [111] with permission from Elsevier, Copyright 2018.

While adjusting biopolymer ink formulation generally could achieve desirable textural properties, Liu, Bhandari, Prakash and Zhang [17] reported that physical properties can also be tailored by internal construct design including changing the infill pattern (rectilinear, honeycomb, and Hilbert curve) and infill percentage (10, 40 and 70%) [17]. Specifically, using syringe-based DIW extrusion and 3:2 (w/w) κ-carrageenan/xanthan gum (1 wt% based on the weight of potato flake) mixed with potato flakes and boiling water (4:1, w/w) as the ink, the authors have successfully printed samples with a porous structure that matched the designated geometry (Fig. 14A(b)). This method could help to tailor-make samples with different internal shapes and texture requirements.

Recently, He, Zhang and Guo [229] reported multi-material dual-extrusion 3DP of purple potato puree/mashed potato (Fig. 14A(c)). As pH change and potato flakes could induce spontaneous discoloration of the dual-extrusion printed samples, they call the process “4D printing” (4DP). The
result indicated that the color change of the printed products relied on storage time and material
distribution [229].

Besides, Severini, Azzollini, Albenzio and Derossi [14] observed that the addition of insects
(Tenebrio molitor) into wheat flour dough improved the total essential amino acid and protein
content of 3D-printed snacks. With insect enrichment increasing from 0 wt% to 20 wt%, the protein
digestibility-corrected amino acid score (PDCAAS) and hardness of 3D-printed cereal-based snacks
increased, beneficial for the manufacture of snacks with rich nutrition and crisp taste [14].

5.2.2. Protein-based food materials

For 3DP of food with high nutritional value, the printability of milk protein concentrate (MPC),
edible insects, egg, and fish surimi have been studied (Fig. 14B) [14, 185, 186, 230, 231]. For
example, according to Liu, Liu, Wei, Ma, Bhandari and Zhou [111], compared to pure milk protein,
the presence of whey protein isolate (WPI) could improve the printability of protein food simulants
and reduce the apparent viscosity and hardness of MPC paste while facilitating the printing process.
Notably, MPC/WPI = 5/2 (w/w) was the most ideal ratio to prepare milk protein food simulant,
which could be successfully extruded with better shape retention [111]. Thus, MPC and WPI could
be promising protein materials for the development of personalized and digitalized nutritional food
products.

Fish protein is also a good source of protein. Surimi is a high-protein, low-fat food ingredient,
which is a promising food material. Wang, Zhang, Bhandari and Yang [186] used surimi and
different levels of NaCl to make printable fish-surimi gels. Results showed that the addition of NaCl
affected the printing accuracy of surimi gel. NaCl in surimi induced the dissolution and unfolding of
the myofibrillar protein, where interchain hydrogen bonding led to the formation of a stable and elastic gel [232, 233]. The addition of NaCl at 1.5 g/100 g was helpful for the surimi gel to exhibit a smoother surface and better match the designated 3D shape [186].

Besides milk and fish proteins discussed above, egg yolk, which consists of 68% low-density lipoprotein (LDL) and 16% high-density lipoprotein (HDL) and has high nutritional value, was also studied as a raw material for 3DP [196]. Specifically, a paste for printing was prepared by heating egg yolk in a shaking water bath at 76 °C for up to 8 min. The 3D-printed object exhibits desired printability (being easily extruded from the nozzle and maintaining refined shapes after printing) and microstructure [196]. It was speculated that HDL played a particular role in the formation of a higher viscoelastic egg yolk after heating [196].

5.2.3. Dietary fiber-based food materials

Pectin-based hydrocolloids can be promising inks for 3DP of food because of its biocompatibility, edibility, gelatability, and bio-functionalities [79, 234, 235]. For example, Vancauwenberghe, Katalagarianakis, Wang, Meerts, Hertog, Verboven, Moldenaers, Hendrickx, Lammertyn and Nicolaï [79] introduced 15–55 g/L pectin and 0–5 g/L bovine serum albumin (BSA) (for forming pores) to fabricate pectin-based 3D-printed porous food simulants. The microstructure and mechanical properties of the printed objects could be changed by varying pectin and CaCl₂ concentrations in the presence of BSA [79]. As shown in Fig. 15A, the cube and Gummy bear-shaped objects were successfully produced. However, the process was still relatively slow due to single-probe printing and required separate post-treatment with 300 mM CaCl₂ solution for 10 min [79]. Based on the initial success in developing porous food, Vancauwenberghe, Verboven,
Lammertyn and Nicolaï [204] further investigated ways to speed up the manufacturing process and avoid post-treatment for the 3DP of pectin-based porous objects. By coaxial extrusion, which allowed gelation of the food-ink during printing, customizable pectin-based food was produced (Fig. 15B) [204]. The printed objects had E values similar to that resulting from simple extrusion 3DP, and the object gelation could be accurately controlled. However, compared with simple extrusion 3DP, coaxial extrusion led to printed objects with smaller volumes and lower interlayer adhesion, and it required higher CaCl$_2$ concentration for binding the layers for enough mechanical properties [204, 236]. This work indicated that coaxial extrusion could be a promising alternative for bioinks requiring post-processing, and the printing method largely determined printed-object properties [204].
Fig. 15 A) 3D-printed pectin-based constructs. (a) 3D printing (3DP) of a cube 1.5×1.5×1.5 cm³ prepared from 15 g/L low-methoxyl pectin +12.5 mM CaCl₂ + 50% (v/v) sugar syrup (total volume: 60 mL); (b) Picture of 3D-printed cube; (c) 3D-printed cube of 1.5×1.5×1.5 cm³ and Gummy bear-shaped objects prepared from 55 g/L low-methoxyl pectin +12.5 mM CaCl₂ + 25% (v/v) sugar syrup + 5 g/L bovine serum albumin (BSA) + edible colorant (total volume: 60 mL). B) Schematic of coaxial extrusion. (A) is adapted from Ref. [79] with permission from Elsevier, Copyright 2017. (B) is adapted from Ref. [204] with permission from Elsevier, Copyright 2018.

5.2.4. Plant-based food materials

Plant cell culture is a new technology for healthy plant-based food production [237]. This
technology could be introduced to 3DP for the manufacture of plant-based food with tissue structures similar to those of real plants. This process involves embedding alive plant cells into matrix solution (with culture medium) as bioink and extrusion at room temperature, followed by curing the 3D-printed objects and culturing for a period [236, 238]. Vancauwenberghe, Baiye Mfotaw Mbong, Vanstreels, Verboven, Lammertyn and Nicolai [236] fabricated 3D-printed plant tissue constructs using lettuce leaf cells incorporating low-methoxyl pectin and BSA (Fig. 16a). The addition of pectin improved the mechanical strength of the printed objects but caused a decrease in cell activity due to the increased viscosity of the ink [236]. Moreover, compared with a pure pectin matrix, the mechanical properties of the printed object was reduced due to the encapsulation of lettuce cells in the pectin-based matrix [236]. Park, Kim and Park [238] used carrot cell dispersion and 4 wt% alginate at varied ratios (1:2, 1:1, and 2:1, w/w) to print callus tissues for plant-based food production (Fig. 16c). The gels with carrot cells/alginate ratios of 1:1 and 2:1 (w/w) showed high viability and prolonged cell growth in a 35-day culture period. However, for these two 3D-printed carrot-based gels (1:1 and 1:2, w/w), the mechanical strength decreased with cell growth until 28 days when it reached an equilibrium of 50% [238]. Therefore, these studies have demonstrated the potential of the combination of 3DP and plant tissue regeneration for producing plant food simulants. Besides, Lee, Won, Kim and Park [239] found that for a 3D-printed food-ink system of spinach powder/xanthan gum/water (20:8:72, w/w/w), increasing the spinach powder particle diameter from 50 µm to 307 µm led to better printability and, thus, significant increases in porosity and mechanical strength (Fig. 16b). This research could provide insights into the development of 3D-printed plant tissue simulants with improved mechanical strength.
Fig. 16 3D-printed plant-based and fruit-based samples. (a) 3D-printed cube of 1.5×1.5×1.5 cm³ with 15 g/L low-methoxyl pectin + 6.5 mM CaCl₂ + 2 g/L bovine serum albumin (BSA) + 50% lamb’s lettuce cell suspension (pectin solution with cell / CaCl₂ solution = 1:1 (v/v), total volume 20 mL); (b) 3D-printed objects with various spinach powder particle sizes (A, 307 µm; B, 259 µm; C, 172 µm; D, 50 µm), samples made of spinach powder (20 g/100 g) + xanthan gum (8 g/100 g) + deionized water (72 g/100 g); (c) Cell growth of 3D-printed carrot-based samples with different cell concentrations during culturing for up to 35 days (carrot cell dispersion / alginate solution = 1:2, 1:1, and 2:1 (w/w)). (d) 3D-printed lemon juice gel products (15 g lemon juice/100 g starch); (e) 3D-printed objects of mashed potato/strawberry juice gel (17.5 g potato starch/100 g strawberry juice concentrate) (A, Samples with different inside shape structures; B, Infill percentage: 60%; C, Samples printed using a 2-nozzle 3D printer).

(a) is adapted from Ref. [236] with permission from Elsevier, Copyright 2019. (b) is adapted from Ref. [239] with permission from Elsevier, Copyright 2019. (c) is adapted from Ref. [238] with permission from Elsevier, Copyright 2020. (d) is adapted from Ref. [183] with permission from Elsevier, Copyright 2020. (e) is adapted from Ref. [45] with permission from Elsevier, Copyright 2018.
5.2.5. Fruit-based food materials

While fruit is generally consumed fresh, a series of deeply processed fruit products (e.g. dried fruits, fruit jam, and fruit yogurt) have also been developed. Direct 3DP of fruit-based food is challenging due to fruit characteristics such as high moisture and low viscosity [240]. Nonetheless, the printability of fruits could be improved by blending with starch [241]. Yang, Zhang, Bhandari and Liu [183] fabricated 3D-printed food objects of different shapes based on lemon juice mixed with different contents of potato starch (10, 12.5, 15, 17.5, and 20 g/100 g), which were steam-cooked for 20 min (Fig. 16d). They found that a lemon-juice gel with 15 g/100 g potato starch was suitable for DIW 3DP into the designed objects with the smoothest visual surface texture, best matching of the target geometry, minimal point defects, and no compressed deformation [183].

Besides, the effect of wheat starch content (15, 20, 25 and 30 wt%) on the printability of orange concentrate was investigated [240]. Among the four samples, wheat starch added at 30 wt% level led to the highest mechanical strength but poor extrudability [240]. Wheat starch added at 20 wt% level was found to result in suitable printability and the best mastication properties [240]. Thus, the 3DP of fruit concentrations could be a new process to develop novel food.

Liu, Zhang and Yang [45] investigated the printability of potato starch/strawberry juice concentrate by dual-extrusion 3DP (Fig. 16e). By varying the inside shape structure and infill percentage, 3D-printed objects with different textural properties could be obtained, which could become a new method to tailor textural characteristics of printed objects [45]. Besides, they also concluded that multi-material constructs with higher geometric complexity could be achievable through dual-extrusion 3DP [45].
5.2.6. Customization of snacks or traditional foods

With increasing interest in healthy food, there is a constant focus on customized snack products or traditional foods (Fig. 17). For example, to meet the daily energy requirements of children aged 3–10 years, Derossi, Caporizzi, Azzollini and Severini [5] developed a nutritional snack using 3DP technology, of which the formulation was composed of banana, white canned beans, dried non-fat milk, lemon juice, dried mushrooms, ascorbic acid, and pectin solution, containing 5–10% energy, calcium, iron and vitamin D. In this way, 3DP contributed to obtaining healthier food [5]. Besides, Lille, Nurmela, Nordlund, Metsä-Kortelainen and Sozer [15] fabricated healthy snacks with novel structures, consisting of 10 wt% cold swelling starch, 15 wt% skimmed milk powder, 60 wt% semi-skimmed milk powder, 30 wt% rye bran, 35 wt% oat protein concentrate, or 45 wt% faba bean protein concentrate. These snacks were rich in protein, starch, and fiber and low in fat or sugar, representing healthy food. Despite these limited efforts, the rheological and mechanical properties of various formulation ingredients for 3DP still need further research [15].

To investigate the effect of different components on the physical properties of baked dough, Yang, Zhang, Prakash and Liu [16] changed the proportion of ingredients as well as added water in traditional baked dough recipes. It was observed that the ratio of sucrose, butter, and flour exceeding a certain threshold would affect the printability of the printed material, making it impossible to form [16]. The optimized formulation of baked 3D-printed dough was icing sugar, butter, low gluten flour, egg, and water at a weight ratio of 6.6 : 6 : 48 : 10.4 : 29 [16]. These recipes helped to maintain the shape and quality of the baked 3D-printed dough, also providing a reference for practical production [16].
Fig. 17 3D-printed customized snacks or traditional food. (a) and (b) lateral and transversal views of the 3D-printed fruit-based snack (banana (73.5 wt%) + white canned beans (15 wt%) + dried non-fat milk (6 wt%) + lemon juice (3 wt%) + dried mushrooms (2 wt%) + ascorbic acid (0.5 wt%) + pectin solution (11 wt%)); (c) 3D-printed grid structure made of 1.5 wt% cellulose nanofibrils (CNFs) + 5 wt% starch; (d) 3D-printed grid structure made of 35 wt% oat protein concentrate (OPC); (e) baked 3D-printed dough with 3.3 g sucrose/100 g formulation; (f) baked 3D-printed dough with 9.0 g butter/100 g formulation.

