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Abstract: The past decade has seen a large influx of work investigating time of day variation in 

different human biofluid and tissue metabolomes. The driver of this daily variation can be endoge-

nous circadian rhythms driven by the central and/or peripheral clocks, or exogenous diurnal 

rhythms driven by behavioural and environmental cycles, which manifest as regular 24 h cycles of 

metabolite concentrations. This review, of all published studies to date, establishes the extent of 

daily variation with regard to the number and identity of ‘rhythmic’ metabolites observed in blood, 

saliva, urine, breath, and skeletal muscle. The probable sources driving such variation, in addition 

to what metabolite classes are most susceptible in adhering to or uncoupling from such cycles is 

described in addition to a compiled list of common rhythmic metabolites. The reviewed studies 

show that the metabolome undergoes significant time of day variation, primarily observed for 

amino acids and multiple lipid classes. Such 24 h rhythms, driven by various factors discussed 

herein, are an additional source of intra/inter-individual variation and are thus highly pertinent to 

all studies applying untargeted and targeted metabolomics platforms, particularly for the construc-

tion of biomarker panels. The potential implications are discussed alongside proposed minimum 

reporting criteria suggested to acknowledge time of day variation as a potential influence of results 

and to facilitate improved reproducibility. 

Keywords: circadian rhythms; diurnal rhythms; metabolomics; metabolite rhythms; blood; urine; 

saliva; breath; skeletal muscle 

 

1. Introduction 

A favoured application of metabolomics is that of metabolic phenotyping, typically 

for biomarker discovery and better understanding of disease pathology within the context 

of the functions of metabolites observed in human metabolomes [1,2], with such studies 

applied to the most prevalent chronic diseases within the human population such as can-

cer, diabetes and cardiovascular disease [3]. However, the concentration of metabolites in 

human biofluids and tissues is not static and varies across timescales of seconds to dec-

ades, driven by biological functions. Observed variation between such studies is inevita-

ble due to biological variation within and between subjects as a result of genotype, envi-

ronment, lifestyle, and the influence of biological rhythms, some of this variation being 

mitigated by control and monitoring of participant behaviour/diet/environment before 

and/or during the study [4]. In addition to biological variation, there is also analytical 
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variation, resulting from sample selection/preparation [4,5], sample degradation as a re-

sult of storage conditions and freeze–thaw cycles [6–8], instrument variation [9] and var-

ied methods of data pre-treatment, statistical analysis and modelling [5,10,11]. Standard 

practices in the field such as quality control processes, batch correction, data normalisa-

tion, and matched cohorts mitigate or report some of this variation [1,11] but the extent 

and rigor in which such practices apply vary from study to study, all of which impact the 

analysis and resulting biological interpretation [12]. This contributes to the ‘reproducibil-

ity crisis’, i.e., a recurring inability for external groups to reproduce published results, 

culminating in numerous independent research teams achieving conflicting results or in-

advertently promoting false-positive findings stemming from replicating effects and bias 

[10,13–15]. Considine [10] puts forward an informed and comprehensive picture of the 

challenges of reproducibility and the implications for metabolic profiling and biomarker 

discovery. However, a key variable which may explain some variation in the data within 

and between studies is repeatedly overlooked; that of circadian control and diurnal vari-

ation which regulate 24 h biological rhythms including the metabolome. This results in 

significant changes to observed concentrations of a range of metabolites and hormones 

dependent on the time of day, with a well-known example being cortisol [16], with proline 

and leucine being further examples of highly rhythmic metabolites. Studies discussing 

these and further rhythms in metabolite concentrations and the context of these observa-

tions are discussed below. A number of detailed reviews and tutorials for biomarker dis-

covery have also overlooked circadian control and diurnal variation of the metabolome 

as a consideration or influencing factor in study design and sample collection [5,17–22], 

with others only acknowledging circadian control as influencing metabolism in passing 

[23,24] and fewer still suggesting that it be considered in study design [25]. 

The omission of time of day variation as an important feature in metabolomics study 

design likely results from the fact that work characterising circadian and diurnal influence 

through such platforms has almost exclusively occurred over the past decade. The grow-

ing body of circadian metabolomics research should be of interest to the metabolomics 

community due to identifying metabolites that exhibit significant 24 h rhythmic behav-

iour as well as detailing the context and conditions in which this variation is observed. 

Such findings may prove informative when constructing or interrogating a biomarker 

panel, dissecting sources of inter-individual variation within studies as well as opening 

an additional line of enquiry when conflicting results arise between studies. It is timely 

that this body of work is thoroughly reviewed to establish the current knowledge base 

and consider the implications with regard to reproducibility especially in the construction 

of biomarker panels. 

Whilst an in depth knowledge of chronobiology is not required to appreciate the 

findings of the studies discussed within this review, a general understanding of biological 

rhythms, specifically circadian and diurnal rhythmicity, as well as internal biological 

clocks, their relationship with metabolism, and how they can be monitored will offer some 

insight into study design and the importance of context with regard to how results were 

collected. As such, a brief overview and further reading are detailed below. 

1.1. Key Concepts of Circadian Biology 

How circadian rhythms propagate and exert temporal control over physiological 

processes is reviewed elsewhere [26]. In brief, circadian rhythms are endogenous, approx-

imately 24 h oscillations in biological processes; such rhythms are generated by internal 

clocks, which are present in almost every cell of the body. On the cellular level, the ‘clock 

machinery’ is comprised of a transcription–translation autoregulatory feedback loop of 

core ‘clock genes’, which generate rhythmic outputs, e.g., the rhythmic expression of 

clock-controlled genes (CCGs), in turn conferring rhythmicity to the transcriptome, pro-

teome and ultimately the metabolome. By definition, circadian rhythms are temperature 

compensated, resulting in no change to the rate of circadian oscillations across a signifi-

cant physiological range of temperatures [27]. Moreover, biological clocks have evolved 
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to be entrained (synchronised) by external factors, referred to as Zeitgeber, such as 

light/dark or feeding/fasting cycles, thus aligning themselves to resonate (match) with the 

Earth’s natural daily and seasonal cycles. Notably, circadian rhythms persist in free-run-

ning conditions, i.e., in the absence of Zeitgeber, thereby demonstrating their endogenous 

origin. An extensive body of research in animal models has not only established the cel-

lular molecular machinery of the clock, but also the interconnectivity of all clocks within 

an organism. The mammalian timing system is typically divided into a central pacemaker 

in the ventral hypothalamus, i.e., the suprachiasmatic nuclei (SCN), and peripheral clocks 

in all other tissues of the nervous system and the body. The former receives light input 

from the eyes and, through neuronal and humoural signals, interacts with the peripheral 

clocks; with the SCN portrayed as interacting with all other clocks in the body, much like 

a conductor of an orchestra [28]. Furthermore, animal models have also demonstrated a 

strong link between the central circadian system, metabolism, and metabolite rhythms. 

Peripheral clocks possess some degree of autonomy. However, maintenance of ‘full circa-

dian function’ relies on inter-clock signals between peripheral clocks and the SCN [29]. As 

described above, the clock machinery is capable of regulating metabolic processes, yet in 

turn, metabolites as well as hormones are capable of feeding back and regulating the core 

clock machinery and interfacing between peripheral/central clocks [30]. This interface 

manifests as temporally correlated metabolic processes, reflected by temporally correlated 

metabolites, across various tissues as demonstrated in mice [31,32]. 

Perturbations to the metabolome, potentially brought about by nutrient challenge or 

time restricted feeding, can influence the metabolism–clock interface resulting in loss of 

temporal correlation of metabolites between tissues or alterations in metabolite rhythms 

and, in specific instances, altered rhythms of core clock genes [31,33]. Desynchrony be-

tween peripheral clocks (circadian misalignment), potentially invoked by aberrations in 

the metabolism–clock interface, has been linked to numerous chronic conditions and met-

abolic disorders, with circadian-controlled genes being enriched amongst disease-associ-

ated genes vs. non-circadian-controlled genes [34]. Such diseases associated with circa-

dian misalignment include hormone-dependent cancer such as breast and prostate cancer 

in shift workers [35], coronary heart disease [34,36], neurological disorders and negative 

impacts on mental health and well-being [37], in addition to metabolic disorders such as 

diabetes [38], all of which have an increased prevalence in shift workers according to ep-

idemiological evidence available [36,39]. Predisposition and progression of these condi-

tions appear to be underpinned by key changes in metabolism driven by circadian misa-

lignment, such as increased insulin resistance and perturbed glucose metabolism and en-

ergy expenditure being core risk factors for developing type 2 diabetes and/or cardiovas-

cular disease [40]. The intrinsic link between metabolism and the circadian system, as 

demonstrated in animal models, and the epidemiological evidence emphasising the clin-

ical relevance of this research has likely spurred on circadian studies in humans, employ-

ing metabolomics. 

Human circadian rhythms can be identified via constant routine studies (gold-stand-

ard protocol), controlling and minimising the influence of Zeitgeber. Specifically, ambient 

conditions such as light, temperature, posture, activity, wakefulness, and diet of partici-

pants, which otherwise may mask circadian rhythms, are kept constant throughout this 

type of study. How a constant routine protocol is designed and typically employed is de-

scribed in detail by Duffy & Dijk [41], with further details on the process of entrainment 

and the nature of un-entrained (free-running) rhythms provided in [42,43]. Human stud-

ies, such as those discussed below, typically employ small but highly controlled study 

groups to minimise intra- and inter-subject variation and restrict confounding factors 

which may otherwise mask the rhythms being observed. 

The circadian rhythms observed in constant routine conditions will differ in their 

phase (timing) and amplitude between individuals, primarily as a result of their genetics, 

age, and sex. Even if samples are taken at the same social time, e.g., 08:00 h, participants 

will likely express variation in the phase of their individual circadian rhythm; the 
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relationship between the timing of an individual’s circadian rhythm and the timing of a 

Zeitgeber being referred to as the phase angle of entrainment [44–46]. Much like the hands 

of an actual clock revealing the current time of day there are (bio)markers that reveal the 

circadian clock’s phase, i.e., internal (biological) time. Widely used bona fide central clock 

phase markers are salivary/plasma melatonin, urinary 6-sulfatoxymelatonin (aMT6s) and 

plasma cortisol [47–49]; they are thought to reflect the timing of the SCN clock of an indi-

vidual. Biological rhythms with a period of 24 h that do not/are not known to meet the 

defining principles of circadian rhythms, as outlined above, may be referred to as diurnal 

rhythms, i.e., 24 h rhythms observable under entrained “real-life” conditions jointly 

driven by exogenous factors, e.g., light/dark or feeding/fasting cycles, and the endogenous 

circadian timing system. As a trivial example, consumption of xenobiotics such as caffeine 

could lead to a 24 h rhythm peaking in the afternoon, as caffeine consumption stereotypi-

cally occurs in the morning, and reaching a nadir overnight. However, such a rhythm 

would not persist under constant conditions (no caffeine consumption) and thus is not 

circadian but a diurnal, evoked rhythm. By contrast, 24 h melatonin and cortisol rhythms 

persist under constant routine conditions and are thus deemed circadian. The terms 

should be carefully employed to accurately reflect the conditions under which 24 h 

rhythms were observed; a ~24 h cycle is not necessarily circadian—a common misinter-

pretation in the literature. Example rhythms exemplifying classification as a circadian or 

diurnal rhythm are provided in Figure 1 and real data demonstrating the influence of 

entraining agents (e.g., meals, sleep/wakefulness) are provided in Figure 2. 