(a) and (b) are adapted from Ref. [5] with permission from Elsevier, Copyright 2018. (c) and (d) are adapted from Ref. [15] with permission from Elsevier, Copyright 2018. (e) and (f) are adapted from Ref. [16] with permission from Elsevier, Copyright 2018.
5.3. Biopolymer 3D-printing for biomedical applications

Biopolymer 3DP has been devoted to customized applications in biomedical areas. This section covers the application of 3D-printed biopolymer materials in cartilage, bone and skin regeneration, wound healing, and vascular, neural and other tissue engineering applications.

5.3.1. Cartilage and bone tissue engineering

The damage to cartilage or bone is a common occurrence in the world. Unfortunately, the spontaneous repair capacity of cartilage is limited [242], especially for the elderly. Unlike cartilage, bones usually have the self-regenerative ability when injured, but they cannot regenerate and repair spontaneously in certain cases such as postsurgical defects or loss of tissues [243]. While various clinical treatments may possess long-term and complicated processes for cartilage and bone repair.

3DP technology has shown to be able to create complex structures to replace or repair damaged cartilage and bone tissues [244].

Cartilage and bone regeneration usually requires the restoration of favorable microenvironments (cells could stably adhere, growth, and differentiation) [245, 246] and mechanical properties by employing suitable scaffolds. Polycaprolactone (PCL) and polylactide (PLA) scaffolds have been widely used for cartilage and bone tissue engineering [247-249]. Nevertheless, their application are limited due to the undesirable cell adhesion, osteogenic differentiation, and mechanical properties [248, 250]. These characteristics can be improved through blending with biopolymers such as silk [248], alginate [251-255], and collagen [250, 256]. Using a screw extrusion 3DP process to fabricate 3D composite scaffolds [248], it was found that the addition of silk microparticles to PCL
significantly enhanced the mechanical properties, improved cell metabolic activity and viability, and promoted cell proliferation [248].

SF has been a promising biomaterial and gained much attention in the field of bone tissue and organ engineering [257, 258]. Under the different processing conditions, SF could be fabricated into different forms and structures such as film [123, 259], hydrogel [260], membrane [261], nanofiber [261, 262], and porous sponge [263]. While the poor mechanical strength of SF could restrict its use, additives such as collagen [264], gelatin [200, 265], silica [266], and hydroxypropyl methylcellulose [260] were shown to improve the mechanical strength of SF for cartilage and bone regeneration applications [267]. For example, it was reported that two kinds of SF were mixed with gelatin at 37 °C to form SF/gelatin-based bioinks, which were used to produce 3D-printed cartilage tissue structures (meniscus and ear) with a syringe at 25 °C [12]. These 3D-printed scaffolds possessed excellent swelling, degradation, and mechanical properties, suitable for cartilage regeneration [12, 200]. Moreover, tyrosinase-crosslinked SF-gelatin bioink possess the ability to regulate chondrogenesis and hypertrophy [207].

However, most studies have focused on rheological properties, mechanical properties, and biocompatibility of SF hydrogel materials to address the requisites as biomedical materials [12, 200, 224, 265]. Less attention has been paid to the dimensional stability of 3D-printed SF hydrogels. Recent research demonstrated that the addition of gelatin can effectively prevent the shrinkage of 3D-printed SF hydrogels caused by the rapid formation of β-sheet structure [268].

Alginate and gelatin are commonly used biopolymers for cartilage and bone repair. For the mixing of different biopolymers, 3D scaffolds are generally prepared by polymer cross-linking or
modification. For examples, to fabricated alginate/gelatin scaffolds for soft tissue regeneration, Chawla, Kaur, Joshi and Singh [269] used adequate infill (20% and 25%) and dual crosslinking (Ca$^{2+}$ and UV light) to enhance the printability and mechanical properties of 3D-printed scaffolds. Schwarz, Kuth, Distler, Gögele, Stölzel, Detsch, Boccaccini and Schulze-Tanzil [270] prepared a 3D scaffold using oxidized alginate (NaIO$_4$ as an oxidant) and gelatin by enzymatic (microbial transglutaminase) and ionic (Ca$^{2+}$) crosslinking. The 3D-printed hydrogel exhibited good cell viability and long-term structures stability.

Compared with gelatin and alginate, decellularized extracellular matrix (dECM) is more representative of natural ECM [271]. Zhang, Liu, Luo, Zhai, Li, Zhang, Yuan, Dong, Zhang and Fan [272] prepared a crosslinker-free bioink by SF/dECM mixed with bone marrow mesenchymal stem cells (BMSCs). The resulting SF/dECM bioink were extruded into a meniscus structure with suitable mechanical strength and degradation rate, and the bioink was capable of promoting BMSCs proliferation and chondrogenic differentiation [272].

Collagen has been demonstrated to be the most common biomaterials for bone tissue engineering owing to good biocompatibility, high porosity, and benefits from mixing with other ingredients [273]. Moreover, Type I collagen is the major structural component in the ECM and plays an important role in cartilage bone tissue engineering [274, 275]. For instance, Kim, Lee and Kim [118] utilized collagen and genipin (as a crosslinking agent) to form a cell-laden 3D porous structure. The 3D collagen-based cell block showed higher cell viability, metabolic activities, and osteogenic differentiation compared with an alginate-based bioink [118]. Although collagen has become a promising biomaterial, its weak mechanical properties could
limit its applications. Crosslinking, composition, and pore structure have direct effects on the mechanical properties of collagen scaffolds. For example, some researchers used Type-I collagen/SF/de-cellularized ECM [264], fibrillated collagen/pluronic F-127 [276], and collagen/alginate [118, 275] to create 3D-printed porous scaffolds for bone tissue regeneration.

Besides, Chen, Zhao, Zhang, Lu, Zhao, Fu, Sun, Zhang, Tu and Li [277] fabricated a 3D-printed scaffold based on crosslinking between heparin sulfate and collagen, which displayed excellent biocompatibility. Moreover, the mechanical properties of the 3D collagen/heparin sulfate composition scaffold were significantly improved compared with the collagen scaffold [277].

Nanocellulose is another natural polymer used as cartilage or bone tissue engineering materials, owing to its biodegradable, excellent mechanical properties, and biocompatibility [29, 197, 278, 279]. Generally, nanocellulose needs to be mixed with alginate [11, 170, 283-285] or HA [279, 284] or chemically modified (e.g. grafted by polyvinyl alcohol (PVA)) [286] to tailor bioink characteristics. Nguyen, Hägg, Forsman, Ekholm, Nimkingratana, Brantsing, Kalogeropoulos, Zaunz, Concaro, Brittberg, Lindahl, Gatenholm, Enejder and Simonsson [284] fabricated induced pluripotent stem cells (iPSCs) with different ratios of CNFs with alginate (CNF/alginate) or HA (CNF/HA). Compared to CNF/HA, the CNF/alginate (60/40, dry weight) bioink promoted hyaline-like cartilage tissue regeneration and cell proliferation, indicating that cells survived well after printing [284]. Therefore, the CNF/alginate bioink was suitable for 3D bioprinting of iPSCs to support cartilage production and, thus, repair damaged cartilage in joints [284]. Dutta, Hexiu, Patel, Ganguly and Lim [283] utilized CNCs to modify the mechanical stability and viscosity of an alginate/gelatin bioink. The CNCs/alginate/gelatin scaffolds (1%, w/v) exhibited enhanced
mechanical strength, cell proliferation, and bone formation [283]. The application of 3D-printed aerogel structures with biocompatibility and biodegradability in biomedical fields also represents a recent and rapid development trend [287]. Accordingly, there is an increasing interest in the production of cellulosic aerogels using microfibrillated cellulose (MFC) [288, 289], CNCs [290], or CNF [291-294]. For example, Li, Dunn, Zhang, Deng and Qi [65] used freeze-dried CNCs mixed with water by the DIW technique to produce CNC aerogel scaffolds (e.g. ear and nose) with aerogel and dual-pore (i.e. structural pores and random pores) structures. After freeze-drying, the 3D-printed structures showed negligible shrinkage or damage, and the porosity of the 20 wt% CNC gel could reach 90% [65]. Owing to their porous structures that could facilitate cell growth and proliferation, these scaffolds could enable more efficient cartilage tissue regeneration [65, 226].

5.3.2. Wound healing and skin regeneration

The development of ideal wound dressing and skin regeneration materials with excellent characteristics is currently a demand in wound therapy. Chitosan is a suitable material for wound healing and resembles the glycosaminoglycans of ECM with guaiac and bacteriostatic functions [172, 296]. 3DP facilitated a precise control of the geometry of, and spatial distribution in, 3D chitosan structures; therefore, 3D-printed chitosan hydrogels were widely tested in skin repair and wound healing. For instance, Intini, Elviri, Cabral, Mros, Bergonzi, Bianchera, Flammini, Govoni, Barocelli, Bettini and McConnell [296] demonstrated that 3D-printed chitosan scaffolds had controlled and reproducible porous structure, accompanied by excellent biocompatibility and cell viability. Additionally, 3D-printed chitosan scaffolds were more beneficial to promote tissue regeneration and epidermis repair compared to traditional commercial...
products [296] (Fig. 18 a-g). Hafezi, Scoutaris, Douroumis and Boateng [90] also fabricated a 3D-printed chitosan-based dressing crosslinked by genipin and plasticized by glycerol and poly(ethylene glycol) (PEG), which possessed the ability to adhere to a model surface and release model drugs, making it suitable for chronic wound healing applications. Similarly, Turner, Murray, McAdam, McConnell and Cabral [297] designed a novel blend bioink using peptide-functionalized succinylated chitosan/dextran aldehyde as a core laden with human umbilical vein endothelial cells and a gelatin methacryloyl (GelMA) shell laden with human bone-marrow-derived mesenchymal stems cells for the treatment of nonhealing or chronic wounds. The bioink was layer-by-layer deposited and UV-crosslinked to fabricate 3D constructs, which provided an appropriate microenvironment for cell growth, proliferation and differentiation, and showed about twofold skin wound healing rate in vitro that of the control [297].

![Fig. 18](image-url) Fibroblast and keratinocytes cells seeded together on a 3D-printed chitosan scaffold coated with a chitosan film at the base (the film coating was to improve the cell growth on the 3D-printed chitosan scaffold by keeping the cells inside). (a–c) Scanning electron microscope photographs of the 3D-printed chitosan scaffold without cells and with cells visualized after 20 days and 35 days, respectively; (d–e) Microphotographs under the transmitted light of an inverted microscope of cells 35 days after seeding on the 3D-printed chitosan scaffold at the base upon neutral red staining; (f–
Images of histological staining by hematoxylin and picrosirius red 14 days after wounds treated with the chitosan scaffold (f) or a commercial product (g); (h–i) Lyophilised 3D-printed chitosan/pectin hydrogel scaffold, which showed high flexibility; (j) Immunohistochemical staining of rat skin tissue sections to detect the expression of cytokeratin, spinal muscular atrophy (SMA), and CD31 after implantation 28 days after injury with scaffolds of a 3D-printed gelatin grid coated with sulfonated SF (3DG-SF-SO$_3$) and a 3D-printed gelatin grid coated by sulfonated SF with basic fibroblast growth factor (3DG-SF-SO$_3$-FGF). Scale bars = 50 µm.

(a–c), (d–e) and (f–g) are adapted from Ref. [296] with permission from Elsevier, Copyright 2018. (h–i) are adapted from Ref. [298] with permission from Elsevier, Copyright 2019. (j) is adapted from Ref. [299] with permission from Nature Publishing Group, Copyright 2017.

Pectin also exhibits valuable properties for wound dressing [300, 301]. A study by Long, Etxeberria, Nand, Bunt, Ray and Seyfoddin [298] indicated that 3D-printed chitosan/pectin hydrogels exhibited self-adhesion (bioadhesion strength between 86.5 g and 126.9 g), which is similar to marketed wound dressing products. Meanwhile, good mechanical integrity and flexibility could improve comfort in contact with the wound [298] (Fig. 18h–i). They demonstrated for the first time that the feasibility of 3D-printed chitosan/pectin hydrogel as a potential wound dressing candidate for lidocaine hydrochloride delivery [298]. The printed 3D scaffold enabled the controlled release of lidocaine hydrochloride drug with cumulative release reaching 88–94% [298].

Alginate has excellent mucoadhesion properties. It can be blended with PEG [302], methylcellulose [303], and nanocellulose [304] to be applied for wound dressings. Ilhan, Cesur, Guler, Topal, Albayrak, Guncu, Cam, Taskin, Sasmazel, Aksu, Oktar and Gunduz [302] prepared a novel bioink using Satureja cuneifolia plant extract mixed with different concentrations of sodium alginate and PEG. The 3D-printed porous scaffold not only showed desired porosity and an excellent
antibacterial effect (against gram-positive bacteria), but also simulated cell proliferation, with the highest density on the 3rd day. Therefore, this composite scaffold is suitable for diabetic wound dressing application [302].

For skin regeneration, the blood vessel formation ability of 3D-printed scaffolds is critical for them to play a positive effect. Recently, Chu, He, Wang, Liu, Li, Wu, Chen and Tu [305] developed a proangiogenic 3D scaffold with peptide nanofiber hydrogel and UV-cured gelatin that was applicable for the regenerative repair of skin. The 3D-printed scaffold exhibited controlled porosity and pore size, which facilitated cellular migration, cell proliferation, and the growth of blood vessels [305]. Especially, the scaffolds containing 20% peptide hydrogel revealed the fastest blood vessel and dermal regeneration [305]. Besides, 3D-printed gelatin/SF composite scaffolds combined with fibroblast growth factor 2 (FGF-2) were shown to promote the epidermis and blood vessel formation in skin defects (Fig. 18j), which facilitated skin regeneration [299].