Considering the broad context in which time of day variation can be observed, and the 

implications that this may have for reproducibility between studies, we review all original 

research to date on human participants that applied either an untargeted or targeted 

metabolomics platform to observe time of day variation . Specifically, we have the follow-

ing objectives:  

1. Establish the tissues in which time of day variation of metabolites have been ob-

served, or failed to be observed, and the extent to which the metabolome is influ-

enced. 

2. Establish the source(s) for this observed daily variation and, if applicable, which me-

tabolite classes are most susceptible. 

3. Consider the implications of circadian/diurnal variation and the timing of sample 

collection on biomarker discovery and how this may undermine their potential clin-

ical application. 

 

Figure 1. Mock data representation of two biological rhythms (e.g., metabolite rhythms) X (top) and 

Y (bottom) under entrained conditions (left) and constant routine (right). Entrained conditions 
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consist of a light/dark cycle, meals at 08:00, 13:00, 19:00 h (shown by dashed vertical lines) and des-

ignated sleep time between 23:00 and 07:00 h (shown by grey shading of x-axis). Top-left: Metabolite 

X: A rhythm with a regular 24 h period under entrained conditions may or may not be influenced 

by Zeitgeber (e.g., wake/sleep). Top-right: Metabolite X: The rhythm observed under entrained con-

ditions persists and maintains its 24 h periodicity under constant routine, the amplitude may or may 

not change between the conditions, and the rhythm is considered circadian. Bottom-left: A rhythm 

with a more complex cycle, but regular 24 h period, and peaks correspond to mealtimes under en-

trained conditions (08:00, 13:00, 19:00 h), suggesting some effect of feeding/fasting cycles. Bottom-

right: The rhythm is significantly dampened in constant routine (does not persist), with a regular 

period/amplitude no longer detectable. The rhythm of metabolite Y is not considered circadian in 

nature, as it did not persist under constant routine conditions, and is classed as a diurnal rhythm, 

i.e., a rhythm evoked by exogenous cycles such as feeding/fasting and sleep/wake. 

 

Figure 2. Comparative metabolite/hormone profiles under entrained conditions: sleep vs. pro-

longed wakefulness (A–C), entrained vs. circadian constant routine conditions (D), and inter-indi-

vidual variation under constant routine conditions (E), reproduced from Honma et al. [50] (A), Da-

vies et al. [51] (B,C), Czeisler & Klerman [52] (D), and Chua et al. [53] (E). A,B,C: Comparative pro-

files of cortisol, dodecanoylcarnitine (C12), and taurine under entrained light/dark conditions, sleep 

(highlighted in black) vs. prolonged wakefulness (highlighted in grey), with meals provided at 07:00 

h, 13:00 h, 19:00 h, and 22:00 h (snack). No significant difference observed in cortisol, a SCN-driven 

hormone, between sleep conditions (A), peaks in measured intensity (y-axis) corresponding to 

mealtimes observable in various lipids and amino acids (B,C), alongside statistically significant per-

turbations during prolonged wakefulness vs. sleep [51]. D: Growth hormone rhythm observable 

under entrained conditions (peak during sleep) but dampened under constant routine. E: Individual 

rhythmic profiles of six participants showing inter-individual variation in lipid profiles 

(SM18:1/24:1), with two individuals displaying an inversed rhythm (~12 h ahead/delayed) relative 

to the other four participants. 

1.2. Literature Search—Parameters and Outcomes 

Prior to starting the literature search, three database/search engines were selected 

based on differing breadth of literature curation and indexing features to facilitate specific 

searching. PubMed (NCBI) provides specific curation of biomedical literature alongside 

subject headings (indexing) in the form of Medical Subject Headings (MeSH) terms for 

improved specificity of returned literature from submitted searches. Web of Science was 

selected for offering wider curation of literature, which may potentially not be included 

on the MEDLINE database used by PubMed. However, Web of Science does not use sub-

ject headings which may reduce search specificity vs. PubMed but still allows for Boolean 

operators (e.g., and, or) to combine search terms. Lastly, Google Scholar was chosen due 

to a lack of specific curation and similar search tools as Web of Science. Combined together 

all three platforms were deemed more than adequate to return the majority of relevant 
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literature available, with further manual searching performed thereafter. Search terms re-

lating to the subject fields of interest were chosen and, where possible, matched to MeSH 

terms—it was assumed that MeSH terms such as metabolomics likely correspond to com-

mon key words associated with literature across databases. Various combinations of 

search terms were trialled to acquire a search result that was considered broad in terms of 

‘hits’, i.e., tens to low hundreds, but not so broad as to be infeasible to read and evaluate. 

Yielded literature from the search was counted as relevant based on the article title, article 

keywords, or abstract broadly referring to metabolomics/metabolism and circadian 

rhythms/chronobiology. Relevant literature collected from the database search were sub-

ject to inclusion criteria to assess if they were capable of addressing the outlined objectives, 

as stated above. Inclusion criteria consisted of three simple parameters, applied in the fol-

lowing order: 

1. The literature details original research, i.e., no derivative work such as reviews 

2. The research studied human participants over a time course 

3. Employed any metabolomics platform to analyse samples collected across the time 

course. 

After this assessment of relevant literature yielded from the database search, manual 

searching was performed. Manual searching consisted of reading literature that met in-

clusion criteria and checking reference lists which may refer to further relevant studies 

(based on title/keywords/abstract) which would then be subject to inclusion criteria. Fur-

ther details on search parameters and outcomes are shown in Table 1. 

Table 1. Summary of literature search parameters and outcomes. Two separate searches were performed, with the first 

search featuring ‘circadian’ as a key word (performed circa 21 April 2020) and the second search featuring ‘diurnal’ in lieu 

of circadian (highlighted—light grey, performed circa 23 July 2020). The two searches were performed to encompass as 

much literature as possible observing daily rhythms. On the first search, the search terms had to be reduced when using 

Google Scholar due to insufficient ‘hits’ (n = 1 ‘hits’) resulting from excess search terms. Reduced hits on the second search 

when using the phrases ‘diurnal’/’diurnal variation’ may stem from neither term corresponding to MeSH terms (for Pub-

Med) and potentially being uncommon key words associated with literature from other search engines reducing discov-

erability. Manual searches consisted of looking for prior referenced work in collected literature that met inclusion criteria. 

Search Terms 
Database/Search En-

gine 
‘Hits’ 

Relevant Papers 

(Based on Abstract) 

Met Inclusion Criteria 

* 

Circadian 

Studies 

Diurnal 

Studies 

“Human(s)” “Circadian Rhythm OR 

Circadian Clocks” “Metabolomics OR 

Metabolome” **  

PubMed (NCBI) 70 

133 6 19 

Web of Science 52 

“Metabolomic” “Circadian” “Rhythm” 

“Human” “Chronobiology” 
Google Scholar 212 

N/A 
Further manual 

searches 
13 

“Human(s)” “Diurnal Variation OR Di-

urnal”, “Metabolome OR Metabolom-

ics” *** 

PubMed (NCBI) 19 

123 

(Majority duplicates of 

prior search) 

3 16 

Web of Science 28 

“Metabolomic” “Metabolome” “Diur-

nal” “Rhythm” “Human” “Chronobiol-

ogy” 

Google Scholar 92 

N/A 
Further manual 

searches 
0 

*A total of 29 novel papers met inclusion criteria, human studies employing a metabolomics platform taking multiple 

samples over a time course** Search terms corresponding to MeSH terms; *** No MeSH terms corresponding to “Diurnal” 

OR “Diurnal variation”. 
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2. Result 

2.1. Blood 

For the purpose of brevity, details relating to study design are not listed within the 

main body of text unless relevant to the provided commentary. Instead, key aspects of 

study design alongside results pertinent to the outlined objectives are summarised in ta-

bles after each subsection. Subsections and summary tables appear in the following order: 

blood (plasma/serum), urine, saliva, breath, and skeletal muscle. Furthermore, supple-

mental material containing compiled lists of metabolites showing time of day variation, 

and the context in which this variation took place, has been produced (Tables S1–6) in 

addition to an overview of observed time of day changes across the studies (Figures S1 

and S2). 

Blood is the most investigated biofluid assessed for time of day variation of the 

metabolome, based on the outcome of the performed literature search, with 18 studies 

discussed here. The collated literature implicated various factors contributing to time of 

day variation (Table 2) and other findings of interest which are presented below as com-

mon subthemes that we will carry forward, where applicable, to subsequent sections for 

the other sample matrices. 
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Table 2. A brief summary of study design, cohort details and results with regard to observed time of day variation of metabolites for relevant studies analysing plasma/serum. 

Author(s)  Assay/Platform Time Course Details 
Study Setting/Condi-

tions 
Cohort Details 

Rhythmic/Gradient 

Metabolites/ 

Features Observed  

Rhythmic/Gradient Classes Pri-

marily Observed  

Park et al. (2009) [54] 
Untargeted 

1H NMR 

Diurnal variation 24 h, 1 h inter-

vals between samples 

‘Inpatient’ 

Standardised meals. Con-

sistent light/dark cycle 

N = 10, 5 males 

Age 22–83 

BMI 18.5–32.6 

34 
Amino acids 

Lipids (unidentified) 

Ang et al. (2012) [55] 

Untargeted 

UPLC/Q-TOF MS (Reversed 

Phase) 

Diurnal variation  

(25 h, 3 h intervals between sam-

ples) 

‘Inpatient’ 

17:8 wake/sleep, 

light/dark cycle. Hourly 

isocaloric meals 

Semi-recumbent position 

N = 8 

All male 

Age 53.6 ± 6.0 

BMI 23.2 ± 1.4 

203 features (19%) 

34 metabolites 

Amino acids 

Acylcarnitines 

LysoPEs 

LysoPCs 

Dallmann et al. (2012) [56] 

Untargeted  

GC-MS 

LC-MS 

(Reversed 

Phase) 

Circadian variation (constant 

routine  

40 h, 4 h intervals between sam-

ples) 

‘Inpatient’ 

Standard constant routine 

parameters (see [41]) 

N = 10 (split into 2 equal 

groups, within which sam-

ples were pooled for each 4 h 

interval) 

All male 

Age 57.8 ± 1.0 & 61.0 ± 0.6 

BMI 26.6 ± 0.6 & 25.1 ± 0.5 

41 (15%) 

Amino acids 

Glycerophospholipids 

Acylcarnitines 

Steroid hormones 

Kasukawa et al. (2012) [57] 

Untargeted  

LC-TOF MS 

(Reversed 

Phase) 

Circadian variation (forced 

desynchrony 28 h, bookended by 

constant routine protocols (38 h 

each, 2 h intervals between sam-

ples) 

‘Inpatient’ 

Standard constant routine 

parameters (with the ex-

ception of meals every 2 h 

(see [41]) 

Controlled light/dark cy-

cles, temperature during 

forced desynchrony 

N = 6 

All male 

Aged 20–23 

312 features (7%) 
Amino acids 

Steroid hormones 

Chua et al. (2013) [53] 

Targeted Lipidomics  

LC-MS/MS 

(Reversed 

Phase) 

Circadian variation (constant 

routine  

37 h, 4 h intervals between sam-

ples at 5 h onwards of constant 

routine) 

‘Inpatient’ 

Standard constant routine 

parameters (see [41]) 

N = 20 

All male 

Age 24.4 ± 1.8 

3 ‘Overweight’ 

17 ‘Healthy 

35 (13.3%) 
Glycerolipids 

Glycerophospholipids 

Davies et al. (2014) [51] 

Untargeted 

UPLC/Q-TOF MS/MS and tar-

geted FIA-MS 

UPLC-MS/MS 

(Reversed 

Phase) 

Diurnal variation (24 h). 24 h 

wake/sleep cycle vs. 24 h pro-

longed wakefulness, 2 h intervals 

between samples 48 h 

‘Inpatient’ 

Standardised meals and 

mealtimes. Controlled 

light/dark cycle and activ-

ity/posture 

N = 12 

All male 

Age 23 ± 5,  

BMI 24.5 ± 2.3 

109 (63.7%) sleep/wake 

88 (51.5%) sleep depri-

vation 

78 (45%) during both 

conditions 

Amino acids 

Acylcarnitines 

LysoPCs 

Phosphatidylcholines 

Sphingolipids 

Fatty acids 

Kim et al. (2014) [58] Untargeted  Diurnal variation ‘Inpatient’ N = 26 11 (9%)  LysoPCs 
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LC—TOF MS 

(Reversed 

Phase) 

Sampling 1, 3, 7, 9, 11, 14 h post-

wake, first sample fasted. 

Standardised meals and 

mealtimes 

14 males 

Age 33 ±10.9 

BMI 24.3 ±3.3 

Phosphatidylinositol 

Chua et al. (2015) [59] 

Targeted Lipidomics 

LC-MS/MS 

(Reversed 

Phase) 

Circadian variation (constant 

routine  

37 h, 4 h intervals between sam-

ples at  

5 h onwards of constant routine) 

‘Inpatient’ 

Standard constant routine 

parameters (see [41]} 

N = 20 

All male 

Age 23 ± 5 

BMI 24.5 ± 2.3 

4 (1.5%) decreased dur-

ing sleep deprivation 

21 (5.5%) increased 

during sleep depriva-

tion 

Sphingomyelins 

TAGs 

Phosphatidylcholines 

Phosphatidylinositol 

Skarke et al. (2017) [60] 

Targeted 

LC-MS/MS 

(HILIC) 

Diurnal variation 

am vs. pm (48 h, 5 samples 12 h 

apart) 

‘Outpatient’ 

N = 6 

All male 

Age 32.3 ± 3.6  

BMI 25.2 ± 3.4 

9 (5.4%)  

Isherwood et al. (2017) [61] 

Targeted 

FIA-MS 

UPLC-MS/MS 

(Reversed 

Phase) 

Diurnal variation (24 h—2 h in-

tervals between samples) 

‘Inpatient’ 

Controlled sleep/wake, 

light/dark cycle, and pos-

ture 

Hourly isocaloric meals 

N = 23 

All male 

BMI/Age  

Lean group 23.2 ± 1.4/53.6 ± 

6.0 

OW/OB 29.8 ± 2.3/51.0 ± 7.7 

T2DM group 31 ± 1.6/57.3 ± 

4.8 

50/130 (38.5%) total 

35—lean  

39—OW/OB 

20—T2DM  

Amino acids 

Phosphatidylcholines 

LysoPCs 

Acylcarnitines 

Gehrman et al. (2018) [62] 
Targeted 
1H NMR 

Diurnal variation (48–h - 2 h in-

tervals between samples) 

‘Inpatient’ 

Habitual sleep/wake cycle  

Hourly isocaloric meals 

N = 30 

20 male and 10 females (split 

equally into 2 groups) 

BMI < 29 

Healthy 

Age 35.0 ± 7.5 

Insomnia 

Age 37 ± 7.9 

24 (total) 

11 common to both 

groups 

6 unique to healthy 

7 unique to insomnia 

Amino acids 

Sato et al. (2018) [63] 

Untargeted  

UHPLC-MS/MS  

GC-MS 

Diurnal variation 

am vs. pm 

‘Outpatient’ 

Standardised meals and 

mealtimes 

N = 8 

All male 

Age 30–45 

BMI 27–32.5 

532, 130, 349 features 

(50%, 12%, 33%) time of 

day, diet, time of day 

diet interaction, respec-

tively. 

After HFD 

13% features lost daily 

variation, 17% gained 

new daily variation 

After HCD 

7% features lost daily 

variation 

Amino acids 

Fatty acyls 

Glycerolipids 

Glycerophospholipids 

Sphingolipids 

Carbohydrates 

Xenobiotics 
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14% gained new daily 

variation 

Skene et al. (2018) [64] 

Targeted  

FIA-MS 

UPLC-MS/MS 

(Reversed 

Phase) 

Circadian variation (constant 

routine 24 h, 11 samples at 1–3 h 

intervals) 

Day shift vs. night shift (simula-

tion)) 

circadian vs. behavioural control 

‘Inpatient’ 

Standard constant routine 

parameters (see [41]) 

During baseline & shift 

work—controlled 

sleep/wake, light/dark cy-

cle, temperature. 

Standardised meals and 

mealtimes 

Night shift:  

N = 7 

6 males  

Age 27.6 ± 3.2  

BMI 25.6 ± 3.3 

Day shift:  

N = 7, 4 males 

Age 24.0 ± 2.2  

BMI 25.9 ±3.4 

65 (49.2%) across both 

shift patterns, 27 

(20.5%) common to 

both 

Amino acids 

LysoPCs 

Phosphatdylcholines 

Acylcarnitines 

Glycerophospholipids 

Sphingolipids 

Grant et al. (2019) [65] 

Untargeted & Targeted LC-

QTOF/MS 

(HILIC) 

Circadian variation  

(24 h)  

Circadian- vs. wake-dependent 

changes 

‘Inpatient’ 

Standard constant routine 

parameters (see [41])  

N = 13 

9 males 

Age 25.0 ± 4.3  

BMI 22.0 ± 2.1 

Targeted: Group level 

28/99 (28.3%) (rhyth-

mic, rhythmic & linear) 

4/99 (4%) linear 

Untargeted:  

Group level 

361 (22%) rhythmic fea-

tures 8% linear features 

Individual level 

14% rhythmic profiles 

4% linear profile 

Amino acids 

Organic acids 

Gu et al. (2019) [66] 

Untargeted  

UHPLC-MS  

(Reversed phase) & 

GC-MS/MS 

Diurnal variation (26–48 h)  

(48 h time course for N = 2, 26 h 

for N = 1 participants), 

‘Inpatient’ 

Standardised meals and 

mealtimes 

Habitual sleep time (10 h 

sleep) 

N = 3 

2 males 

Age 20–31 

BMI 18 < 29.9 

100/663 (15.1%) rhyth-

mic in at least 1 indi-

vidual 

26/663 (3.9%) rhythmic 

in at least 2 individuals. 

Amino acids 

DAGs 

Lysolipids 

Phospholipids 

Steroid lipids 

Kervezee et al. (2019) [67] 

Targeted  

DI-MS 

LC-MS/MS (Reversed phase) 

Diurnal variation (24 h—2 h in-

tervals between samples)  

Baseline vs. forced misalignment 

post-simulated shift work 

‘Inpatient’ 

Controlled sleep/wake, 

light/dark cycle and 

hourly isocaloric meals 

during sampling periods  

N = 9 

8 males 

Age 22.6 ± 3.4  

BMI 21.3 (19.6–23) 

51 (39.2%) baseline 

53 (40.8%) night shift 

32 (24.6%) both,  

24 phase shifted, 27 

(21%) significantly 

changed post-night 

shift 

Amino acids 

Fatty acids 

Organic acids 

Lysophospholipids 

PCs 

Honma et al. (2020) [50] 

Targeted  

FIA-MS 

UPLC-MS/MS 

(Reversed 

Phase) 

Diurnal variation (70 h, 2 h inter-

vals between samples)  

16:8 wake/sleep cycle > 40 h pro-

longed wakefulness > 8 h recov-

ery sleep 

‘Inpatient’ 

Standardised meals and 

mealtimes. Controlled 

light/dark cycle and activ-

ity/posture 

N = 12 

All female 

Age 25 ± 4 

BMI 24.9 ± 3.6 

Total 97/130, 58 (44.6%) 

common for all condi-

tions. Baseline 78 (60%) 

8 unique. Sleep depri-

vation 76 (58.5%) 5 

unique Recovery sleep 

80 (61.5%) 5 unique 

Glycerophospholipids Sphin-

golipids 

Amino acids 

Biogenic amines 

Acylcarnitines 
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Lusczek et al. (2020) [68]  

Untargeted  

UHPLC/MS 

(Reversed 

Phase) 

Diurnal variation (24 h—4 h in-

tervals between samples)  

‘Inpatient’ 

Self-selected light/dark, 

feeding/fasting, 

sleep/wake cycle for 

healthy participants 

Healthy cohort 

N = 5 

2 males,  

Age 45–72 

BMI 22.4–33.3 

ICU cohort 

N = 5 

2 males  

Age 43–66 

BMI 31.0–57.3 

10 (16.7%) in healthy 

0 in ICU 

Amino acids 

Acyl carnitines 

LysoPEs 

Footnotes: Age and BMI are quoted in standard units, years and kg/m2 , respectively. Where available, mean age/BMI ± 1 SD given. Significant changes in metabolites identified in 

studies performing am vs. pm (two-time point) comparison(s), should be considered as gradient changes ergo ‘gradient metabolite’, Significant changes in metabolites identified in 

studies over a >24 h time course with n  5 should be considered as rhythmic changes ergo ‘rhythmic metabolite’, rhythmicity being detected by cosinor analysis and/or MetaCycle. 

Rhythmic/gradient features are denoted as such, otherwise the table refers to rhythmic/gradient metabolites. Rhythmic/gradient classes primarily observed are not an exhaustive list of 

all metabolite classes observed within a study but a summary of the most rhythmic classes, if any, for that particular study, as denoted by the author or inferred from provided data. 

Abbreviations: DAG—diglyceride; DI-MS—direct infusion mass spectrometry; FIA-MS—flow injection analysis mass spectrometry; GC-MS—gas chromatography mass spectrometry; 

HILIC—hydrophilic interaction chromatography; LC-MS—liquid chromatography mass spectrometry; LysoPC—lysophosphatidylcholine; LysoPE—lysophosphatidylethanolamine; 

MS/MS—tandem mass spectrometry; NMR—nuclear magnetic resonance; PC—phosphatidylcholine; Q-TOF MS—quadruple time of flight mass spectrometry; SESI-MS—secondary 

electrospray ionisation mass spectrometry; TOF MS—time of flight mass spectrometry; U(H)PLC—ultra high performance liquid chromatography.  