5.3.3. Vascular tissue engineering

Cardiovascular disease is a serious disease for the elderly, which usually shows complex pathogenesis related to the decline of vascular performance. For solving the issue of vascularization, there is an urgent need to create in vitro vascular tissue models [306]. 3DP methods such as extrusion and inkjet printing have been used to print vascular tissues based on collagen and sodium alginate [307-311]. For example, Xu, Chai, Huang and Markwald [312] prepared 3D zigzag-shaped cellular tubes and vessel-like structures using sodium alginate (2%, w/v) and cell suspension at a ratio of 1:1 (v/v) as bioink by inkjet printing technology. Lee, Lanzi, Haygan, Yoo, Vincent and Dai [309] fabricated a 3D-perfused functional vascular network structure consisting of two millimeter-scale
fluidic channels within a 3D collagen gel and a mixture of fibrin cells (endothelial cells and fibroblast) located between the channels. The vascular system enabled successful diffusion of 10 kDa dextran molecules into tissues through vessels [309]. Gao, He, Fu, Liu and Ma [313] described a method based on coaxial extrusion to fabricate blood vessel-like micro-channels using sodium alginate crosslinked in CaCl₂ solution (Fig. 19B). This is similar to the research of Gao, Liu, Lin, Qiu, Liu, Liu, Wang, Xiang, Chen, Fu and He [307], who used collagen and sodium alginate to form a bioink, which was used, by coaxial extrusion, to fabricate a 3D hydrogel structure for multi-scale circulation flow for vascular tissue engineering. The printed vascular network structure based on a solution of 4% (w/v) alginate hydrogel exhibited adequate mechanical strength (0.184±0.008 MPa) and cells survival over 90% after 7 days [307].

Liu, Zhang, Hu, Shen, Rana and Ramalingam [308] created composite bioinks based on sodium alginate and albumen to fabricate scaffolds via pneumatic-based single-probe extrusion 3DP. As shown in Fig. 19A, endothelial cells could adhere to the composite scaffold and maintain high activity. Furthermore, the scaffold could stimulate the sprouting of blood vessels and the formation of a new vascular network [308]. These results demonstrated that the 3D-printed albumen/sodium alginate bioink possessed vasculogenesis potential [308].

While 3D-printed large-sized blood vessels (>6 mm) have been used clinically, there are still some challenges in the replacement of small-sized vessel (<6 mm) [314]. Therefore, researchers have been trying to develop novel inks for small-sized blood vessels applications. For instance, Li, Qin, Peng, Chen, Nie, Liu and Song [315] fabricated 3D vessel constructs using gelatin, sodium alginate, and carbon nanotubes (CNTs) by CaCl₂ crosslinking, and the internal diameters of the bionic blood
vessel and the average thickness of the wall were 3 mm and 0.5 mm, respectively. The addition of CNTs effectively enhanced the mechanical properties of scaffolds but had little effect on cytotoxicity [315]. To mimic the native blood vessels, Zhou, Nowicki, Sun, Hann, Cui, Esworthy, Lee, Plesniak and Zhang [316] prepared a two-layer blood vessel by coaxial extrusion 3DP. The vessel wall was composed of a blend of GelMA/PEG-diacrylate/alginate/lyase laden with vascular smooth muscle cells, and Pluronic F127 was utilized as a temporary inner supporting layer and then removed to form a hollow-core tube-like vessel. Vascular endothelial cells in a 0.5% (w/v) gelatin solution (1×10^6 cells/mL) were injected into the lumen to form an inner layer of the vessel-like matrix. Small-diameter vessel replacements (1 mm of lumen diameter and 0.3 mm of wall thickness) prepared in this way showed steadily cell proliferation and good angiogenesis expression [316].
Fig. 19 A) Fabrication process for alginate 3D microchannel structure; and B) Fluorescent microscopy images of human umbilical vein endothelial cells (HUVECs) cultured on the 3D-printed albumen/sodium alginate scaffold for 4 days. (a) HUVECs on the surface of the 3D-printed albumen/sodium alginate scaffold; (b) Endothelial cells sprouting between filaments of the 3D-
printed albumen/sodium alginate scaffold; (c) Vascular network formation within the 3D-printed albumen/sodium alginate scaffold; (d) Magnified microscopic image of (c); (e) HUVECs viability after culturing 1, 3, and 5 days.

A) is adapted from Ref. [313] with permission from Nature Publishing Group, Copyright 2018. B) is adapted from Ref. [308] with permission from Elsevier, Copyright 2020.

5.3.4. Neural tissue engineering

Peripheral nerve injury causes the loss of motor and sensory capabilities [317, 318]. Unfortunately, the capacity of the nervous system for self-healing is inherently limited [319]. While autologous nerve grafting and end-to-end suturing are the most common treatment methods, they still have several limitations and unsatisfactory repair effects [317]. Biopolymer 3D nerve scaffolds based on gelatin [320], sodium alginate [321], CNFs [322], and collagen [323] have been developed for neural tissue repair. For examples, Wu, Li, Xie, Shan and Cai [321] fabricated a hydrogel-based scaffold with gelatin and alginate containing rat Schwann cells via 3DP, which possess higher levels of nerve growth factor release and mRNA expression of related factors (brain-derived neurotrophic factor, nerve growth factor, glial-derived neurotrophic factor, and platelet-derived growth factor) than 2D culture. Moreover, the 3D-printed scaffold provided a suitable microenvironment for cells growth and the survival rate of Schwann cells was 93.20% on day 7 [321]. Ye, Li, Yu, Xie, Wang, Zheng, Zhang, Xiu, Yang, Zhang, He and Gao [320] utilized GelMA hydrogels to prepare nerve guidance conduits for peripheral nerve repair. In their work, digital light processing was used as the printing method considering its high resolution and printing speed. The researchers optimized the printing parameters to fabricate a complex 3D bionic structure [320]. Result demonstrated the possibility of
using pure GelMA to prepare nerve guidance conduits, which support the survival, proliferation, and migration of neural cells [320]. Kuzmenko, Karabulut, Pernevik, Enoksson and Gatenholm [322] fabricated a conductive bioink based on CNFs (80 wt%) combined with CNTs (20 wt%), showing an electrical conductivity of $3.8 \times 10^{-1} \text{ S cm}^{-1}$. The conductivity facilitated neural tissue development and cell attachment on the scaffold surface [322]. Jiang, Liu, Chen, Dai, Niu, Dai, Chen and Zhang [323] utilized 3DP to form scaffolds with small volume and abundant pores. To overcome the poor mechanical properties and thermal stability of natural collagen, heparin sulfate was added into the system [323]. Results showed that the 3D-printed collagen/heparin sulfate scaffold not only boosted the regeneration of nerve fibers and vessels but also facilitated motor function recovery of hemiplegic limbs [323]. Additionally, the good physical properties, cytocompatibility, and suitable degradation rate of collagen/heparin sulfate scaffolds can also contribute to its application in traumatic brain injury [323].

5.3.5. Other tissue engineering applications

3D-printed biopolymer materials have been applied to even wider tissue engineering applications. For instance, Henriksson, Gatenholm and Hägg [324] used living cells in a bioink of nanocellulose and HA to construct cell-laden structures. Compared with standard 2D culture systems, the 3D-printed scaffold displayed high cell activity (95%), increased lipid accumulation and the adipogenic gene expression of adipocytes. Therefore, nanocellulose and HA might be promising 3D-printable materials for adipose tissue engineering [324]. Sk, Das, Panwar and Tan [325] prepared a novel bioink using gelatin, glycidyl methacrylate (GMA), and human hepatocytes to form a photo-crosslinkable 3D-printed hydrogel scaffold, which improved liver cell differentiation, viability and
proliferation. A 10-fold increment in the number of liver cells was found after 14 days of culture.

Moreover, there were a higher cell number and better proliferation in the gelatin/GMA hydrogel construct than in the GelMA scaffold (control). This indicated that this photo-crosslinkable gelatin/GMA hydrogel material is suitable for liver tissue application [325].

Keratin is a natural renewable material resource derived from human hair. The novel keratin-based materials mainly used in the field of tissue engineering and regenerative medicine [133]. It was reported that 95:5 (w/w) α-keratin/γ-keratin was dissolved in PBS to fabricate 3D-printed keratin constructs with UV crosslinking, which displayed an appropriate swelling degree (16.80–18.48), mechanical properties (5.49–15.45 kPa), and cell metabolic activity (90.9–96.3%) [133].

Starch has also been used to fabricate tissue scaffolds by 3DP. A study by Lam, Mo, Teoh and Hutmacher [198] demonstrated that 50 wt% cornstarch, 30 wt% dextran, and 20 wt% gelatin dissolved in distilled water could be used to create porous cylindrical scaffolds by 3DP. Subsequently, the printed scaffolds were soaked in water for 10 min and dried at 100 °C, which showed suitable mechanical properties (stiffness of 0.059–0.102 MPa), useful in tissue engineering [198].

5.4. Biopolymer 3D-printing for other emerging applications

In addition to applications in food and biomedical fields, 3DP technology could also enable biopolymers to be used in even wider applications such as for wastewater treatment and sensing (Table 11) [63].

The bacteriostatic effects of chitosan and the photocatalytic activity of TiO₂ can effectively degrade antibiotic pollutants in wastewater [85, 326, 327]. Bergamonti, Bergonzi, Graiff, Lottici,
Bettini and Elviri [20], for the first time, fabricated 3D-printed chitosan grid scaffolds using chitosan (6%, w/v) as a matrix and TiO$_2$ (1%, w/v) as a filler for wastewater treatment. The 3D-printed chitosan scaffolds can be used as a reusable substrate for the photocatalytic degradation of amoxicillin in wastewater because it allows designed geometries to meet actual shape and size requirements, thus causing a very high area/volume ratio, which is a key parameter for amoxicillin photocatalysis [20]. Hydrogel-based biopolymers are favorable choices for wastewater purification as they can be used to remove many pollutants. Shahbazi, Jäger, Ahmadi and Lacroix [328] reported that an alginate/nanoclay ink formed a crosslinked network upon electron beam irradiation (5–60 kGy) before 3DP was favorable for maintaining 3D-printed structure, and no post-crosslinking was required. The 3D-printed hydrogels exhibited a fast adsorption speed and high adsorption capacity for effectively removal of various heavy metal ions (e.g. Pb$^{2+}$, Fe$^{3+}$, Cr$^{3+}$, Co$^{2+}$, and Ni$^{2+}$) pollutants from wastewater [328].

Some biomedical equipment components (e.g. pacemakers and cochlear ear implants) are silicon-based electronics, which are incompatible with host tissues [21, 67]. Therefore, developing new biodegradable and biocompatible alternatives has become an inevitable trend. Using a hand-held 3D extrusion printer, a novel conductive device (edible electrodes) was prepared using bioresorbable and biodegradable food-grade materials based on gelatin and gellan gum, along with genipin as a covalent crosslinker and NaCl [21]. The conductivity of the device was demonstrated, which could be suitable for application as flexible conductor elements in electronic circuits [21]. These edible conductive devices provide a potential for novel drug delivery systems and gastrointestinal monitoring devices [21, 34]. Besides, skin-like wearable sensors have been recently explored [329-
331] to monitor the physiological activities of human bodies. Wei, Xie, Zhang, Zou, Ping, Wang, Xie, Shen, Lei and Fu [330] designed a hydrogel-based wearable strain sensor based on CNTs, sodium alginate, and Ca\(^{2+}\)-crosslinked polyacrylic acid (PAA). The 3D-printable hydrogel with self-healing ability, stretchability, and electronic and ionic conductivities [330]. Furthermore, the sensor had high sensitivity (gauge factor of 6.29) and stable responsiveness to external stimuli (finger and knee bending, and breathing after exercise) [330]. Similar research was made by incorporating CNCs into a chelate of Al\(^{3+}\) with PAA and deep eutectic solvents, leading to a printed strain sensor with high sensitivity (gauge factor up to 3.3) and stable responsiveness to the human body by the change in electrical resistance [331]. Moreover, wearable sensors may also be used as UV-responsive devices for monitoring UV radiation. For example, Finny, Jiang and Andreescu [329] used alginate, gelatin, TiO\(_2\) and colored dyes (malachite green, methyl orange, and methylene blue) to fabricate 3D sensors. The hydrogel-based sensors showed excellent reproducibility in quantifying UV exposure by the change in color [329].

6. Conclusions

As an emerging technology, 3DP is expected to change the traditional ways of manufacturing. Along with that, biopolymer 3DP has also experienced significant development although the main applications are still limited to be mainly in food and biomedical areas. Various 3DP techniques, such as inkjet printing, extrusion-based printing, laser-assisted printing, and binder jetting have been widely used to fabricate objects of different geometries or shapes [9, 332]. Among these different 3DP techniques, extrusion-based 3DP is the most commonly used. A series of printer- and material-related factors determine the accuracy of 3DP. For example, material-
related factors include bioink formulation and printing temperature, influencing the viscoelasticity of inks especially melts. Appropriate rheological properties are important to ensure the flowability of the ink during printing and the self-supporting strength after extrusion. Printer-related factors involve nozzle diameter, extrusion rate, nozzle moving speed, and nozzle height. By adjusting these printing parameters, the quality and precision of printed objects can be regulated. In general, the nozzle diameter can be the first consideration for different formulations to be successfully printed. Besides, post-printing treatments (e.g. baking, drying, and crosslinking) also determine the quality of printed samples.