 



Metabolites 2021, 11, 328 12 of 36 
 

 

2.1.1. Circadian Variation 

Dallmann et al. [56] was first to publish a constant routine study observing circadian 

control of the metabolome in plasma and saliva (latter discussed below—see Section 2.3.1), 

with 41 (15%) of identified metabolites within plasma displaying circadian rhythms, of 

which, >75% comprised lipids, with nearly all peaking at subjective lunch time (when par-

ticipants would expect their second daily meal under a typical sleep/wake, feeding/fasting 

cycle). These findings provide evidence that lipid metabolism is under circadian control. 

The amplitude of these observed rhythms differs between metabolites, with lactate abun-

dance varying by ~66% and glutamate by ~40% across the 24 h period as but two exam-

ples, with other observed metabolites displaying even greater variation. This is a pertinent 

finding considering active discussion in the literature for these two metabolites as poten-

tial biomarkers and therapeutic targets for various diseases [69–75] and a consideration 

that can be applied to the findings of all the papers discussed below. In a separate constant 

routine study published in the same year [57] it was reported that phenylalanine, trypto-

phan, and leucine were observed to display circadian rhythms. In total, eight rhythmic 

metabolites were observed within the study, a comparison to the 41 observed previously 

[56] was drawn and the conclusion reached was that the authors likely observed less 

rhythmic metabolites due to curated selection of features with minimal variability be-

tween participants. Chua et al. [53] observed a comparable level of circadian rhythmic 

metabolites (35/263 metabolites, 13.3%) in their lipidomics assay, with triacylglycerides 

(TAGs) and diacylglycerides (DAGs) peaking in the morning. However, of these metabo-

lites, only 12 (5%) to 86 (33%) displayed rhythmicity, with a median of 20% across all par-

ticipants. Importantly, there were also significant differences in the phase of the rhythmic 

metabolites between participants, some as great as 12 hours. These phase differences were 

observed despite similar cortisol and melatonin rhythms between participants, metabolite 

rhythms typically measured relative to dim light melatonin onset (DLMO) or when corti-

sol levels peak to account for individual differences in circadian timing (chronotype). As 

age/sex/ethnicity were all controlled for, the authors concluded that the three observed 

‘lipidome phenotypes’ may be a result of predetermined genetic differences. This is a rea-

sonable assertion echoed by a prior review [76], suggesting that genetic variation in hu-

man clock genes could contribute to phenotypic differences and is supported by twin and 

familial studies stating 27–50% of the variance in diurnal preference/chronotype is at-

tributable to genetic, not environmental, influence [77–80].  

These findings suggest that a portion of the plasma metabolome/lipidome is under 

circadian influence (Table S7), the extent of which is potentially confounded by inter-in-

dividual differences in diurnal preference/circadian timing (chronotype).  

2.1.2. Sleep Deprivation and Prolonged Wakefulness  

The aforementioned studies employ a constant routine protocol enforcing wakeful-

ness over the observed time period. In an interesting development, Davies et al. [51], pro-

ceeded by Chua et al. [59], Grant et al. [65], and Honma et al. [50], characterise the impact 

of wakefulness (total sleep deprivation) on the plasma metabolome (Table S8). A distinc-

tion between these four studies is that both Chua et al. and Grant et al. performed their 

sample collection during a constant routine protocol where participants were subject to 

total sleep deprivation for the duration whilst Davies et al. and Honma et al. employed an 

entrained protocol with two and three phases, respectively, across consecutive days with 

a 8 h period of sleep permitted during the first 24 h of sampling proceeded by 24 h of total 

sleep deprivation with Honma et al. monitoring a third day permitting ‘recovery’ sleep. 

The experimental design of both Davies et al. and Honma et al. studies allowed for paired 

comparisons between test conditions (e.g., sleep vs. no sleep) for individual participants. 

Of the 109/171 (64%) rhythmic metabolites observed by Davies et al. (amino acids, 

biogenic amines, lipid groups), 95 (87%) of which peaked between 06:00 and 18:00 h, 21 

(28%) lost rhythmicity during prolonged wakefulness alongside reduced/increased 
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amplitude of metabolites that peaked within the day/night cycle, respectively. Further-

more 27/171 (16%) metabolites (three sphingolipids, eight acylcarnitines, 13 glycerophos-

pholipids, tryptophan, serotonin, taurine) exhibited a significant increase during sleep 

deprivation vs. baseline sleep with serotonin exhibiting the largest change (44% ± 20%), 

illustrating a perturbation to metabolite rhythms coinciding with total sleep deprivation. 

These results were echoed by Chua et al. [59] and Grant et al. [65] who observed linear 

changes in 25/11 (9.5%/11.1%) metabolites, respectively, predominantly phosphatidylcho-

lines/TAGs in the former study (lipidomics assay) and amino acids in the latter (HILIC 

(hydrophilic interaction chromatography) assay), as a result of sleep deprivation. Further 

agreement between Davies et al. and Chua et al. was observed for diacyl-phosphatidyl-

cholines, which were affected by sleep deprivation. 

Having performed untargeted/targeted HILIC assays, as opposed to reversed-phase 

assays which were performed previously [51,53], Grant et al. observed the impact of pro-

longed wakefulness on polar metabolites, with 28/99 (28.3%) displaying rhythmic-rhyth-

mic/linear metabolites peaking in the biological night, of which 13 were amino acids, a 

similar result with regard to amino acids rhythms having been observed to some degree 

previously [55–57,61]. Furthermore, Grant et al. identified nine novel rhythmic polar me-

tabolites (organic acids, nucleotides, and an amino acid) not observed in prior non-po-

lar/lipid studies. Group-level analysis of their untargeted dataset mostly reflected what 

was observed in the targeted dataset (see Table 2). 

Honma et al. [50] performed a similar study to Davies et al. with the exception of an 

all-female cohort (Davies et al. studied an all-male cohort) and therefore offers a novel 

insight into sex-dependent differences resulting from prolonged wakefulness (see Table 

S4). At face value, the female cohort were comparable to the male cohort of Davies et al., 

with 58/130 (44.6%) metabolites being rhythmic and common across the three study days 

(baseline sleep, prolonged wakefulness, recovery sleep), and 97/130 (75%) were rhythmic 

on at least one of the three days but not rhythmic across all three. During sleep deprivation 

15/130 (12%) of metabolites in female participants were significantly altered, of which 14 

decreased in concentration, in contrast to Davies et al., in which 37/141 (26%) were signif-

icantly increased during sleep deprivation. Furthermore, a subset of 32 common rhythmic 

metabolites between the cohorts of both studies was analysed with regard to their mean 

acrophase (peak time) and it was observed that the acrophase in the female group was ~1 

h later compared to the male group (female = 15:48 ± 0:40 h, male = 14:53 ± 0:42 h). Whilst 

the datasets are from different studies, they were both performed by the Skene laboratory 

(University of Surrey) with highly similar methodology, the same commercial kit to per-

form the targeted assay, similar cohorts (excluding sex) and subject to the same data pro-

cessing and analysis, making these observations more compelling. Complementary to the 

findings of Davies et al. and of Skene et al. [64] (discussed below—see Section 2.1.3), the 

findings of Honma et al. also illustrate how acute disruption of the sleep–wake cycle can 

result in changes to metabolite rhythms that persist after the disrupted behavioural cycle 

is restored. 

2.1.3. Shift Work 

In work that runs parallel to the studies investigating prolonged wakefulness and 

sleep deprivation, Skene et al. [64] and Kervezee et al. [67] independently investigated 

and characterised the impact of circadian misalignment on the plasma metabolome 

brought about by simulated shift work (Table S10). Skene et al. compared simulated day 

(DS) vs. night (NS) shift work and focused on which metabolite rhythms are primarily 

driven by the central SCN clock or external behavioural cycles. 

In the constant routine period succeeding the simulated shift work, Skene et al. ob-

served 65/132 (49.2%) rhythmic metabolites following one or both conditions, with a fur-

ther 19 metabolites (seven amino acids, 12 lysophosphatidylcholines) losing rhythmicity 

following NS and a second independent group of 19 metabolites (mostly phosphatdyl-

cholines, acylcarnitines) gaining rhythmicity only after NS. There were 27 common 
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rhythmic metabolites between test groups, only three of which maintained the same peak 

time between DS and NS. This was also a common trait with the circadian markers mela-

tonin DLMO and cortisol, indicative to the authors that it is likely that these three metab-

olites (taurine, serotonin, sarcosine (N-methylglycine)) are strongly influenced by timing 

of the central SCN clock. Conversely, the remaining 24 rhythmic metabolites (mostly glyc-

erophospholipids and sphingolipids) exhibited a significant shift in peak time between 

test conditions, with the majority experiencing a 12 h delay, i.e., inversed rhythms, and 

thus suggested to be strongly influenced by the shifted behavioural cycles (e.g., 

sleep/wake; feeding/fasting). This delay was maintained in the constant routine following 

cessation of the shift conditions demonstrating that endogenous metabolite rhythms can 

be induced and driven by external behavioural cues which likely reflect peripheral oscil-

lators dissociating from that of the SCN, as concluded by the authors. 

Similar to Skene et al., Kervezee et al. [67] observed a change in rhythmic metabolites 

in NS, with 51/130 (39.2%), 53 (40.8%), and 32 (24.6%) metabolites having displayed rhyth-

micity at baseline, NS, and in both datasets, respectively. Of the 32 metabolites rhythmic 

in both conditions (baseline and NS), 24 (75%) exhibited a phase shift, on average of 8.8 h, 

matching the shift in sleep pattern. Therefore, these changes are deemed more strongly 

influenced by behavioural cycles as opposed to circadian control with amino acids being 

an enriched group within the 24 metabolites exhibiting a phase shift. A further seven 

(~22%) metabolites, from the subset of 32, remained aligned with the non-shifted melato-

nin phase (measure of SCN phase). Therefore, this subset of seven metabolites (Table S10) 

were deemed circadian SCN clock regulated, or at least not regulated by the sleep/wake 

cycle. The 19 metabolites that lost rhythmicity post-shift work simulation were predomi-

nantly lipids, similar findings shown by Davies et al. [51] and Chua et al. [59] when inves-

tigating the impact of sleep deprivation and corroborating with the results of Skene et al. 

[64]. 

The observation that behaviourally induced rhythms can be retained and persist for 

at least 24 h in free-running constant routine conditions complements the findings of Da-

vies et al. [51] and Honma et al. [50] thus shift work and atypical sleep patterns are im-

portant considerations for metabolomics studies prior to recruitment and sampling. 

2.1.4. 24 h Diurnal Rhythms 

Parallel to studies employing constant routine methodologies to investigate circadian 

rhythms are those which investigate diurnal rhythms, 24 h rhythms under entrained con-

ditions. Three further studies, not investigating shift work or the impact of sleep, were 

obtained from the performed literature search characterising time of day variation over 

>24 h time courses. Park et al. [54] identified 34 metabolites exhibiting time of day varia-

tion between three time classes (‘morning’, ‘afternoon’ and ‘night’) covering a time course 

of 24 h. These distinct time classes were produced by averaging hourly 1H-NMR (nuclear 

magnetic resonance) spectra across all 10 participants for the 25 time points and by per-

forming PCA analysis. Identification of time of day variation was performed with a be-

spoke two sample t-test, with correction for multiple testing, performed to test for signif-

icant differences in spectral regions between the three ‘time classes’. Ang et al. [55] showed 

time of day variation across 24 h in a range of metabolite classes using untargeted LC-MS 

(liquid chromatography mass spectrometry). They considered their work as an external 

validation of the Dallmann et al. study [56], having replicated some of their findings de-

spite some key differences in methodology (see Table 2). In total, 34 rhythmic metabolites 

were identified with variation in abundance ranging from 49–81% (average 65%). The 

magnitude of this variation was similar to that observed by Dallmann et al., with amino 

acids and phospholipids being two highlighted rhythmic metabolite classes that dis-

played similar amplitudes. Gu et al. [66] observed diurnal variation in three participants 

within their pilot study to perform individual-level analysis to better explore inter-indi-

vidual variability as opposed to group-level analysis; with only Chua et al. [53,59] having 

observed individual rhythms and differences prior to this publication and Grant et al. [65] 
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also performing individual-level analysis and publishing in a similar timeframe. Gu et al. 

observed diurnal rhythms in all three participants (Table 2, Table S2) in addition to ob-

serving inter-individual differences in the acrophase of metabolite rhythms relative to 

DLMO, such differences may be masked in group-level analysis but are pertinent when 

investigating on the individual level. 

2.1.5. Health Status 

It is well established that different physiological and pathological states caused by 

disease can lead to distinct metabolic profiles. Isherwood et al. [61] adds to this under-

standing by observing unique time of day variations accompanying specific phenotypes 

(Table S11). Their study observed differences in metabolic profiles of individuals with 

type 2 diabetes mellitus (T2DM), overweight/obese (OW/OB) non-diabetic individuals, 

and age-matched lean ‘healthy’ controls; the novel aspect of the study being the compar-

ison of metabolic profiles between non-diabetic/diabetic individuals (age- and weight-

matched) across multiple time points about a 24 h time course. In total, 50/130 (~38.5%) 

unique metabolites displayed 24 h rhythmicity of which 35, 39, and 20 were observed in 

lean, OW/OB and T2DM groups, respectively, from group-level analysis (Table S2). Of 

these 50 rhythmic metabolites, 5 (10%) were unique to OW/OB and T2DM groups and 11 

(22%) were unique to non-T2DM groups suggesting a change in metabolite rhythms as-

sociated with the onset or continuation of T2DM (Table S2). 

In a similar line of enquiry to Isherwood et al., Gehrman et al. [62] investigated how 

diurnal rhythms may differ between participants confirmed to suffer with insomnia and 

matched healthy individuals (‘good sleepers’). Unique metabolite profiles were observed 

for both test groups (Table S11) with 29 metabolites being elevated/decreased in insomnia 

patients in the morning and/or night. Of these 29 metabolites, 13 were rhythmic. In total, 

11 metabolites exhibited diurnal rhythms in both groups with a further six and seven 

unique rhythmic metabolites in healthy and insomniac participants, respectively. Phase 

changes were also noted with a phase advance (peaking earlier in the day) of acetone, 

proline, and a phase delay (peaking later in the day) of lactate, valine, isoleucine and 3-

methyl-2-oxovalerate for the insomniac participants. It remains unclear how many of 

these changes are associated with the underlying causes of insomnia as opposed to the 

symptoms, i.e., poor sleep quality/duration. 

Lusczek et al. [68], investigated whether intensive care unit (ICU) patients have their 

24 h rhythms disrupted relative to healthy controls by profiling “circadian” rhythms in 

vital signs and plasma metabolites by analysing 60 “circadian” metabolites based on the 

work by Dallmann et al. [56] and Ang et al. [55] (who observed diurnal not circadian 

rhythms) and concluded that ICU patients experience desynchrony, leading to a loss of 

metabolite rhythmicity when compared to healthy non-ICU controls. The rhythmic me-

tabolites observed by Dallmann et al. and Ang et al. were observed in a different and 

specific context, and do not serve as adequate or reliable markers for circadian desyn-

chrony in the context of the study by Lusczek et al. Further measures taken to assess pa-

tient “circadian” rhythms included temperature, heart rate and blood pressure, and 

plasma cortisol of which only cortisol was deemed significantly rhythmic for group-level 

analysis of the ICU group. Lusczek et al. suggests that this is indicative of a lack of coher-

ence in circadian phases and amplitudes amongst the ICU patients. However, an alterna-

tive suggestion is that coherence of cortisol rhythms, is indicative of a similar phase angle 

of entrainment between participants and the variable temperature and blood pressure 

rhythms result from patients’ unique circumstances with regard to their disease status 

(cardiac or respiratory), physiology/trauma, concomitant medication and demographics 

[81,82], disease state and physiology potentially leading to unique rhythmic metabolite 

profiles not necessarily related to desynchrony as established above. 
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2.1.6. Diet Composition 

The previously described studies have all collected blood samples at 2–5 h intervals 

across a minimum 24 h time course to define and visualise detected metabolite rhythms 

over a 24 h period via cosinor analysis (applies the least squares method to fit a sine wave 

to time series data) or MetaCycle (runs three separate algorithms to detect biological 

rhythms). Some studies may opt to characterise time of day variation over a shorter time 

course (<24 h) or with fewer samples per 24 h cycle (n ≤ 4 samples) and thus investigate 

variation in a morning vs. evening fashion to discern ‘gradient’ metabolites (‘gradient’ 

referring to a significant relative increase/decrease in concentration/abundance of a me-

tabolite between two time points) such as the work performed by Sato et al. [63]. To clarify, 

low resolution sampling of n ≤ 4 samples per 24 h cycle is insufficient to characterise 24 h 

metabolite rhythms and so morning vs. evening studies are inherently limited in deter-

mining time of day variation with results typically limited to t-test/ANOVA analysis to 

determine significant changes between time points. These ‘gradient’ metabolites may or 

may not be rhythmic and a higher resolution (n > 4 samples per 24 h cycle) is required to 

discern rhythmicity. 

Sato et al. [63] investigated the impact of a high-carbohydrate diet (HCD) and high-

fat diet (HFD) of equal calorific content to observe the impact of nutritional challenge on 

the serum and skeletal muscle metabolome, whilst noting diurnal changes. Many time of 

day changes were observed as a result of the diet in the 1063 detected metabolite features 

(Table 2, Table S12). For the HFD and HCD diet conditions 85/50 metabolites displayed a 

gradient change at baseline only, 126/95 post-completion of diet conditions only, and 

138/142 both before and after diet conditions, respectively. Metabolites relating to lipid 

metabolism were enriched in the HFD group regardless of time of day—perhaps unsur-

prisingly. Conversely, half of all decreased metabolites in the evening as a result of HFD 

were related to amino acid metabolism despite equal calorific intake from protein between 

groups. Relative to HFD, HCD led to a decrease in metabolites relating to lipid metabo-

lism, regardless of time of day. The authors suggested that increased serum insulin con-

centrations lead to suppressed lipolysis, explaining the observation, though the literature 

quoted in support of this statement observed this effect during high-activity (exercise) 

conditions. Sato et al. have demonstrated that diet composition, with regard to calorific 

intake from major food groups, displays an interaction with time of day variation of the 

metabolome altering specific metabolite rhythms; in the context of this study lipid metab-

olism was most strongly impacted. 

2.1.7. Morning vs. Evening Studies 

Kim et al. [58] observed diurnal variation over 14 h in plasma (11 metabolites, 9%). 

The proportion of variance attributable to time of day in plasma was minimal vs. that 

attributed to patient ‘effects’ (age, sex, race, polycystic kidney disease ~40%) and residual 

variance (>50%). Data on sleep patterns, chronotype, work and light/dark history were 

not considered and so a proportion of this residual variance may well have a biological 

source, e.g., associated with chronotype, when considering the confidence in consistency 

and rigour by Kim et al. of their employed methodology. 

Skarke et al. [60] observed diurnal variation in plasma (9/166, 5.4%) between 12 h 

samples over 48 h. Notably, less rhythmicity was observed when compared to the studies 

discussed above and may potentially be the result of reduced sampling frequency (12 

hourly), the small cohort, or the purposeful monitoring of participants in their habitual 

routine undergoing unique and varied daily cycles. Despite the introduced inter-individ-

ual variation due to this setting, diurnal variation is still evident, suggestive of a high 

potency in temporal regulation of specific metabolites driven by external and internal 

rhythms. The reduced number of rhythmic metabolites from both of these studies com-

pared to those discussed earlier aptly illustrates the difficulties in monitoring time of day 

variation and the required rigour in experimental design. To see beyond the noise and 
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identify significant changes as a factor of time (clocks and/or circadian time), it is of im-

portance to control environmental conditions, patient demographics and lifestyle. 

2.2. Urine 

Urine is the second most investigated biofluid, after blood, to assess time of day var-

iation of the metabolome with six studies discussed here with the earliest work performed 

by Jerjes et al. [83], Walsh et al. [84] and Slupsky et al. [85], followed by several others 

[86,87] (see Table 3 and Table S3). 

2.2.1. Sleep Deprivation and Prolonged Wakefulness 

The participants in the Davies et al. study [51] also provided sequential urine samples 

across a 48 h study period [86]. Rhythmic metabolites (5/32, 15.6%) during the baseline 

sleep/wake cycle were observed, and 7/32 (22%), inclusive of the previous five, were ob-

served during 24 h prolonged wakefulness. Eight metabolites significantly increased and 

a further eight decreased during sleep deprivation (Table S8) with a relative concentration 

change ranging from -22.4% to +45.6%, the latter result comparable to Davies et al. [51]. 

Of the seven rhythmic metabolites identified during prolonged wakefulness, four re-

mained significantly different to baseline around habitual wake time (07:00–09:00 h) but 

did not persist thereafter. The authors concluded that time of day is a more potent influ-

encer on the urine metabolome than sleep deprivation; a similar conclusion given by Jerjes 

et al. [83] that sleep disturbances did not alter urinary steroid metabolite rhythms on the 

next day. 

2.2.2. Shift Work 

Papantoniou et al. [87] set out to observe diurnal changes as well as define any sig-

nificant differences between night and day shift workers in “sex hormones” for both male 

and female workers potentially brought about by circadian disruption/misalignment as a 

result of shift work (Table S10). The potential consequences are associated with increased 

risk of developing breast and prostate cancer. Analysis of the full cohort revealed several 

progestagens and androgens which were significantly elevated in night shift workers vs. 

day shift workers, most notably observed within the subpopulation of pre-menopausal 

women. In day vs. night shift worker comparisons, testosterone, 3a,5a-androstanediol, 16-

androstenol and pregnanediol were significantly elevated in pre-menopausal women and 

epitestosterone was elevated in post-menopausal women. There were no statistically sig-

nificant differences in males. Peak time of androgens (epitestosterone, DHEA, etiocholan-

olone and 6a-hydroxyandrostenedione) were significantly later in the day in the night 

shift workers vs. day shift workers with the effect more pronounced in males vs. females. 
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Table 3. A brief summary of study design, cohort details and results with regard to observed time of day variation of metabolites for relevant studies analysing 

urine. 