Some biopolymers have been successfully used in 3DP with much room for further exploration. Biopolymers such as starch, pectin, κ-carrageenan, xanthan gum, milk protein, and soy protein have been mostly employed in 3DP food because of their advantages like gel-forming ability, edibility, and high nutritional values. Besides, some biopolymers such as cellulose, alginate, chitosan, HA, SF, collagen, gelatin, and keratin have been employed particularly in the biomedical field due to their excellent biocompatibility, biodegradation, and functional properties. In general, these biopolymers are dissolved in water or solvents to prepare the inks. However, ink formulations are quite limited and new bioinks need to be developed that can meet a wider range of material property requirements (i.e. rheological, mechanical, and physicochemical properties). Therefore, incorporation of additional materials to biopolymer matrices or mixing several biopolymers for reinforcement effects provides solutions.

7. Challenge and future perspectives

Despite the remarkable progress made in the 3DP of biopolymers, this area of research still faces
some important challenges that need to be addressed urgently.

Biopolymers have proven to be interesting raw materials for 3DP applications due to their advantages such as environment-friendliness, sustainability, and non-toxicity [25, 40]. However, there are still several shortcomings of some biopolymers, such as poor processability and solubility in water or common organic solvents. Therefore, it is necessary to develop new solvents for biopolymer processing and 3DP. In particular in food and biomedical applications, solvents must be safe, green, and harmless. In this regard, biobased ILs are worth to be investigated.

Currently, food 3DP is mainly applied to the production of customized food, snacks, and desserts [333] but not our daily food. Also, there is still a long way to go from lab to kitchen regarding biopolymer 3DP. There are several main challenges related to the 3DP of biopolymers for food applications:

1) The 3DP of starch-based food is mainly limited to the use of mashed potato [17, 45, 183, 229, 334] or modified cassava starch [52, 335] because they have better gelatinization and rheological properties [45] and can be designed to present various geometry shapes [17]. In contrast, it is more challenging to meet structure and property requirements using other starches. Modification methods could be explored to broaden starch resources for 3DP.

2) Food 3DP is mainly limited to produce simple structures or shapes (mostly, cylindrical or square). More research is needed to achieve more complex food structures.

3) Most of the printing probes are single or double, leading to low printing efficiency. 3DP techniques for multi-dimensional and multi-material printing are still highly demanded.
Besides, there is still a lack of research for personalized nutrition or flavor in 3D-printed food.

In biomedical areas, tissue biomimicry is a key challenge. While multiple biopolymers and live cells can be printed into complex tissue structures (e.g. kidney, heart, lung, and liver tissues), more complex systems such as vessels, neurons, nerves, and lymphatics cannot be easily fabricated yet by 3DP. The ultimate goal in this area should be to develop biocompatible tissues or organs that can function normally in the organism. Therefore, more attention needs to be paid to tissue compatibility, interactivity with living cells, and cell proliferation rate and viability.

To improve the mechanical strength and stiffness of printed objects, the hydrogels usually need to be crosslinked after printing. However, in addition to the most commonly used salt CaCl₂, some crosslinkers (e.g. glutaraldehyde) are potentially cytotoxic and few other suitable crosslinkers are available. Therefore, it is worth to develop new “green” crosslinking agents (e.g. carboxylic acids [336] and citric acid [337]) and new technologies [32, 338] for biopolymer 3DP, which can offer versatile properties to the printed materials (e.g. printability, biocompatibility, biodegradation, and mechanical strength).

To fabricate complex 3D constructs with the required functionality, 4DP is likely to become a promising potential technology. The concept of 4DP is ascribed to the extension of 3DP with the addition of the time dimension and can provide 3DP with cost-effectiveness for the fabrication of smart devices or complex human organs or tissues with blood vessels and nerves. Besides, 4DP allows food to have some unique changes in e.g. structure, flavor, nutrition, and color after 3DP [339, 340].
The concept of 5D printing (5DP) has emerged. 5DP was first implemented by the Mitsubishi Electric Research Laboratories (MERL) by Yerazunis, who invented a 5D printer to printing 3D objects using thermoplastic materials such as acrylonitrile butadiene styrene [341, 342]. 5DP depends on a moving plateau that allows for the print head to make different angles from five dimensions and create a part with curved layers. Compared with 3DP or 4DP, 5DP applies to efficient manufacturing of complex curved structures with excellent strength [343]. Research has been started on 4DP and 5DP in the biomedical fields, but much more efforts are worth to devote to the application of this emerging technology for the manufacture of advanced biopolymer-based materials.

Acknowledgements

The authors acknowledge the funding support from the National Natural Science Foundation of China (grant No. 31701637) and the China Association for Science and Technology (grant No. 2018QNRC001).
Table 1 Summary of various biopolymers and their applications.

<table>
<thead>
<tr>
<th>Biopolymer</th>
<th>Chemical structure</th>
<th>3D printing technique</th>
<th>Application</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polysaccharide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starch</td>
<td></td>
<td>Extrusion</td>
<td>Food; Chemistry; Material (plastic);</td>
<td>[38, 45, 344]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fermentation; Paper; Pharmaceutical</td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td></td>
<td>DIW; Inkjet printing; FDM</td>
<td>Construction; Pulp and papermaking;</td>
<td>[53, 65, 345-347]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Textile</td>
<td></td>
</tr>
<tr>
<td>Alginate</td>
<td></td>
<td>Extrusion</td>
<td>Wound healing; Tissue engineering</td>
<td>[28, 70, 348]</td>
</tr>
</tbody>
</table>

\(\beta\text{-D-mannuronic acid and }\alpha\text{-L-guluronic acid}\)
<table>
<thead>
<tr>
<th>Material</th>
<th>Processing Methods</th>
<th>Applications</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pectin</td>
<td>Extrusion; Inkjet printing</td>
<td>Food; Pharmaceutical</td>
<td>[28, 79, 349, 350]</td>
</tr>
<tr>
<td>D-Galacturonic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ-Carrageenan</td>
<td>UV stereolithography; DIW</td>
<td>Food; Pharmaceutical; Cosmetic; Textile</td>
<td>[351-354]</td>
</tr>
<tr>
<td>D-anhydroglucopyranose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chitosan</td>
<td>Extrusion; Stereolithography</td>
<td>Cosmetic; Pharmaceutical; Food; Biotechnological; Environmental</td>
<td>[86, 355, 356]</td>
</tr>
<tr>
<td>D-glucosamine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyaluronic acid</td>
<td>Extrusion</td>
<td>Biomedicine; Tissue regeneration; Cosmetic; Nutricosmetic</td>
<td>[96, 100]</td>
</tr>
<tr>
<td>D-glucuronic acid and N-acetyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>Structure</td>
<td>Processing Methods</td>
<td>Applications</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Xanthan gum</td>
<td></td>
<td>Binder jetting; Extrusion</td>
<td>Food</td>
</tr>
<tr>
<td>Protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silk</td>
<td>GAGAGS</td>
<td>Micro-extrusion; Stereolithography; Hybrid; inkjet printing/electrospinning</td>
<td>Biomedical; Textile; Cosmetic; Medical cosmetology; Photographic; Biomedical; Food; Leather</td>
</tr>
<tr>
<td>Collagen</td>
<td>Gly-X-Y</td>
<td>Extrusion; Inkjet printing</td>
<td>Cosmetic; Medical cosmetology; Photographic; Biomedical; Food; Leather</td>
</tr>
<tr>
<td>Gelatin</td>
<td>Ala-Gly-Pro-Arg-Gly-Glu-4Hyp-Gly-Pro</td>
<td>Extrusion; Stereolithography</td>
<td>Cosmetic; Biomedical</td>
</tr>
<tr>
<td>Keratin</td>
<td>A(Cys-Cys-X-Pro-X); B(Cys-Cys-X-SerThr-SerThr)</td>
<td>UV lithography</td>
<td>Biomedical; Cosmetic; Food; Textile</td>
</tr>
<tr>
<td>Milk protein</td>
<td>Casein (α_1, α_2, β, and κ); Whey protein (lactalbumins, lactoglobulins)</td>
<td>Extrusion</td>
<td>Food</td>
</tr>
</tbody>
</table>

D-glucose, D-mannose and D-glucuronic acid
<table>
<thead>
<tr>
<th>Soy protein</th>
<th>Albumins;</th>
<th>Extrusion</th>
<th>Food; Biomedical</th>
<th>[144, 365]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globulins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: DIW, Direct ink writing; FDM, Fused deposition modeling.
Table 2 Different 3D printing techniques used for biopolymers.

<table>
<thead>
<tr>
<th>Printing technique</th>
<th>Material for 3D printing</th>
<th>Processing Factor</th>
<th>Solidification method</th>
<th>Application</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inkjet printing</td>
<td>Hydrogel; low-viscosity material (cotton fabrics, pectin-nanocellulose, alginate)</td>
<td>Heat gradient or electric stimuli</td>
<td>CaCl₂ solution; Steam</td>
<td>Food; Tissue engineering</td>
<td>[349, 363, 366]</td>
</tr>
<tr>
<td>Extrusion</td>
<td>Thermoplastic; hydrogel; viscous biopolymer (cellulose nanocrystal; κ-carrageenan; maize protein; starch; alginate/gelatin)</td>
<td>Heating and extruding</td>
<td>Freeze-drying; Physical crosslinking (freeze-thawing)</td>
<td>Tissue engineering; Drug delivery; Packaging; Biomedical; Pharmaceutical; Food</td>
<td>[65, 155, 185, 351, 367]</td>
</tr>
<tr>
<td>Stereolithography</td>
<td>Photo-polymerizable liquid resins (alginate; cellulose nanocrystals; silk fibroin)</td>
<td>Laser; visible light or UV</td>
<td>CaCl₂ solution; UV</td>
<td>Tissue and organ engineering</td>
<td>[257, 368-370]</td>
</tr>
<tr>
<td>Selective laser sintering (SLS)</td>
<td>Thermoplastic; powdered material (maltodextrin; protein)</td>
<td>Laser</td>
<td>Baking; Laser</td>
<td>Food with complex structures</td>
<td>[371, 372]</td>
</tr>
<tr>
<td>Binder jetting</td>
<td>Powdered materials (cellulose composite powders)</td>
<td>Liquid binding agent</td>
<td>Recrystallization</td>
<td>Food</td>
<td>[357, 373]</td>
</tr>
</tbody>
</table>

Abbreviations: SLS, Selective laser sintering.
Table 3 Summary of the rheological properties and applications of 3D-printed biopolymer materials.

<table>
<thead>
<tr>
<th>Formulation (bioink)</th>
<th>Printing method and printed object shape</th>
<th>G' (Pa)</th>
<th>G'' (Pa)</th>
<th>η (Pa·s)</th>
<th>Application</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1: 100 g of mashed potato mixed with 1 g of KG/XG (3:2, w/w) in boiling water;</td>
<td>Dual-extrusion (triangle; square; regular hexagon and round shape)</td>
<td>8,000–30,000</td>
<td>–</td>
<td>–</td>
<td>Food</td>
<td>[45]</td>
</tr>
<tr>
<td>Sample 2: 17.5 g of potato starch added to 100 g of strawberry juice, followed by steam-cooking for 20 min;</td>
<td>Extrusion (cylinder)</td>
<td>4,924.2</td>
<td>760.8</td>
<td>1,000–8,079.3</td>
<td>Food</td>
<td>[183]</td>
</tr>
<tr>
<td>Lemon juice mixed with potato starch (content: 10, 12.5, 15, 17.5, and 20 g/100 g), followed by steam-cooking for 20 min;</td>
<td>Extrusion (cube 18×18×18 mm)</td>
<td>–</td>
<td>–</td>
<td>350.4–25,600</td>
<td>Food</td>
<td>[5]</td>
</tr>
<tr>
<td>Banana (73.5 wt%) / white canned beans (15 wt%) / dried non-fat milk (6 wt%) / lemon juice (3 wt%) / dried mushrooms (2 wt%) / ascorbic acid (0.5 wt%), in pectin solution (11%, w/w);</td>
<td>Extrusion</td>
<td>15–9,000</td>
<td>15–900</td>
<td>–</td>
<td>Food</td>
<td>[374]</td>
</tr>
<tr>
<td>Tomato paste</td>
<td>Extrusion (Chinese character; cylinder)</td>
<td>30–80,000</td>
<td>200–30,000</td>
<td>40–200,000</td>
<td>Food</td>
<td>[111]</td>
</tr>
<tr>
<td>XG (0.5%, w/v) dissolved in glycerin/water (1:1, w/w) solution, accounting for 65 wt% of the ink; the other 35 wt% of the ink was MPC/WPI (6:1, 5:2, and 4:3, w/w), which was added to the above prepared solution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

85
<p>| XG (0.5 g) / SPI (30 g) added to NaCl solution (1, 2, and 3 g of NaCl in 100 mL of distilled water), adjusted to pH 7 using NaOH (0.1 mol/L), microwave-treated (100 W, 5 min) to form gel. | Extrusion (Celtic triangle; cube; smile heart; fruit slice; rabbit) | 1,573–2,095 | 337–456 | 11–16 | Food | [375] |
| SMP (15 wt%) dissolved in deionized water, then added with starch (10 wt%) | Extrusion (25 mm × 25 mm squares filled with diamond-like structures) | 280 | 43.5–10,600 | – | Food | [15] |
| Water (29 g), sucrose (6.6 g), butter (6.0 g), flour (48 g) and egg (10.4 g) per 100 g formulation | Extrusion (mickey mouse and a square frame) | 0–700 | 0–120 | 0.08–50 | Food | [16] |
| Potato flakes (80 wt% based on water) mixed with 1 wt% KG/XG (3:2, w/w) in boiling water, potato flakes/water = 4:1 (w/w) | Extrusion (rectilinear; honeycomb and Hilbert curve) | 20,000–30,000 | ≤5,000 | 1,018–42,608 | Food | [17] |
| Mashed potato: potato flakes (15, 19, 23, and 27 wt% based on water) mixed with 2 wt% SA in boiling water, added with 1 wt% citric acid and 1 wt% sodium bicarbonate; Purple sweet potato puree: 30 g of purple sweet potato powder mixed with 2 g of SA in 100 g of boiling water | Dual extrusion (cylindrical model) | 1,500–40,000 | 900–5,000 | 600–80,000 | Food | [229] |
| 30 mg/g KG stirred (1500 rpm, 30min) in water at room temperature | Extrusion (discs and stars) | 100–10,000 | 100–10,000 | – | Food and pharmaco- | [352] |</p>
<table>
<thead>
<tr>
<th>Component</th>
<th>Process Description</th>
<th>Volume/ratio/temperature</th>
<th>Experiment</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM pectin (15, 35, and 55 g/L) dissolved in 45 mL of sugar syrup/water mixture (0, 25, and 50%, v/v), added with 15 mL of CaCl₂ solution (12.5, 15, and 17.5 mM); BSA (0, 2.5, and 5 g/L) was added before printing.</td>
<td>Extrusion (honeycomb infill pattern; cube of 1.5×1.5×1.5 cm³)</td>
<td>100–2,000 35–500 –</td>
<td>Food</td>
<td>[79]</td>
</tr>
<tr>
<td>KG (1–2%, w/w) / XG (0.25–0.5%, w/w) / potato starch (0–2%, w/w) dissolved in water, added with 0.1% (w/w) food colorant</td>
<td>Extrusion (hollow cylinder)</td>
<td>51.2–9,017 39.4–1,026 0.1–110</td>
<td>Food</td>
<td>[104]</td>
</tr>
<tr>
<td>Egg yolk sealed in plastic bags (without air), heated (at 72, 76, 80, and 84 °C) for up to 12 min</td>
<td>Extrusion (a squirrel; 10% with a rectilinear fill pattern)</td>
<td>0.5–5,000 4–3,000 –</td>
<td>Food</td>
<td>[196]</td>
</tr>
<tr>
<td>Sample 1: 3 wt% CNFs mixed with 3 wt% alginate in water; Sample 2: 4 wt% CNFs in water</td>
<td>Extrusion (grid)</td>
<td>2,000–20,000 300–1,000 1.048–4.38×10⁴</td>
<td>Human tissue constructs</td>
<td>[189]</td>
</tr>
<tr>
<td>8.35% (w/v) of CNFs diluted in 200 mL of Milli-Q water, further mixed with aqueous SWCNTs dispersion (1%, w/v); The resulting mixture had CNFs/CNTs dry weight ratio of 80/20.</td>
<td>Extrusion (parallel lines)</td>
<td>5–4,000 40–1,000 0.5–100,000</td>
<td>Neural tissue engineering</td>
<td>[322]</td>
</tr>
<tr>
<td>CNFs (1.5–2.25 wt%) / alginate (0.25–1 wt%) / water</td>
<td>Extrusion (small grid)</td>
<td>2,000–50,000 400–5,000 0.2–100,000</td>
<td>Cartilage tissue</td>
<td>[170]</td>
</tr>
<tr>
<td>(97.5 wt%)</td>
<td>large grid; a solid disc; human ear; sheep; meniscus</td>
<td></td>
<td></td>
<td>engineering</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6 wt% SA and 3 wt% gelatin dissolved in water at 50 °C, mixed with 6 wt% CNCs to reach a CNCs/SA/gelatin ratio of 70:20:10 (w/w/w)</td>
<td>Extrusion (block porous hydrogel scaffold)</td>
<td>1.98×10⁴</td>
<td>3.02×10⁴</td>
<td>10–10⁵</td>
</tr>
<tr>
<td>Nanocellulose water dispersion (1.9 wt% dry content) mixed with either alginate (3%, w/v) or alginate sulfate (6%, w/v) solution at 4.2:1 (v/v)</td>
<td>Extrusion (ear)</td>
<td>3,000–15,000</td>
<td>–</td>
<td>0.01–10,000</td>
</tr>
<tr>
<td>Method 1: GelMA powder mixed with CNFs gel (1%, w/v) at 50 °C, resulting in 0.2 and 0.5% (w/v) final GelMA concentrations</td>
<td>Extrusion (cubic grid scaffolds)</td>
<td>0–320</td>
<td>–</td>
<td>1–2×10³</td>
</tr>
<tr>
<td>Method 2: 1 mL of GelMA solution (10%, w/v) added to 9 mL of CNFs gel (1%, w/v)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 1, 2, and 3 wt% GGMMA powder added to CNFs gel (1 wt%), heated at 50 °C</td>
<td>Extrusion (spruce tree model)</td>
<td>80–60,000</td>
<td>–</td>
<td>0.2–2,000</td>
</tr>
<tr>
<td>CNFs diluted in Dulbecco’s PBS to achieve 0.25 wt% concentration, heated to 70 °C, added with gelatin (5 wt%) / alginate (4 wt%) powder</td>
<td>Extrusion (cubic grid)</td>
<td>10,000–50,000</td>
<td>–</td>
<td>56–1,143</td>
</tr>
<tr>
<td>Solution Method</td>
<td>Processing Parameters</td>
<td>Properties</td>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Silk dissolved in LiBr (9 M) to achieve 1.5% (w/v) SF solution, mixed with 7% (w/v) gelatin at 37 °C</td>
<td>Extrusion (3D model of the lateral meniscus)</td>
<td>$1 \times 10^{-4} - 1 \times 10^{4}$</td>
<td>Biomedical [12]</td>
<td></td>
</tr>
<tr>
<td>SF powder dissolved in water to achieve a 2.5–10% (w/v) solution, mixed with PEG400 (80%, w/w) at 1:1 (v/v), heated at 37 °C for gelation</td>
<td>Extrusion (disk-shaped with pore; grid-shaped; ear-shaped)</td>
<td>$1 \times 10^{3} - 2 \times 10^{4}$</td>
<td>Biomedical [378]</td>
<td></td>
</tr>
<tr>
<td>Silk dissolved in LiBr (9 M) to achieve 15 wt% SF solution, mixed with gelatin (1:2, w/w) and glycerol (5:1, w/w), added with BCNFs dispersion; three samples with BCNFs/Total = 0.35, 0.7, and 1.40 wt% in the bioink prepared</td>
<td>Extrusion (cubic grid)</td>
<td>$1 \times 10^{4} - 1 \times 10^{6}$</td>
<td>Tissue engineering [379]</td>
<td></td>
</tr>
<tr>
<td>Silk dissolved in LiBr (9 M) to achieve 0.5–2% (w/v) SF solution, mixed with gelatin 1–9% (w/v)</td>
<td>Extrusion (grid-like structure and human ear)</td>
<td>$10^{-2} - 10^{2}$</td>
<td>Cartilage tissue engineering [200]</td>
<td></td>
</tr>
<tr>
<td>6% (w/v) silk dissolved in 9.3 M LiBr, mixed with glycerol (700 mg/mL) and gelatin (400 mg/mL)</td>
<td>Extrusion (cheek implants; cylindrical constructs with concentric pattern)</td>
<td>$2.04 - 4.94 \times 10^{4}$</td>
<td>Tissue integration [265]</td>
<td></td>
</tr>
<tr>
<td>Silk dissolved in LiBr (9 M) to achieve 5% (w/v)</td>
<td>Extrusion (grid-like)</td>
<td>$10^{2} - 10^{4}$</td>
<td>Cartilage tissue [207]</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Extrusion Details</td>
<td>Concentration</td>
<td>Tissue Regeneration</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Alginate (2%, w/v) / gelatin (3%, w/v) / Matrigel (0, 5, 20, and 50%, w/v) / 2.5% CaSO₄ / A549 cells (7 × 10⁶ cells/mL)</td>
<td>Extrusion (nose letter T, U; cubic grid)</td>
<td>250–1,250</td>
<td>23–80</td>
<td>0.1–0.5</td>
</tr>
<tr>
<td>KG (0.5, 1.0, or 1.5%, w/v) mixed with SA solution (2%, w/v), added with CaSO₄ solution (0.5, 1.0, 1.5, 2.0, or 3.0%, w/v)</td>
<td>Extrusion</td>
<td>220–900</td>
<td>–</td>
<td>1–10⁴</td>
</tr>
<tr>
<td>Alginate (3%, w/v) / gelation (10%, w/v)</td>
<td>Extrusion (Y-shaped)</td>
<td>50–300</td>
<td>6–16</td>
<td>300–2,000</td>
</tr>
<tr>
<td>15 g of gelatin dissolved in 100 mL of DMEM/F12, added with 2.0 g of alginate</td>
<td>Extrusion (bilayered membranous construct)</td>
<td>10–20,000</td>
<td>30–1,000</td>
<td>1–5×10⁴</td>
</tr>
<tr>
<td>1% (w/v) SA and 3% (w/v) gelatin in water heated at 70 °C</td>
<td>Extrusion (porosity; grid pattern)</td>
<td>300–350</td>
<td>50–100</td>
<td>0.2–1.2</td>
</tr>
<tr>
<td>TiO₂ nanoparticles (0.1%, w/v) and β-TCP (1.0%, w/v) added to CaCl₂ solution (0.20%, w/v), then slowly added with alginate (2%, w/v) / gelatin (0.5%, w/v)</td>
<td>Extrusion (voronoi; hexagon; grid)</td>
<td>0.1–150</td>
<td>5–50</td>
<td>1–2,000</td>
</tr>
<tr>
<td>Alginate (30 mg/mL) mixed with alginate-sulfate (5, 10, or 30 mg/mL), dissolved in DMEM</td>
<td>Extrusion (cell; porosity; grid pattern)</td>
<td>1,000–2,000</td>
<td>–</td>
<td>50–8,000</td>
</tr>
<tr>
<td>20% (w/v) gelatin powder and 4% (w/v) sodium alginate</td>
<td>Extrusion (cell; grid)</td>
<td>1.95–595</td>
<td>12.6–31,400</td>
<td>–</td>
</tr>
<tr>
<td>Powder dissolved in 0.5% (w/v) NaCl solution</td>
<td>Structures</td>
<td>Tissue engineering [384]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% (w/v) dex-HEMA dissolved in HEPES buffer (100 mM, pH 7.4) or chondrocyte culture medium, added with HA (2, 4, and 6%, w/v)</td>
<td>Extrusion (hydrogel with grid)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KG and polyacrylamide dissolved in water to form double-network hydrogel (18 wt%)</td>
<td>UV stereolithography (a hollow triangular prism and a hollow cube)</td>
<td>Robotics and human motion detection [353]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM-pectin added to nanocellulose gel, stirred at room temperature until complete dissolution; CNFs/LM-pectin ratio = 3:1, 1:1, and 1:3 (w/w), the total solid weight per volume was 1.59%, 2.38%, and 4.76%, respectively</td>
<td>Extrusion (grid hydrogel, 800–5,000; 8×10²–2×10⁴; 0.2–400)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BCNF, Bacterial cellulose nanofiber; BSA, Bovine serum albumin; β-TCP, β-Tricalcium phosphate; CNC, Cellulose nanocrystal; CNF, Cellulose nanofibril; CNT, Carbon nanotube; Dex-HEMA, Hydroxyethyl-methacrylate-derivatized dextran; DIW, Direct ink writing; DMEM, Dulbecco’s modified Eagle medium; η, Viscosity; GelMA, Gelatin methacryloyl; G', Elastic modulus; G", Loss modulus; GGMMA, Galactoglucomannan methacrylate; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; KG, κ-Carrageenan gum; LM, Low methoxyl; MPC, Milk protein concentration; PBS, Phosphate-buffered saline; PEG400, Polyethylene glycol; SA, Sodium alginate; SDS, Sodium dodecyl sulfate; SMP, Skimmed milk powder; SPI, Soybean protein isolate; SWCNT, Single-walled carbon nanotube; WPI, Whey protein isolate; XG, Xanthan gum.
Table 4 Summary of 3D printing parameters and applications.