Author(s)  Assay/Platform Time Course Details 
Study Setting/Condi-

tions 
Cohort Details 

Rhythmic/Gradient Metab-

olites/Features Observed  

Rhythmic/Gradient Classes 

Primarily Observed 

Jerjes et al. (2006) [83] 
Targeted 

GC-MS 

Diurnal variation (24 h–3 h in-

tervals between samples) 
 

N = 20 

10 males 

Age 32 ± 5.4 

BMI 23.5 ± 2 

9 
Androgens 

Cortisol metabolites 

Walsh et al. (2006) [84] 
Untargeted 

1H NMR 

Diurnal variation  

am vs. pm 

‘Outpatient’ 

Standardised meals 

N = 60 

30 males 

Age 19–69 

1  

Slupsky et al. (2007) [85] 
Targeted 
1H NMR 

Diurnal variation  

am vs. pm 
‘Outpatient’ 

N = 30 

23 females  

Age 24.7 ± 2.7  

BMI 22.7 ± 0.97 

6  

Kim et al. (2014) [58] 

Untargeted 

LC—TOF MS 

(Reversed 

Phase) 

Diurnal variation 

Sampling 1, 3, 7, 9, 11, 14 h post-

wake, first sample fasted. 

‘Inpatient’ 

Standardised meals 

and mealtimes 

N = 26 

14 males 

Age 33 ± 10.9 

BMI 24.3 ± 3.3  

135 (46%) 

Glycerophospholipids 

LysoPCs 

Phosphatidylinositol 

Giskeødegård et al. (2015) 

[86] 

Untargeted 
1H NMR  

Diurnal variation (48 h) Sam-

ples at 2–4 h intervals when 

awake, 8 h overnight 

‘Inpatient’ 

Standardised meals 

and mealtimes. Con-

trolled light/dark cycle 

and activity/posture 

N = 15 

All male 

Age 23.7 ± 5.4 

5 (15.6%)—sleep/wake cycle 

7 (22%) during 24 h wake-

fulness 

During sleep deprivation 8 

increased, 8 decreased 

Amino acids 

Fatty acids 

Papantoniou et al. (2015) 

[87] 

Targeted 

GC-MS 
Diurnal variation (24 h) 

‘Outpatient’ 

Day vs. night shift 

workers 

N = 117 

63 males 

Age 22–64 

BMI 22.6–30.6 

5 (31.3%) significantly dif-

ferent in premenopausal 

day vs. night workers 

Progestagens 

Androgens 

Footnotes: See table 2. Abbreviations: GC-MS—gas chromatography mass spectrometry; LC-MS—liquid chromatography mass spectrometry; LysoPC—lysophos-

phatidylcholine; NMR—nuclear magnetic resonance; TOF MS—time of flight mass spectrometry.
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2.2.3. Creatinine 

Walsh et al. [84] observed diurnal variation in the urinary metabolome, with creati-

nine being the prominent gradient metabolite and selectable marker within their con-

structed PLS-DA (partial least squares-discriminant analysis) model to predict time of day 

for collected samples, further commenting on the standardised diet reducing inter-indi-

vidual variability. These findings were corroborated by Slupsky et al. [85] who also re-

ported on a further five metabolites exhibiting diurnal variation and further supported by 

Kim et al. [58] (as described above, see Section 2.1.7) concluding that urine is susceptible 

to temporal and meal driven changes to the metabolome, more so than plasma. This in-

creased temporal sensitivity may derive from circadian rhythms driven by the peripheral 

clock of the kidney resulting in time of day variation in renal function inclusive of diuresis 

[88], the method of sample collection (with Slupsky et al. collecting only two urine sam-

ples first void, and a second at 17:00 h) or the method of data normalisation to account for 

volume/concentration differences in provided urine samples. 

A concern raised by Walsh et al. and Slupsky et al. is that urinary metabolite abun-

dance is routinely normalised against creatinine, which shows inter-individual and diur-

nal variation, driven by diet/food consumption. Furthermore, it requires the assumption 

that the kinetics of excretion for metabolites of interest, which may change throughout the 

day, match that of creatinine thus resulting measurements of this normalisation may be 

less accurate than initially thought, as stated by Jerjes et al. [83]. Giskeødegård et al. [86], 

like Walsh et al. and Slupsky et al., observed diurnal variation of creatinine whilst addi-

tionally observing sleep deprivation to further impact creatinine levels thus undermining 

the role of creatinine for the purpose of normalisation as previously described. These con-

cerns are supported by the findings of Jerjes et al. who concluded that creatinine did not 

undergo a significant daily rhythm when analysed independently via cosinor analysis, 

but androgen and cortisol metabolites did exhibit a significant daily rhythm thus by ex-

tension the relative ratio of cortisol/androgen metabolites:creatinine also exhibits a daily 

rhythm. This led Jerjes et al. to conclude that monitoring steroid/steroid or steroid/creati-

nine ratios is uninformative unless collection periods are timed as performed by Papan-

toniou et al. [87] and Giskeødegård et al. [86]. Other methods for normalisation of urine 

dilution are available [89]. 

2.3. Saliva 

Time of day variation in saliva has garnered some coverage within the literature, 

perhaps due to ease of accessibility, with multiple laboratories reporting time of day var-

iation (see Table 4) and various identified metabolites (Table S4) across four independent 

studies. 
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Table 4. A brief summary of study design, cohort details and results with regard to observed time of day variation of metabolites for relevant studies analysing 

saliva. 

Authors Assay/Platform Time Course Details  

Study Set-

ting/Condi-

tions 

Cohort Details 

Rhythmic/Gradient Me-

tabolites/Features Ob-

served  

Rhythmic/Gradient 

Classes Primarily 

Observed  

Walsh et al. (2006) [84] 
Untargeted 

1H NMR 

Diurnal variation  

am vs. pm 

‘Outpatient’ 

Standardised 

meals 

N = 60 

30 males 

Age 19–69 

1 

No gradient metab-

olite classes identi-

fied 

Dallmann et al. (2012) 

[56] 

Untargeted  

GC-MS 

LC-MS 

(Reversed 

Phase) 

Circadian variation 

(constant routine 40 h, 4 

h intervals between 

samples) 

‘Inpatient’ 

Standard con-

stant routine 

parameters 

(see [41]) 

N = 10 (split into 2 

equal groups within 

which samples were 

pooled for each 4 h in-

terval) 

All male 

Age 57.8 ± 1.0 & 61.0 ± 

0.6 

BMI 26.6 ± 0.6 & 25.1 ± 

0.5 

29 (15%) Amino acids 

Dame et al. (2015) [90] 
Untargeted 

1H NMR 

Diurnal variation sam-

pling at prebreakfast vs. 

2 h post-breakfast vs. 2 

h post-lunch 

 

N = 16 

8 males & females 

Age (24–42) 

(only N = 2 took part 

in observation of diur-

nal variation) 

8 (10.5%) Amino acids 

Skarke et al. (2017) [60] 

Targeted 

LC-MS/MS 

(HILIC) 

Diurnal variation 

am vs. pm (48 h, 5 sam-

ples 12 h apart) 

‘Outpatient’ 

N = 6 

All male 

Age 32.3 ± 3.6 

BMI 25.2 ± 3.4 

14 (5.6%)  Amino acids 

Footnotes: See table 2. Abbreviations: GC-MS—gas chromatography mass spectrometry; HILIC—hydrophilic interaction chromatography; LC-MS—liquid chroma-

tography mass spectrometry; MS/MS—tandem mass spectrometry; NMR—nuclear magnetic resonance. 
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2.3.1. Circadian Variation 

Dallmann et al. [56] (as described above, see Section 2.1.1) observed similar results in 

saliva as with plasma with ~15% (29 of 178) of the salivary metabolites displaying rhyth-

mic variation, primarily consisting of amino acids and associated metabolites (Table S7). 

Amino acids displayed a wide range of variation in abundance, up to ~400%, across 24 h. 

Their study therefore provides strong evidence that the salivary metabolome is influenced 

by circadian control, similar to their results with blood. Circadian variation should be a 

consideration in study design when analysing saliva due to the large magnitude of varia-

tion across the 24 h day. Despite the similar outcomes for blood/saliva samples, no iden-

tified rhythmic metabolites were common between these sample types, despite amino ac-

ids being a common rhythmic metabolite class observed in both sample types. It should 

be noted that sleep deprivation/prolonged wakefulness, which takes place during con-

stant routine protocols, are associated with unique changes in the plasma metabolome 

and therefore may have a similar impact on the saliva metabolome but this has not yet 

been demonstrated. 

2.3.2. Morning vs. Evening Studies 

Walsh et al. [84] (as described above, see Section 2.2.2), concluded that saliva exhib-

ited diurnal variation with acetate being the prominent gradient metabolite and selectable 

marker within their constructed PLS-DA model to predict time of day for collected sam-

ples; the presence of which is attributed to acetate accumulation throughout the day due 

to carbohydrate fermentation in the mouth. No further gradient metabolites were re-

ported in this study. Dallmann et al. observed extensive 24 h circadian rhythmicity com-

pared to Walsh et al. who observed limited diurnal variation. This could be a result of 

Walsh et al. using 1H NMR and only analysing two samples (morning vs. evening), pre-

sumably ~12 hours apart, compared to the MS methods and constant routine methodol-

ogy (10 samples across 40 h) applied by Dallmann et al. Furthermore, Dallmann et al. 

employed various pre-study parameters to control for environmental/behavioural cycles 

and to reduce inter-individual variation which Walsh et al. reported was extensive within 

their study. Whilst the data were not published within the paper, Dame et al. [90] observed 

diurnal variation of acetate and amino acids across saliva samples collected in the morn-

ing and afternoon, corroborating with the findings of Walsh et al. and Dallmann et al. 

Skarke et al. [60] (as described above; see Section 2.1.7) reported 5.6% (14/250) of salivary 

metabolites display diurnal variation, notably less than what Dallmann et al. [56] ob-

served under constant routine conditions, with suggested reasons for this disparity as 

previously described. It is therefore likely that circadian-controlled metabolite rhythms 

are masked in the diurnal setting of the Skarke et al. study; nevertheless, Skarke et al. 

shows time of day variation persists and is pronounced in a ‘real-world’ setting with gra-

dient changes in metabolites still observable. 

2.4. Breath 

Of the five sample types discussed in this review, breath is the sparsest with regard 

to data on rhythmic/gradient metabolites. Only three studies have investigated time of 

day variation of breath (see Table 5 and Table S5). 
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Table 5. A brief summary of study design, cohort details and results with regard to observed time of day variation of metabolites for relevant studies analysing 

breath. 

Authors 
Assay/Plat-

form 
Time Course Details Study Setting/Conditions 

Cohort 

Details 

Rhythmic/Gradient 

Metabolites/Features  

Observed 

Rhythmic/Gradi-

ent Classes Primar-

ily Observed 

Sinues et al. 

(2012) [91] 

Untargeted  

SESI-MS 

Diurnal variation (4 time 

periods) 

8:00−11:00, 11:00−13:00, 

13:00−15:00, 15:00−18:00 

‘Outpatient’ 

 

N = 12 

7 males 

Diurnal changes observed but number 

of rhythmic features not reported 

No metabolites 

structurally identi-

fied 

Sinues et al. 