<table>
<thead>
<tr>
<th>Formulation (bioink)</th>
<th>Printing method</th>
<th>Nozzle diameters (mm)</th>
<th>Printing speed (mm·s⁻¹)</th>
<th>Application</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1: 100 g of mashed potato mixed with 1 g of KG/XG (3:2, w/w) in boiling water; Sample 2: 17.5 g of potato starch added to 100 g of strawberry juice, followed by steam-cooking for 20 min</td>
<td>Dual extrusion (triangle; square; regular hexagon and round shape)</td>
<td>–</td>
<td>25</td>
<td>Food</td>
<td>[45]</td>
</tr>
<tr>
<td>Lemon juice mixed with potato starch (10, 12.5, 15, 17.5, and 20 g/100 g), followed by steam-cooking for 20 min</td>
<td>Extrusion (cylinder)</td>
<td>0.5–2</td>
<td>15–35</td>
<td>Food</td>
<td>[183]</td>
</tr>
<tr>
<td>Banana (73.5 wt%) / white canned beans (15 wt%) / dried non-fat milk (6 wt%) / lemon juice (3 wt%) / dried mushrooms (2 wt%) / ascorbic acid (0.5 wt%) / pectin solution (11 wt%)</td>
<td>Extrusion (cylinder)</td>
<td>–</td>
<td>30, 50, 70</td>
<td>Food</td>
<td>[5]</td>
</tr>
<tr>
<td>Tomato paste</td>
<td>Extrusion</td>
<td>0.8, 1.2</td>
<td>18, 25</td>
<td>Food</td>
<td>[374]</td>
</tr>
<tr>
<td>XG (0.5%, w/v) dissolved in glycerin/water (1:1, w/w) solution, accounting for 65 wt% of the ink; the other 35 wt% ink was MPC/WPI (6:1, 5:2, and 4:3, w/w), which was added to the above-prepared solution</td>
<td>Extrusion (Chinese character; cylinder)</td>
<td>–</td>
<td>35, 50</td>
<td>Food</td>
<td>[111]</td>
</tr>
<tr>
<td>Sample</td>
<td>Formulation Details</td>
<td>Extrusion Details</td>
<td>Flavor</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--</td>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SPI (30 g) / XG (0.5 g) added to NaCl solution (0, 1, 2, and 3 g of NaCl in 100 mL of distilled water)</td>
<td>Extrusion (Celtic triangle; cube; smile heart; fruit slice; rabbit)</td>
<td>15</td>
<td>Food</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SMP (15 wt%) dissolved in water, added with starch (10 wt%)</td>
<td>Extrusion (25 mm × 25 mm squares filled with diamond-like structures)</td>
<td>0.41</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Egg powder dissolved in water, added with rice flour; Egg powder / rice flour ratio = 1:1 and 1:2 (w/w)</td>
<td>Extrusion (model “Kitty Nury”)</td>
<td>0.84, 1.22</td>
<td>6.7–20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Water (29 g), sucrose (6.6 g), butter (6.0 g), flour (48 g), and egg (10.4 g) per 100 g of formulation</td>
<td>Extrusion (Mickey Mouse and square frame)</td>
<td>0.8, 1.5, 2.0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 wt% (based on potato flakes) KG/XG (3:2, w/w) and potato flakes mixed in boiling water; Potato flakes / boiling water ratio = 4:1 (w/w)</td>
<td>Extrusion (rectilinear, honeycomb and Hilbert curve)</td>
<td>0.8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sample 1: 15, 19, 23, and 27 wt% potato flakes mixed with 2 wt% SA powder in boiling water, added with 1 wt% citric acid and 1 wt% sodium bicarbonate;</td>
<td>Dual Extrusion (cylindrical model)</td>
<td>1.2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Sample 2: 30 g of purple sweet potato powder mixed with 2 g of SA, added with 100 g of boiling water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>30 mg/g KG stirred (1500 rpm, 30 min) in water at room temperature</td>
<td>Extrusion (discs and star-shaped)</td>
<td>–</td>
<td>10–60</td>
<td></td>
</tr>
</tbody>
</table>

Notes: [375], [15], [185], [16], [17], [229], [352]
<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
<th>Formulation</th>
<th>Process Type</th>
<th>Food</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM pectin (15, 35, and 55 g/L)</td>
<td>Dissolved in 45 mL of sugar syrup/water mixture (0, 25, and 50%, v/v), added with 15 mL of CaCl₂ solution (12.5, 15, and 17.5 mM); BSA (0, 2.5, and 5 g/L) was added before printing</td>
<td>Extrusion (honeycomb infill pattern, cube of 1.5×1.5×1.5 cm³ were printed; porous food)</td>
<td>Food [79]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KG (1–2%, w/w) / XG (0.25–0.5%, w/w) / potato starch (0–2%, w/w) dissolved in water, added with 0.1% (w/w) food colorant</td>
<td></td>
<td></td>
<td></td>
<td>Food [104]</td>
<td></td>
</tr>
<tr>
<td>Egg yolk sealed in plastic bags (without air), heated (at 72, 76, 80, and 84 °C) for to 12 min</td>
<td>Extrusion (squirrel; 10% with a rectilinear fill pattern)</td>
<td>Extrusion (grid)</td>
<td>0.42 10</td>
<td>Human tissue constructs [189]</td>
<td></td>
</tr>
<tr>
<td>Sample 1: 3 wt% CNFs mixed with 3 wt% alginate in water; Sample 2: 4 wt% CNFs in water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.35% (w/v) of CNFs diluted in 200 mL of Milli-Q water, further mixed with aqueous SWCNTs dispersion (1 wt%); The resulting mixture had CNFs/CNTs dry weight ratio of 80/2.</td>
<td>Extrusion (parallel lines)</td>
<td></td>
<td>0.3 10</td>
<td>Neural tissue engineering [322]</td>
<td></td>
</tr>
<tr>
<td>CNFs (1.5–2.25 wt%) / alginate (0.25–1 wt%) / water (97.5 wt%)</td>
<td>Extrusion (small grid; large grid; a solid disc; human ear; sheep meniscus)</td>
<td></td>
<td></td>
<td>Cartilage tissue engineering [170]</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
<td>Concentrations</td>
<td>Applications</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Method 1: GelMA powder mixed with CNFs gel (1%, w/v) at 50 °C, resulting in 0.2 and 0.5% (w/v) final GelMA concentrations;</td>
<td>Extrusion (cubic grid scaffolds) 0.45–0.6 16.67–33.3</td>
<td>Wound healing</td>
<td>[376]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method 2: 1 mL of GelMA solution (10%, w/v) added to 9 mL of CNFs gel (1%, w/v)</td>
<td>Extrusion (spruce tree model) – 5</td>
<td>Biomedical</td>
<td>[205]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 1, 2, and 3 wt% GGMMAs powder added to CNFs gel (1 wt%), heated at 50 °C</td>
<td>Extrusion (spruce tree model) – 5</td>
<td>Biomedical</td>
<td>[205]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNFs gel diluted in Dulbecco’s PBS to achieve 0.25 wt% concentration, heated to 70 °C, added with gelatin</td>
<td>Extrusion (cubic grid) – 15–65</td>
<td>Bone tissue engineering</td>
<td>[377]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 wt% SA and 3 wt% gelatin dissolved in water at 50 °C, mixed with 6 wt% CNCs to reach a CNCs/SA/gelatin ratio of 70:20:10 (w/w/w)

Nanocellulose water dispersion (1.9 wt% dry content) mixed with either alginate (3%, w/v) or alginate sulfate (6%, w/v) solution at 4.2:1 (v/v)
<table>
<thead>
<tr>
<th>Bioink Preparation</th>
<th>Method (Grid)</th>
<th>Parameters</th>
<th>Applications</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silk dissolved in LiBr (9 M) to achieve 15 wt% SF solution, mixed with gelatin (1:2, w/w) and glycerol (5:1, w/w), added with BCNFs dispersion; three samples with MBCNFs/Total = 0.35, 0.7, and 1.40 wt% in the bioink prepared</td>
<td>Extrusion (cubic grid)</td>
<td>0.41, 0.6</td>
<td>Tissue engineering</td>
<td>[379]</td>
</tr>
<tr>
<td>Silk dissolved in LiBr (9 M) to achieve 0.5–2% (w/v) SF solution, mixed with gelatin 1–9% (w/v)</td>
<td>Extrusion (grid-like structure and human ear)</td>
<td>0.25</td>
<td>6–8</td>
<td>Cartilage tissue engineering</td>
</tr>
<tr>
<td>Mixture of cells (1×10⁶ mL⁻¹) and collagen solutions (3, 5, and 7 wt%) as collagen bioink</td>
<td>Extrusion (cell-laden collagen-mesh structure)</td>
<td>–</td>
<td>10</td>
<td>Biomedical engineering</td>
</tr>
<tr>
<td>KG (0.5, 1.0, and 1.5%, w/v) mixed with SA solution (2%, w/v), added with CaSO₄ solution (0.5, 1.0, 1.5, 2.0, and 3.0%, w/v)</td>
<td>Extrusion</td>
<td>–</td>
<td>1–16</td>
<td>Tissue engineering and regenerative medicine</td>
</tr>
<tr>
<td>1% SA (w/v) and 3% (w/v) gelatin heated at 70 °C</td>
<td>Extrusion (porosity; grid pattern)</td>
<td>–</td>
<td>14</td>
<td>Therapeutic stem cell</td>
</tr>
<tr>
<td>TiO₂ nanoparticles (0.1%, w/v) and β-TCP (1.0%, w/v) added to CaCl₂ solution (0.20%, w/v), then slowly added with alginate (2%, w/v) / gelatin (0.5%, w/v)</td>
<td>Extrusion (Voronoi; hexagon; grid)</td>
<td>–</td>
<td>4.5</td>
<td>Tissue engineering scaffolds</td>
</tr>
<tr>
<td>Alginate (30 mg/mL) mixed with alginate-sulfate (5, 10, and 30 mg/mL), dissolved in DMEM</td>
<td>Extrusion (cell; porosity; grid pattern)</td>
<td>0.3</td>
<td>–</td>
<td>Bone tissue engineering</td>
</tr>
</tbody>
</table>
20% (w/v) gelatin powder and 4% (w/v) sodium alginate powder dissolved in 0.5% (w/v) NaCl solution

Extrusion (cell; grid structure) – 0.03 Stem cells [181]

Abbreviation: BCNF, Bacterial cellulose nanofiber; BSA, Bovine serum albumin; β-TCP, β-Tricalcium phosphate; CNC, Cellulose nanocrystal; CNF, Cellulose nanofibril; CNT, Carbon nanotube; DIW, Direct ink writing; DMEM, Dulbecco’s modified Eagle’s medium; GelMA, Gelatin methacryloyl; GGMMA, Galactoglucomannan methacrylate; KG, κ-Carrageenan; LM, Low methoxyl; PBS, Phosphate-buffered saline; SA, Sodium alginate; SF, Silk fibroin; SMP, Skimmed milk powder; SPI, Soybean protein isolate; SWCNT, Single-walled carbon nanotube; XG, Xanthan gum.
Table 5 Comparison of different 3D-printed structures [15]. Copyright 2018. Reproduced with permission from Elsevier.

<table>
<thead>
<tr>
<th>Sample</th>
<th>1.5 wt% CNFs +</th>
<th>15 wt% Starch</th>
<th>30 wt% Rye bran</th>
<th>35 wt% OPC</th>
<th>45 wt% FBPC</th>
<th>0.8 wt% CNF +</th>
<th>60 wt% SSMP</th>
<th>50 wt% SSMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>During printing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After printing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After oven-drying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After freeze-drying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CNF, Cellulose nanofibril; FBPC, Faba bean protein concentrate; OPC, Oat protein concentrate; SSMP, Semi-skimmed milk powder.
Table 6 Overview of crosslinking methods for biopolymer 3D printing and their applications.

<table>
<thead>
<tr>
<th>Formulation (bioink)</th>
<th>Properties</th>
<th>Crosslinking method</th>
<th>Application</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM pectin (15, 35, and 55 g/L) dissolved in 45 mL of sugar syrup/water mixture (0, 25, and 50%, v/v), added with 15 mL of CaCl₂ solution (12.5,15, and 17.5 mM); BSA (0, 2.5, and 5 g/L) before printing</td>
<td>E: 15–700 kPa</td>
<td>Post-printing: 12.51–7.5 mM CaCl₂</td>
<td>Food</td>
<td>[79]</td>
</tr>
<tr>
<td>LM pectin (15–35 g/L) dissolved in water with stirring at 23 °C</td>
<td>E: 1.55–118.58 MPa</td>
<td>Post-printing: 11–15 mM CaCl₂</td>
<td>Food</td>
<td>[221]</td>
</tr>
<tr>
<td>Nanocellulose/HA (70:30, w/w)</td>
<td>E: 0.169 MPa; Cell viability: 95% 5 min</td>
<td>Post-printing: 0.001% (v/v) H₂O₂ for</td>
<td>Adipose tissue</td>
<td>[324]</td>
</tr>
<tr>
<td>Chitosan (2%, w/v) / HA (20 mg·ml⁻¹)</td>
<td>E: 14.97 kPa; Cell viability: >90% 37 °C</td>
<td>Post-printing: thermal crosslinking at</td>
<td>Bone tissue engineering</td>
<td>[385]</td>
</tr>
<tr>
<td>Nanocellulose/alginate (33:66, 15:85, and 10:90, w/w) dissolved in water</td>
<td>Moisture uptake: 150%</td>
<td>Post-printing: 90 mM CaCl₂</td>
<td>Wound dressings</td>
<td>[280]</td>
</tr>
<tr>
<td>TiO₂ nanoparticles (0.1%, w/v) and β-TCP (1.0%, w/v) added to CaCl₂ solution (0.20%, w/v), then slowly added with alginate (2%, w/v) / gelatin (0.5%, w/v)</td>
<td>E: 20 MPa</td>
<td>Pre-printing: 0.2% (w/v) CaCl₂</td>
<td>Tissue engineering</td>
<td>[382]</td>
</tr>
<tr>
<td>LM-pectin added to nanocellulose gel, stirred at room temperature until complete dissolution; CNFs/LM-pectin ratio = 3:1, 1:1, and 1:3 (w/w), the total solid weight per volume was 1.59%, 2.38%,</td>
<td>Swelling degree: 1860%</td>
<td>Post-printing: 3% (w/v) CaCl₂ for 10 min</td>
<td>Tissue engineering</td>
<td>[349]</td>
</tr>
<tr>
<td>Material Description</td>
<td>Pore sizes: 80–2125 µm; E: 1.54 MPa</td>
<td>Post-printing: 3 wt% CaCl$_2$ solution for 24 h and again 3 wt% glutaraldehyde for 24 h</td>
<td>Tissue repair and regeneration</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>6 wt% SA and 3 wt% gelatin dissolved in water at 50 °C, mixed with 6 wt% CNCs to reach CNCs/SA/gelatin ratio of 70:20:10 (w/w/w)</td>
<td>6 wt% SA and 3 wt% gelatin dissolved in water at 50 °C, mixed with 6 wt% CNCs to reach CNCs/SA/gelatin ratio of 70:20:10 (w/w/w)</td>
<td>6 wt% SA and 3 wt% gelatin dissolved in water at 50 °C, mixed with 6 wt% CNCs to reach CNCs/SA/gelatin ratio of 70:20:10 (w/w/w)</td>
<td>6 wt% SA and 3 wt% gelatin dissolved in water at 50 °C, mixed with 6 wt% CNCs to reach CNCs/SA/gelatin ratio of 70:20:10 (w/w/w)</td>
<td></td>
</tr>
<tr>
<td>2 wt% CNFs / 98 wt% water</td>
<td>2 wt% CNFs / 98 wt% water</td>
<td>2 wt% CNFs / 98 wt% water</td>
<td>Biomedicine [63]</td>
<td></td>
</tr>
<tr>
<td>15 g of gelatin dissolved in 100 mL of DMEM/F12, added with 2.0 g of alginate</td>
<td>15 g of gelatin dissolved in 100 mL of DMEM/F12, added with 2.0 g of alginate</td>
<td>15 g of gelatin dissolved in 100 mL of DMEM/F12, added with 2.0 g of alginate</td>
<td>Skin tissue engineering [10]</td>
<td></td>
</tr>
<tr>
<td>Collagen (5 wt%) / cell (5×106 cell/ml)</td>
<td>Collagen (5 wt%) / cell (5×106 cell/ml)</td>
<td>Collagen (5 wt%) / cell (5×106 cell/ml)</td>
<td>Tissue regeneration [201]</td>
<td></td>
</tr>
<tr>
<td>0.06 g/mL gelatin dissolved in NaCl solution, further dissolved with 0.05 g/mL alginate</td>
<td>0.06 g/mL gelatin dissolved in NaCl solution, further dissolved with 0.05 g/mL alginate</td>
<td>0.06 g/mL gelatin dissolved in NaCl solution, further dissolved with 0.05 g/mL alginate</td>
<td>Aortic valve conduits [386]</td>
<td></td>
</tr>
<tr>
<td>Silk dissolved in LiBr (9.3 M) to final 3% (w/v) concentration, mixed with collagen (4 wt%) / dECM</td>
<td>Silk dissolved in LiBr (9.3 M) to final 3% (w/v) concentration, mixed with collagen (4 wt%) / dECM</td>
<td>Silk dissolved in LiBr (9.3 M) to final 3% (w/v) concentration, mixed with collagen (4 wt%) / dECM</td>
<td>Bone tissue regeneration [264]</td>
<td></td>
</tr>
<tr>
<td>15 wt% gelatin added to a 5% (w/v) autoclaved SF solution</td>
<td>15 wt% gelatin added to a 5% (w/v) autoclaved SF solution</td>
<td>15 wt% gelatin added to a 5% (w/v) autoclaved SF solution</td>
<td>Cartilage tissue engineering [207]</td>
<td></td>
</tr>
<tr>
<td>Gelatin (10%, w/v) / alginate (2%, w/v) in PBS</td>
<td>Gelatin (10%, w/v) / alginate (2%, w/v) in PBS</td>
<td>Gelatin (10%, w/v) / alginate (2%, w/v) in PBS</td>
<td>Biomedical covalently crosslinked [202]</td>
<td></td>
</tr>
<tr>
<td>Keratin (4, 5, and 6%, w/v) dissolved in PBS (4%, w/v)</td>
<td>Keratin (4, 5, and 6%, w/v) dissolved in PBS (4%, w/v)</td>
<td>Keratin (4, 5, and 6%, w/v) dissolved in PBS (4%, w/v)</td>
<td>Tissue [133]</td>
<td></td>
</tr>
<tr>
<td>Component</td>
<td>Swelling capacities</td>
<td>Compressive stiffness</td>
<td>Post-printing</td>
<td>Source</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>0, 1, 2, and 3 wt% GGMMAs powder added to CNFs gel (1 wt%), heated at 50 °C</td>
<td>20%</td>
<td>2.5−22.5 kPa</td>
<td>UV</td>
<td>[205]</td>
</tr>
<tr>
<td>10% (w/v) dex-HEMA dissolved in HEPES buffer (100 mM, pH 7.4) or chondrocyte culture medium, added with HA (2, 4, and 6%, w/v)</td>
<td></td>
<td>E: ~26 kPa</td>
<td>UV</td>
<td>[384]</td>
</tr>
<tr>
<td>HA (0.5%, w/v) / gelatin (3.0%, w/v) dissolved in PBS (pH 7.4)</td>
<td></td>
<td>E: ~2.2 kPa</td>
<td>visible light</td>
<td>[387]</td>
</tr>
<tr>
<td>Alginate (1, 2, 3, and 4%, w/v) / f-GelMA (4, 5, and 6%, w/v) in water</td>
<td>38%</td>
<td>130 kPa; 38%</td>
<td>Two-step crosslinking: during printing crosslinked Ca(^{2+}), post-crosslinked: UV</td>
<td>[388]</td>
</tr>
<tr>
<td>GelMA (30%, w/v) and chitosan (3%, w/v) dissolved in acetyl acid (1%, v/v), respectively, then mixed at different ratios to achieve final concentration of GelMA/chitosan was 10/0.5, 10/1, 10/2, 5/1, 15/1, and 20/1(w/v)</td>
<td>E: 59.43 kPa</td>
<td></td>
<td>UV</td>
<td>[389]</td>
</tr>
</tbody>
</table>
Collagen (0.72%, w/v) and chitosan (2%, w/v) blended at different ratios to final concentration of collagen/chitosan was 0.36/0.50, 0.54/0.50, 0.24/1.0, 0.36/1.0, 0.18/1.5, and 0.45/1.5% (w/v).

E: \(\sim 1.95 \) MPa

Post-printing: NHS/EDC (15 mM/6 mM)

Tissue engineering

Abbreviations: BSA, Bovine serum albumin; \(\beta \)-TCP, \(\beta \)-Tricalcium phosphate; CNC, Cellulose nanocrystal; CNF, Cellulose nanofibril; dECM, De-cellularized extracellular matrix; Dex-HEMA, Hydroxyethyl-methacrylate-derivatized dextran; DMEM, Dulbecco’s modified Eagle medium; EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide; E, Young’s modulus; GelMA, gelatin methacryloyl; GGMA, Galactoglucomannan methacrylate; HA, Hyaluronic acid; HEPES, 4-(2-hydroxyethyl)-1-piperazinethanesulfonic acid; LM, Low methoxylated; NHS, \(N \)-hydroxysuccinimide; PBS, Phosphate-buffered saline; SA, Sodium alginate; SF, Silk fibroin; TG, Transglutaminases.
<table>
<thead>
<tr>
<th>Formulation (bioink)</th>
<th>Printing method</th>
<th>Compression strain/%</th>
<th>Hardness</th>
<th>Cohesiveness</th>
<th>Gumminess</th>
<th>Springiness</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1: 100 g of mashed potato mixed with 1 g of KG/XG (3:2, w/w) in boiling water; Sample 2: 17.5 g of potato starch added to 100 g of strawberry juice, followed by steam-cooking for 20 min</td>
<td>Dual-extrusion</td>
<td>45–65</td>
<td>232.39–517.22 g</td>
<td>0.224–0.266</td>
<td>56.39–120.22</td>
<td>0.222–0.262</td>
<td>[45]</td>
</tr>
<tr>
<td>Lemon juice mixed with potato starch (10, 12.5, 15, 17.5, and 20 g/100 g), followed by steam-cooking for 20 min</td>
<td>Extrusion</td>
<td>–</td>
<td>151.31–406.14 g</td>
<td>0.65–0.94</td>
<td>98.80–379.74</td>
<td>0.85–0.94</td>
<td>[183]</td>
</tr>
<tr>
<td>Egg powder dissolved in water, added with rice flour; Egg powder/rice flour ratio = 1:1 and 1:2 (w/w)</td>
<td>Extrusion</td>
<td>–</td>
<td>0.02–0.13 N</td>
<td>0.25–0.61</td>
<td>–</td>
<td>0.37–0.98</td>
<td>[185]</td>
</tr>
<tr>
<td>Water (29 g), sucrose (6.6 g), butter (6.0 g), flour (48 g), and egg (10.4 g) per 100 g of formulation</td>
<td>Extrusion</td>
<td>–</td>
<td>1.407–22.83 g</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>[16]</td>
</tr>
<tr>
<td>1 wt% (based on mashed flakes) KG/XG</td>
<td>Extrusion</td>
<td>45</td>
<td>101.21–451 g</td>
<td>–</td>
<td>22.47–163.40</td>
<td>–</td>
<td>[17]</td>
</tr>
</tbody>
</table>
(3:2, w/w) and mashed flakes mixed in boiling water; Potato flakes / boiling water ratio = 4:1 (w/w)

<table>
<thead>
<tr>
<th>Sample 1: potato flakes (15, 19, 23, and 27 wt%) mixed with 2 wt% SA powder in boiling water, added with 1 wt% citric acid and 1 wt% sodium bicarbonate;</th>
<th>Sample 2: 30 g of purple sweet potato powder was mixed with 2 g of SA, and added with 100 g of boiling water</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC added to sodium caseinate dispersion (20%, w/v) to prepare milk protein composite gels at 350, 400, 450, and 500 g/L</td>
<td>XG (0.5%, w/v) dissolved in glycerin/water (1:1, w/w) solution, accounting for 65 wt% of the ink; the other 35 wt% ink was MPC/WPI (6:1, 5:2, and 4:3, w/w), which was added to the above-prepared solution</td>
</tr>
</tbody>
</table>
XG (0.5 g) / SPI (30 g) added to a NaCl solution (1, 2, and 3 g in 100 mL of distilled water), then adjusted to pH 7 using NaOH (0.1 mol/L), and microwave-treated (100 W, 5 min) to form gel

Abbreviations: KG, κ-Carrageenan; MPC, Milk protein concentrate; SA, Sodium alginate; SPI, Soybean protein isolate; WPI, Whey protein isolate; XG, Xanthan gum.
Table 8 Pore size, porosity, and infill level on mechanical properties of 3D-printed porous food.

<table>
<thead>
<tr>
<th>Formulation (bioink)</th>
<th>Printing method</th>
<th>Pore size</th>
<th>Porosity</th>
<th>E</th>
<th>Morphology</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM pectin (15, 35, and 55 g/L) dissolved in 45 mL of sugar syrup/water mixture (0,</td>
<td>Extrusion (honeycomb infill pattern, cube</td>
<td>72–309 µm</td>
<td>–</td>
<td>15–700 kPa</td>
<td></td>
<td>[79]</td>
</tr>
<tr>
<td>25, and 50%, v/v), added with 15 mL of CaCl$_2$ solution (12.5, 15, and 17.5 mM);</td>
<td>of 1.5×1.5×1.5 cm3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSA (0, 2.5, and 5 g/L) before printing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixing of a pectin solution (15 and 35 g/L) with a cell (50% v/v)/CaCl$_2$ suspension</td>
<td>Extrusion</td>
<td>–</td>
<td>0.02–26.42%</td>
<td>30–200 kPa</td>
<td></td>
<td>[236]</td>
</tr>
<tr>
<td>(6.5 and 10 mM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM pectin (15–35 g/L) and 2 drops of red food colorant were dissolved in distilled</td>
<td>Coaxial extrusion (honeycomb pattern</td>
<td>–</td>
<td>0.82–5.02%</td>
<td>22.85–143.31 kPa</td>
<td></td>
<td>[204]</td>
</tr>
<tr>
<td>water, and CaCl$_2$ (10–15 mM) solution was added</td>
<td>with 85% infill density)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM pectin 15–35 g/L and 2 drops of red food colorant were dissolved in distilled</td>
<td>Extrusion (hexagonal honeycomb pattern)</td>
<td>2.4–7.8 mm</td>
<td>43.11–71.64%</td>
<td>1.55–118.58 kPa</td>
<td></td>
<td>[221]</td>
</tr>
<tr>
<td>water, and CaCl$_2$ (11–15 mM) solution was added</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 wt% KG/XG at a ratio of 3:2 (w/w) mixed in boiling water;</td>
<td>Extrusion (infill levels: 10, 40 and 70%</td>
<td>–</td>
<td>6.05–59.60%</td>
<td>0.97–11344.43 Pa</td>
<td></td>
<td>[17]</td>
</tr>
<tr>
<td>1 wt% (based on potato flakes) KG/XG (3:2, rectilinear, honeycomb and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
w/w) and potato flakes mixed in boiling water; Hilbert curve)

Potato flakes/boiling water ratio = 4:1 (w/w)

Abbreviations: BSA, Bovine serum albumin; KG, κ-Carrageenan gum; LM, Low methoxyl; XG, Xanthan gum.

\(^4\) Reproduced from Ref. [79] with permission from Elsevier, Copyright 2017; \(^6\) Reproduced from Ref. [236] with permission from Elsevier, Copyright 2019; \(^C\) Reproduced from Ref. [204] with permission from Elsevier, Copyright 2018; \(^D\) Reproduced from Ref. [221] with permission from Elsevier, Copyright 2018; \(^E\) Reproduced from Ref. [17] with permission from Elsevier, Copyright 2018.
Table 9 Mechanical properties of 3D-printed biopolymer materials and their applications in biomedical fields.