(2014) [92] 

Untargeted  

SESI-MS 

Diurnal variation (24 h, 1 

h intervals, 5–7 repeats 

per sample) 

‘Inpatient’ 

Controlled laboratory conditions: 

hourly isocaloric meals, constant 

wakefulness, consistent light condi-

tions 

N = 3 

2 males 

Age 33–

38 

40 (36%) of features 

(49% in N = 1) 

No metabolites 

structurally identi-

fied 

Wilkinson 

et al. (2019) 

[93] 

Untargeted 

GC-MS 

Diurnal variation (24 h—

4 time points: 16:00, 

22:00, 04:00, 10:00) 

Standardised meals and feeding 

schedule. Maintained habitual bed-

time 

Healthy 

N = 10 

7 males 

Age 27.5–

49.3 

BMI 23.4–

30.5 

Asthma 

N = 9 

7 male 

Age 26.0–

49.5 

BMI 22.3–

27.2 

 

Combined dataset  

5/102 (4.9%) metabolites 

Asthma 3/102 (~2.9%) metabolites, 1 of 

which is unique to this group in addi-

tion to rhythmicity of exhaled nitric ox-

ide fraction 

Healthy 2/102 (~2%) metabolites rhyth-

mic and unique to this group 

Volatile organic 

compounds 

Footnotes: See table 2. Abbreviations: GC-MS—gas chromatography mass spectrometry; SESI-MS – secondary electrospray ionisation. 
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2.4.1. Morning vs. Evening Studies 

Sinues et al. [91] observed diurnal changes in breath across four time points (08:00 h–

18:00 h) analysed via SESI-MS (secondary electrospray ionisation mass spectrometry) over 

nine consecutive days. The distinction between time points was great enough for machine 

learning approaches, in this case k-nearest neighbor validated via k-fold cross validation, 

to correctly predict sample time points 84% of the time in a blind classification. Unfortu-

nately, the number of detected features, those which display gradient changes/exhibit di-

urnal variation, and metabolite identities were not elucidated. 

2.4.2. 24 h Diurnal Rhythms 

A follow-up study saw Sinues et al. [92] observe diurnal variation in breath via a 

controlled laboratory study and using SESI-MS, where a total 111 features were analysed, 

of which 36%–49% (average 40.3%) exhibited rhythmic behaviour. Pairwise comparisons 

differed drastically with regard to common features, a fact made more obvious due to the 

restricted size of the cohort (pilot study). A further limitation of this study, addressed by 

the author, is lack of identification of the detected features similar to the prior study, 

though some tentative metabolite identifications were provided but with no definitive 

conclusions in terms of the most rhythmic metabolite classes within the analysis nor the 

nature of such rhythms. Nevertheless, PCA score plots illustrate time of day variation 

within the samples. 

Wilkinson et al. [93] monitored diurnal rhythms in volatile organic compounds 

within a cohort comprised of healthy and asthmatic participants. The authors incorrectly 

describe the observed rhythms as circadian; however, participants were not subject to a 

constant routine protocol thus observed rhythms should be defined as diurnal. Semantics 

aside, a key strength of this paper, compared to the work of Sinues et al. [92], is the iden-

tification of analysed metabolites with two, three and five metabolites observed in 

healthy, asthmatic, and combined groupings, respectively (Table S11). Wilkinson et al., 

similar to Isherwood et al. [61] and Gehrman et al. [62], provides evidence for unique di-

urnal rhythms associated with specific phenotypes, primarily between healthy vs. asth-

matic individuals. Unlike Isherwood et al., Wilkinson et al. did not observe any signifi-

cantly rhythmic metabolites common to both groups when analysed separately. 

2.5. Skeletal Muscle 

The most recent human tissue to be investigated for time of day variation of the 

metabolome is skeletal muscle, with two of these three initial studies focussing on the 

lipidome (Table 6 and Table S6). 
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Table 6. A brief summary of study design, cohort details and results with regard to observed time of day variation of metabolites for relevant studies analysing 

skeletal muscle. 

Authors Performed Assay Time Course Details 
Study Set-

ting/Conditions 

Cohort De-

tails 

Rhythmic/Gradient 

Metabolites/Fea-

tures Observed 

Rhythmic/Gradi-

ent Classes Primar-

ily Observed 

Loizides-Mangold et al. (2017) 

[94] 

Targeted  

(Lipidomics) 

LC-MS 

Diurnal variation (24 h–4 h 

intervals between samples) 

‘Inpatient’ 

Controlled 

sleep/wake, 

light/dark cycle, 

temperature. 

Isocaloric meals 

N = 10, 9 

males 

Age 29.9 ± 

9.8  

BMI 24.1 ± 

2.7 

106 of 1058 metabo-

lites (10%) 

TAGs, PCs, Pes 

PIs, PSs, CLs 

Cers, GlcCers, SMs 

Sato et al. (2018) [63] 

Untargeted  

UHPLC-MS/MS  

GC-MS 

Diurnal variation 

am vs. pm 

‘Outpatient’ 

Standardised 

meals and 

mealtimes 

N = 8, All 

male 

Age 30–45 

BMI 27–32.5 

163 & 19 of 625 fea-

tures (26% & 3%) 

as a result of time of 

day & diet, respec-

tively 

Amino acids 

Fatty acyls 

Glycerolipids 

Glycerophospho-

lipids 

Sphingolipids 

Carbohydrates 

Xenobiotics 

Held et al. (2020) [95] 

Semi-targeted 

Lipidomics 

UPLC/HRMS 

(reversed & normal 

phase) 

Diurnal variation (24 h—5 h 

intervals between samples) 

‘Inpatient’ 

Controlled 

sleep/wake, 

light/dark cycle. 

Standardised 

meals and 

mealtimes 

N = 12, All 

male 

Age 22.2 ± 

2.3 

BMI 22.4 ± 

2.0 

126 of 971 (13%) 

Glycerophospho-

lipids 

TAGs 

Sphingolipids 

DAGs 

Sterol Lipids 

Footnotes: See table 2. Abbreviations: Cer—ceramide; CL—cardiolipin; DAG—diglyceride; GC-MS—gas chromatography mass spectrometry; GlcCer—glucosylcer-

amide; HRMS—high resolution mass spectrometry; LC-MS—liquid chromatography mass spectrometry; MS/MS—tandem mass spectrometry; PC—phosphatidyl-

choline; Pe—phosphatidylethanolamine; PI—phosphatidylinositol; PS—phosphatidylserine;; SM—sphingomyelin; TAG—triglyceride; U(H)PLC—ultra high per-

formance liquid chromatography.
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2.5.1. Diet Composition 

Sato et al. [63] (as described above, see Section 2.1.6) compared the impact of a nutri-

tional challenge on the skeletal muscle metabolome and concluded time of day (163/625 

features affected), and thus accompanying environmental/behavioural cycles, more 

strongly influence the metabolome than diet composition (19/625 features affected). How-

ever, diet still exerted a significant influence, with HFD dampening the gradient changes 

of 60% of metabolites, predominantly related to lipid metabolism, with a further 19% of 

metabolites acquiring an inverted ‘gradient’, i.e., 19 metabolites with a higher relative 

abundance in the afternoon compared to the morning, or vice versa, displayed the oppo-

site change post-HFD. Alternatively, the HCD saw metabolites related to lipid metabolism 

decrease in the morning and increase in the evening, creating a sharper gradient in relative 

abundance with a further 22% of metabolites exhibiting a significant difference in morn-

ing vs. evening samples (Table S12). 

2.5.2. 24 h Diurnal Rhythms 

Held et al. [95] performed a semi-targeted lipidomics assay showing that 13% of de-

tected lipids (126/971) displayed significant rhythmicity over the 24 h day, comprising 57 

(45%) glycerophospholipids, 52 (41%) diglycerides, 10 (8%) triglycerides, six (5%) sphin-

golipids and one (1%) sterol lipid(s). Loizides-Mangold et al. [94] also observed a high 

degree of rhythmicity amongst glycerophospholipids, sphingolipids and triacylglycerides 

though not diglycerides. An average of ~114 rhythmic metabolites (20.3% of detected li-

pids per participant) were observed by Loizides-Mangold et al., comparable to Held et al., 

with a reported 532 metabolites detected in all participants at all five time points and 

deemed comparable to an in vitro study run in parallel that analysed human myotube 

cultures. Of the rhythmic metabolites from the in vivo study it was reported that lipid 

levels altered by >20% across the 24 h time course with the authors drawing comparisons 

to similar findings in blood, saliva and urine reported elsewhere [51,53,56,86]. Of the 

rhythmic diglycerides and triglycerides analysed by Held et al., 87% and 60%, respec-

tively, peaked at 04:00 h whilst 43% of the rhythmic sphingolipids peaked at 13:00 h, with 

similar observations made by Chua et al. [53] when studying plasma taken under constant 

routine conditions (see Section 2.1.2). Loizides-Mangold et al., however, reported sphin-

golipids peaking earlier at 04:00 h alongside phosphatidylcholines. 

Further observations by Held et al. highlighted changes in rhythmicity of glycer-

ophospholipids and fatty acids based on chain length (<20 and >20 carbon number) and 

degree of saturation, resulting in antiphase rhythms of fatty acids based on these param-

eters. Fatty acid chain length and level of saturation was only associated with larger am-

plitudes of observed rhythms with diglycerides, whilst sphingolipid and sterol lipid 

rhythms were deemed independent of these factors. These observations were only par-

tially corroborated by Loizides-Mangold et al. who concluded the degree of saturation did 

not influence lipid rhythmicity but did state that chain length influences the diurnal pro-

file of phosphatidylcholines and sphingomyelins. 

The above studies clearly demonstrate that time of day variation is observed in the 

human muscle metabolome. Furthermore, not all lipid groups are affected equally and 

lipid chemical structure, in part, may impact how a given metabolite is regulated and in-

fluence the phase of its daily rhythm. The potential enrichment of specific metabolite 

groups at a given time of day should be a consideration both in study design as well as in 

data analysis and interpretation as temporal partitioning of specific subclasses may be 

misconstrued as relevant to the studied system when it is potentially an artefact resulting 

from time of sampling. 

3. Discussion 

Reviewing the literature has revealed the following key findings. 
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3.1. Key Findings 

• The number of studies investigating time of day variation of the human metabolome, 

to date, is small (n = 29). 

• Endogenous metabolite rhythms, regulated by the circadian timing system, have 

been observed via constant routine studies in blood and saliva. 

• Diurnal 24 h metabolite rhythms potentially evoked by external cues, either environ-

mental (e.g., light/dark cycle) or behavioural (e.g., sleep/wake; feeding/fasting), have 

been observed in blood, urine, saliva, breath, and skeletal muscle. 

• Acute changes in external cues, e.g., sleep/wake, feeding/fasting, activity/rest cycles 

and shift work, result in acute alterations to metabolite rhythms (timing and ampli-

tude) that can persist after cessation of the change. 

• Metabolite rhythms (timing and amplitude) may be sex dependent although sex has 

not been regularly investigated with regard to differences in 24 h metabolite rhythms. 

• Specific physiological phenotypes and healthy vs. diseased state are shown to result 

in unique diurnal rhythms alongside the expected metabolite profiles of each pheno-

type. 

• Lipids, in particular glycerophospholipids, and amino acids are the most frequently 

observed rhythmic metabolite classes. Lipid rhythms have shown the most variation 

between individuals with differences in phase (timing). 