<table>
<thead>
<tr>
<th>Formulation (bioink)</th>
<th>Printing method</th>
<th>Compression strength</th>
<th>E</th>
<th>Application</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silk dissolved in LiBr (9 M) to achieve 1.5 wt% SF solution, mixed with 7% (w/v) gelatin at 37 °C</td>
<td>Extrusion</td>
<td>–</td>
<td>130–188.5 kPa</td>
<td>Biomedical</td>
<td>[12]</td>
</tr>
<tr>
<td>Silk dissolved in LiBr (9 M) to achieve SF solution (0.5–2%, w/v), mixed with gelatin (1–9%, w/v)</td>
<td>Extrusion</td>
<td>–</td>
<td>30–114 kPa</td>
<td>Cartilage Tissue Engineering</td>
<td>[200]</td>
</tr>
<tr>
<td>1 g of collagen I and 50 mg of heparin sulfate dissolved in 50 mL of acetic acid solution (0.05 M)</td>
<td>Extrusion</td>
<td>162.5–308.9 kPa</td>
<td>2.43–3.36 MPa</td>
<td>Biomedical</td>
<td>[277]</td>
</tr>
<tr>
<td>Sample 1: SA dissolved in culture medium and agarose dissolved in water; then, the agarose solution (15 mg/mL) and the SA solution (0.1 g/mL) mixed at 1:4 ratio (v/v) at 65 °C; Sample 2: Collagen solution (15 mg/mL) mixed with SA solution (0.1 g/mL) at ratio of 1:4 (v/v)</td>
<td>Extrusion</td>
<td>30–70 kPa</td>
<td>–</td>
<td>Cartilage tissue engineering</td>
<td>[275]</td>
</tr>
<tr>
<td>Nanocellulose/HA (70:30, w/w)</td>
<td>Extrusion</td>
<td>0.055–0.169 MPa</td>
<td>–</td>
<td>Biomedical</td>
<td>[324]</td>
</tr>
<tr>
<td>CNFs (2.0–3.3 wt%) / XT (5.11–10.6 wt%) / water (86.8–92.3 wt%)</td>
<td>Extrusion</td>
<td>24–67 kPa</td>
<td>200–450 kPa</td>
<td>Tissue engineering or Wound dressings</td>
<td>[218]</td>
</tr>
<tr>
<td>0, 1, 2, and 3 wt% GGMMAs powder added to CNFs gel (1 wt%), heated at 50 °C</td>
<td>Extrusion</td>
<td>–</td>
<td>5–22 kPa</td>
<td>Biomedical</td>
<td>[205]</td>
</tr>
<tr>
<td>Sample</td>
<td>Material Description</td>
<td>Processing</td>
<td>Force Range</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Carboxymethyl cellulose (5–20 wt%) / cellulose fiber (15–45 wt%) mixed with distilled water</td>
<td>Extrusion</td>
<td>2.7–5.4 GPa</td>
<td>Biomaterials [197]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 wt% CNFs / 98 wt% water</td>
<td>Extrusion</td>
<td>0.031–4.3 GPa</td>
<td>Biomedicine [63]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample1: Gelatin (6%, w/v) dissolved in PBS at 60 °C, further dissolved with alginate (1, 3, 5, 7, and 9%, w/v); Sample2: Gelatin (2, 4, 6, 8, and 10%, w/v) dissolved in PBS at 60 °C, further dissolved with alginate (2%, w/v)</td>
<td>Extrusion</td>
<td>29.8–48.0 kPa</td>
<td>Biomedicine [390]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 g of gelatin dissolved in 100 mL of DMEM/F12, and added with 2.0 g of alginate</td>
<td>Extrusion</td>
<td>359–554.5 kPa</td>
<td>Skin tissue engineering [10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.06 g/mL gelatin dissolved in NaCl solution, further dissolved with 0.05 g/mL alginate</td>
<td>Extrusion</td>
<td>0.96–1.44 MPa</td>
<td>Biomedical [386]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alginate (3%, w/v) / gelation (10%, w/v) in water</td>
<td>Extrusion</td>
<td>35–65 kPa</td>
<td>Vascular tissue substitution [380]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chitosan solution (6%, w/v) / acetic acid (2%, v/v)</td>
<td>Extrusion</td>
<td>105 kPa</td>
<td>Skin tissue engineering [296]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 1: 1–2.5 wt% KG dissolved into DPBS solution at 80 °C; Sample 2: 6–9 wt% gelatin dissolved into DPBS solution at 50 °C</td>
<td>Extrusion</td>
<td>11.04–17.97 kPa</td>
<td>Biomedical [391]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CNFs, Cellulose nanofibril; DMEM, Dulbecco’s modified Eagle medium; DPBS, Dulbecco’s phosphate-buffered saline; GGMMA, Galactoglucomannan methacrylate; HA, Hyaluronic acid; KG, κ-Carrageenan; PBS, Phosphate-buffered saline; SA, Sodium alginate; SF, Silk fibroin; XT, Conjugation of xylan with tyramine.
<table>
<thead>
<tr>
<th>Formulation (bioink)</th>
<th>Printing method</th>
<th>Pore size</th>
<th>Porosity</th>
<th>Compressive modulus E</th>
<th>Application</th>
<th>Morphology</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8, 15, 20, and 30 wt% CNCs mixed with water</td>
<td>DIW</td>
<td>20–800 µm</td>
<td>75–92.1%</td>
<td>7–8.94 MPa</td>
<td>Tissue scaffold templates; drug delivery</td>
<td></td>
<td>[65]</td>
</tr>
<tr>
<td>6 wt% SA and 3 wt% gelatin dissolved in water at 50 °C, mixed with 6 wt% CNCs</td>
<td>Extrusion</td>
<td>80–2125 µm</td>
<td>15.82–95.11%</td>
<td>1.54 MPa</td>
<td>Tissue regeneration</td>
<td></td>
<td>[226]</td>
</tr>
<tr>
<td>to reach a CNCs/SA/gelatin ratio of 70:20:10 (w/w/w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.9% (w/v) SF solution (dissolved in LiBr) mixed with 6.9% (w/v) gelatin</td>
<td>Extrusion</td>
<td>350 µm</td>
<td>–</td>
<td>4–17 kPa</td>
<td>Repair cartilage injury</td>
<td></td>
<td>[224]</td>
</tr>
<tr>
<td>solution (dissolved in water) at ratios of 0:3, 1:2, and 2:1 (w/w)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4, 5, and 6% (w/v) keratin dissolved in PBS (4%, w/v)</td>
<td>Lithography</td>
<td>~10–30 µm</td>
<td>–</td>
<td>3.11–15.45 kPa</td>
<td>Tissue engineering; Regenerative medicine</td>
<td></td>
<td>[133]</td>
</tr>
</tbody>
</table>
Mixture of cells (1×10^6 mL⁻¹) and collagen solutions (3, 5, and 7 wt%) as collagen bioink

<table>
<thead>
<tr>
<th>Collagen Solution</th>
<th>Extrusion</th>
<th>Diameter</th>
<th>Pressure</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 wt% collagen / 38 wt% Pluronic</td>
<td>Extrusion 150–250 µm 98%</td>
<td>160–250 kPa</td>
<td>Regenerating bone tissue</td>
<td></td>
</tr>
<tr>
<td>F-127 dissolved in PBS at 1:1 (v/v) ratio</td>
<td>Extrusion 446.6–614.1 µm</td>
<td>0.03–0.3 MPa</td>
<td>Bone tissue regeneration</td>
<td></td>
</tr>
<tr>
<td>Silk dissolved in LiBr (9.3 M) to final 3% (w/v) concentration, mixed with collagen (4 wt%) / dECM</td>
<td>Extrusion 286–374 µm</td>
<td>20.4–21.9 kPa</td>
<td>Ocular surface damage</td>
<td></td>
</tr>
<tr>
<td>4–16% (w/v) gelatin / 2% (w/v) elastin / 0.5% (w/v) sodium hyaluronate in water</td>
<td>Extrusion 247–265 µm</td>
<td>0.18–1.77</td>
<td>Therapeutic stem cell</td>
<td></td>
</tr>
<tr>
<td>1% SA (w/v) and 3% (w/v) gelatin heated at 70 °C</td>
<td>Extrusion 247–265 µm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 wt% cornstarch / 30 wt% dextran / 20 wt% gelatin dissolved in water</td>
<td>Extrusion</td>
<td>33.5–59%</td>
<td>Porous scaffold</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CNC, Cellulose nanocrystal; dECM, De-cellularized extracellular matrix; DIW: Direct ink writing; PBS: Phosphate-buffered saline; SA: Sodium alginate; SF: Silk fibroin.
Publications, Copyright 2018; g Reproduced from Ref. [264] with permission from Elsevier, Copyright 2018; h Reproduced from Ref. [392] with permission from Elsevier, Copyright 2018; i Reproduced from Ref. [381] with permission from Elsevier, Copyright 2019; j Reproduced from Ref. [198] with permission from Elsevier, Copyright 2002.
<table>
<thead>
<tr>
<th>Formulation (bioink)</th>
<th>Printing method</th>
<th>Properties</th>
<th>Application</th>
<th>Morphology</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6% (w/v) chitosan and 1% (w/v) TiO₂ mixed in water</td>
<td>UV Stereolithography</td>
<td>$E: 0.49 \text{ MPa}$; Amoxicillin degradation: 80%</td>
<td>Wastewater treatment</td>
<td>![Image A]</td>
<td>[20]</td>
</tr>
<tr>
<td>0.5% (w/v) gellan gum and 0.875% (w/v) porcine gelatin mixed at 70 °C</td>
<td>Extrusion</td>
<td>Conductivity: 190±20 mS/cm</td>
<td>Electronic circuit</td>
<td>![Image B]</td>
<td>[21]</td>
</tr>
<tr>
<td>Vegemite or Marmite and white bread substrates</td>
<td>DIW</td>
<td>Conductivity: 20±3 S/cm</td>
<td>Conductive devices</td>
<td>![Image C]</td>
<td>[34]</td>
</tr>
<tr>
<td>CNCs (10–22.5 wt%) dispersed in DESs (10.17g)/AA solution (30 wt%)</td>
<td>DIW</td>
<td>High sensitivity (gauge factor of 1.5–3.3)</td>
<td>Sensors</td>
<td>![Image D]</td>
<td>[331]</td>
</tr>
<tr>
<td>SA (0.08 wt%) mixed with CaCl₂ (0.2 M) / PAA (0.2 M) / CNTs (0.1 g) solution</td>
<td>DIW</td>
<td>Gauge factor of 6.29</td>
<td>Wearable strain sensors</td>
<td>![Image E]</td>
<td>[330]</td>
</tr>
<tr>
<td>8% (w/v) alginate and 10% (w/v) gelatin dissolved in deionized water</td>
<td>Extrusion</td>
<td>Quantifying UV exposure by decrease in color</td>
<td>Wearable UV sensors</td>
<td>![Image F]</td>
<td>[329]</td>
</tr>
</tbody>
</table>

Abbreviations: AA, Acrylic acid; CNTs, Carbon nanotubes; DES, Deep eutectic solvents; DIW, Direct ink writing; E, Young's modulus; PAA, Polyacrylic acid; SA, Sodium alginate.

Reproduced from Ref. [34] with permission from Elsevier, Copyright 2018;
Reproduced from Ref. [331] with permission from American Chemical Society,
Copyright 2020; Reproduced from Ref. [330] with permission from American Chemical Society, Copyright 2021; Reproduced from Ref. [329] with permission from American Chemical Society, Copyright 2020.
Data availability

Data sharing not applicable for this review.

References

additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications,

[90] F. Hafezi, N. Scoutaris, D. Douroumis, J. Boateng, 3D printed chitosan dressing crosslinked

[98] S. Vasvani, P. Kulkarni, D. Rawtani, Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and

D. Chouhan, B.B. Mandal, Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside, Acta Biomater. 103 (2020) 24-51.

V. Ferraro, M. Anton, V. Santé-Lhoutellier, The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application,

Characterising the influence of milk fat towards an application for extrusion-based 3D-printing of casein–whey protein suspensions via the pH–temperature-route, Food Hydrocolloids n/a (2021) 106642.

[168] A. Gholamipour-Shirazi, I.T. Norton, T. Mills, Designing hydrocolloid based food-ink

to crosslinking: The need for precursor rheology for placement of hydrogels in medical applications

[177] H. Tian, K. Wang, H. Lan, Y. Wang, Z. Hu, L. Zhao, Effect of hybrid gelator systems of
beeswax-carrageenan-xanthan on rheological properties and printability of litchi inks for 3D food
printing, Food Hydrocolloids 113 (2021) 106482.

[179] Z.H. Stachurski, Deformation mechanisms and yield strength in amorphous polymers, Prog.

[181] Y. Zhao, Y. Li, S. Mao, W. Sun, R. Yao, The influence of printing parameters on cell survival
rate and printability in microextrusion-based 3D cell printing technology, Biofabrication 7(4) (2015)
045002.

[182] Y. Chen, M. Zhang, P. Phuhongsung, 3D printing of protein-based composite fruit and
vegetable gel system, LWT 141 (2021) 110978.

[183] F. Yang, M. Zhang, B. Bhandari, Y. Liu, Investigation on lemon juice gel as food material for

[185] T. Anukiruthika, J.A. Moses, C. Anandharamakrishnan, 3D printing of egg yolk and white with

starches on their hot-extrusion 3D printing behaviors, J. Food Eng. 244 (2019) 150-158.

[233] G. Ge, Y. Han, J. Zheng, M. Zhao, W. Sun, Physicochemical characteristics and gel-forming properties of myofibrillar protein in an oxidative system affected by partial substitution of NaCl with KCl, MgCl2 or CaCl2, Food Chem. 309 (2020) 125614.

[251] C.H. Jang, Y. Koo, G. Kim, ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold

J. Leppiniemi, P. Lahtinen, A. Paajanen, R. Mahlberg, S. Metsa-Kortelainen, T. Pinomaa, H. Pajari, I. Vikholm-Lundin, P. Pursula, V.P. Hytonen, 3D-Printable Bioactivated Nanocellulose-

[375] P. Phuhongsung, M. Zhang, S. Devahastin, Investigation on 3D printing ability of soybean
protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics, LWT - Food Sci. Technol. 122 (2020) 109019.