• Lipid rhythms may feature class-dependent temporal separation based upon carbon 

chain length and degree of saturation. 

• A subset of metabolites are repeatedly reported as undergoing significant time of day 

variation across studies. A total of 35 putatively identified metabolites having been 

observed in at least five studies (Table 7) out of a total of 400 putatively identified 

across all studies. 

Table 7. Putatively identified metabolites, observed in five or more human metabolomics time course studies, that under-

went significant time of day variation (rhythmic/gradient metabolites) in ranked order. 

Rank 
Putative Identification of Rhyth-

mic/Gradient Metabolites 
InChIKey 

Number of Studies Signifi-

cant Changes were Ob-

served in 

1 Proline ONIBWKKTOPOVIA-BYPYZUCNSA-N 11 

2 Leucine ROHFNLRQFUQHCH-YFKPBYRVSA-N 10 

3 PC(32:0) - 10 

4 Phenylalanine COLNVLDHVKWLRT-QMMMGPOBSA-N 9 

5 Ornithine  9 

6 Tyrosine OUYCCCASQSFEME-QMMMGPOBSA-N 9 

7 Glutamic acid WHUUTDBJXJRKMK-VKHMYHEASA-N 8 

8 Isoleucine AGPKZVBTJJNPAG-WHFBIAKZSA-N 8 

9 LysoPC(18:2) and/or LysoPE (18:2)  - 8 

10 PC(34:3) - 8 

11 Citrulline RHGKLRLOHDJJDR-BYPYZUCNSA-N 7 

12 Taurine XOAAWQZATWQOTB-UHFFFAOYSA-N 7 

13 Tryptophan QIVBCDIJIAJPQS-VIFPVBQESA-N 7 

14 Valine KZSNJWFQEVHDMF-BYPYZUCNSA-N 7 

15 LysoPC(18:1) - 6 

16 LysoPC(16:0) - 6 

17 Aminoadipic acid OYIFNHCXNCRBQI-BYPYZUCNSA-N 6 

18 Citric acid KRKNYBCHXYNGOX-UHFFFAOYSA-N 6 

19 Cortisone MFYSYFVPBJMHGN-ZPOLXVRWSA-N 6 

20 Creatinine DDRJAANPRJIHGJ-UHFFFAOYSA-N 6 
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21 Glycine DHMQDGOQFOQNFH-UHFFFAOYSA-N 6 

22 Kynurenine YGPSJZOEDVAXAB-UHFFFAOYSA-N 6 

23 PC C36:2 - 6 

24 Alanine QNAYBMKLOCPYGJ-REOHCLBHSA-N 5 

25 Cortisol JYGXADMDTFJGBT-VWUMJDOOSA-N 5 

26 Lysine KDXKERNSBIXSRK-YFKPBYRVSA-N 5 

27 LysoPC(17:0) - 5 

28 PC C34:1 - 5 

29 PC C34:2 - 5 

30 PC(32:1) - 5 

31 Pregnenolone sulfate DIJBBUIOWGGQOP-OZIWPBGVSA-N 5 

32 Sarcosine FSYKKLYZXJSNPZ-UHFFFAOYSA-N 5 

33 SM(20:2) - 5 

34 Threonine AYFVYJQAPQTCCC-GBXIJSLDSA-N 5 

35 Trimethylamine N-oxide (TMAO) UYPYRKYUKCHHIB-UHFFFAOYSA-N 5 

Footnotes: Common names have been assigned to act for synonyms reported in the literature; see Table S1 for further 

details. Putative identifications are ordered based on the frequency in which they are reported within the literature, with 

metabolites only listed here if observed in n  5 studies; InChlKeys are provided where applicable. Abbreviations: PC—

phosphatidylcholine; LysoPC—lysophosphatidylcholine; LysoPE—lysophosphatidylethanolamine; SM—sphingomyelin. 

3.2. Potential Consequences Resulting from Time of Day Variation 

The above findings present a number of factors to consider in future metabolomics 

studies. Firstly, an individual participant can produce unique metabolic profiles with nu-

merous significant differences between individual metabolites, even under constant con-

ditions, from samples collected on the same day and only hours apart [53,56]. Time of day 

variation can confound intra- and inter-individual variation and may be significant 

enough to influence biological conclusions and biomarker identification. This example 

could also occur between two studies should samples have been collected at different 

times of day in turn affecting inter-study comparisons. Sampling participants at the same 

social/clock time is insufficient to circumvent this issue, e.g., as seen within the Chua et al. 

study [53] and discussed above in the introduction [44–46], individual participants can be 

sampled at the same social/clock time but still display inter-individual variation in their 

observed biological times due to genetic differences or differences in SCN and peripheral 

clock timing. Another topical example comes from recent studies proposing metabolite 

COVID-19 biomarkers [96]. While it remains to be shown whether daily variation has a 

significant impact on the proposed prognostic biomarkers, it should be noted that 28/77 

metabolites identified as COVID-19 related are also reported in this review, and six of 

these have been observed undergoing time of day variation in at least five studies reported 

here (i.e., glutamic acid, isoleucine, kynurenine, leucine, ornithine, phenylalanine). With 

these issues in mind one should question to what extent biological rhythms are responsi-

ble for the observed results in studies applying metabolomics platforms such as a bi-

omarker panel. That is not to say these studies are void for not considering biological time, 

however. Consider well-characterised rhythmic metabolites such as serotonin, trypto-

phan or melatonin and their use as biomarkers [97]. Serotonin and tryptophan concentra-

tion ranges are 0.04–0.74 µM and 35.60–121.67 µM (mean ± SEM 0.19 ± 0.01/72.24 ± 2.07), 

respectively, during a 24 h period (inclusive of 8 h sleep) [51]. Thus, controlling for bio-

logical/circadian time provides a means to disentangle variation brought about either by 

time of day or biological class (age, sex, disease state) or observe co-variance, as shown in 

this example [98]. Studies have shown that the timing of internal body clocks may differ 

between individuals by up to 12 h in urban areas of industrialised countries where shift 

work is common [99]. Therefore, scientific discoveries require further validation, in the 

context of biological time and variation across the 24 h day, before they can truly be relied 

upon. The work presented here is certainly not defining studies which do not include 
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controls for diurnal and/or circadian rhythms as invalid, rather that when biomarkers are 

validated the time of day (clock time) and biological time (circadian time) of sample col-

lection should be considered. The question to be asked is ‘Is the biomarker performance 

independent of the time of day and biological time the sample is collected’ or should spe-

cific requests for when a sample should be collected be applied? Providing context for 

biological time and acknowledgment that circadian timing systems impact on biological 

processes has started within other fields such as chronopharmacology [100]. It should be 

noted that the impact of time of day variation would be dependent upon the study design 

and method in which samples were collected, for example currently employed methods 

such as pooled 24 h urine samples circumvent time of day variation whilst blood samples 

collected in the morning following an overnight fast would reduce time of day variation, 

mitigate postprandial changes and minimise inter-individual variation with regard to bi-

ological time of the participants (assuming sampling occurred at a similar time, relative 

to waking up, for each participant/similar chronotypes between participants). These prac-

tices may not always be employed, however, an issue previously considered [101]. If sam-

ple collection occurs randomly throughout the day then the time of day variation in me-

tabolites would lead to increased variation observed across all classes; larger cohort stud-

ies may exhibit a similar distribution of chronotypes and sampling time between classes 

translating to a comparable degree of variance between them with the caveat being that 

the investigated classes are independent, i.e., do not influence, chronotype distribu-

tion/sampling time. In such a scenario, the influence of time of day variation would be 

less, relative to a smaller cohort where assumptions on distributions could not be made, 

but there would still be a reduction in the sensitivity of any resulting statistical analysis to 

discern true significant differences between groups due to the introduced variation be-

tween/within groups as a result of time of day and potential covariance between the var-

iable of interest and time. Therefore, smaller (pilot/discovery) studies not accounting for 

time of day variation are likely to be more strongly affected by the introduced variation. 

The metabolomics community could advance its research in a similar format through 

small additions and considerations during the study design process and updates to min-

imum reporting guidelines during publication. We hope with this review that time of day 

variation (driven by external factors and/or internal circadian timing) is given serious con-

sideration in the future design of metabolomics and biomarkers studies so this effect is 

minimised or accounted for, thus, strengthening the design and interpretation of these 

studies. 

3.3. Proposed Updates to Minimum Reporting Guidelines in Human Metabolomics Studies 

Minimum reporting criteria were proposed by the Metabolomics Standards Initiative 

(MSI) [102] for various metabolomics studies and data analyses [103–105]. Whilst it was 

recognised that diurnal rhythms can influence the metabolome [103], this evidence was 

derived from animal studies with no pre-established protocols for human studies from 

which to derive a standardised workflow and guidelines. An underlying principle of the 

MSI guidelines is that all metadata that can reasonably be provided and that informs the 

metabolomics dataset must be made available [105]. Since the metabolome is influenced 

by circadian and diurnal rhythms, it is reasonable to, as a minimum, collect time data 

pertinent to these rhythms for the purpose of transparency and independent reproduci-

bility, the purpose that these minimum standards were initially proposed for. This re-

quirement for additional time information should also extend to in vitro studies with 

mammalian cell cultures responding to entraining agents [106,107] to express monitorable 

rhythms similar to in vivo studies [94] and prokaryotes also demonstrating 24 h rhythms 

[108,109] but is not discussed further in this paper. For studies in which single samples 

are being collected from participants self-reported questionnaires, such as the Munich 

Chronotype Questionnaire, should be administered to collect data on habitual sleep and 

assign participants their chronotype, in addition to recording work history specifically of 

those who are working non-traditional shifts outside 09:00–17:00 h work patterns (may 
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differ with cultural context) or rotating shifts. These data may then inform cohort screen-

ing, e.g., exclusion of shift workers, or be retained simply for future reference. Most im-

portantly, upon collecting a sample, elapsed time since participant wake up, complete 

calendar data, time of day, and approximate geographical location/coordinates at which 

samples were collected should be recorded. This latter measurement is important to assess 

the prevailing photoperiod (sunrise/sunset times) and is linked to an individual’s chrono-

type, their phase angle of entrainment, being more strongly linked to the sun clock (local 

time based on relative position of the sun) than the social clock (locally assigned time (time 

zones)). Context on the natural light/dark cycle that participants are entrained to therefore 

changes based on season and/or geographic location [99]. 

It has been suggested throughout the studies presented that observed diurnal 

rhythms (timing and amplitude) may differ based upon: age, sex and body mass, further 

emphasising the need for age/BMI/sex matched participants between test groups as is al-

ready common practice for many studies. Moreover, based on the findings of Honma et 

al. [50], diurnal rhythms and their response to an intervention (e.g., total sleep depriva-

tion) can differ greatly between males and females and so facilitation should be made in 

the planning stages of data analysis to allow for sex-dependent comparisons within/be-

tween test groups to gauge such differences. 

If opting to collect multiple samples over a time course then additional methodology, 

beyond that noted above, should be adopted from chronobiology studies such as moni-

toring and recording rest/activity and sleep/wake patterns, ideally for a week prior to 

sampling collected via actigraphy/sleep diary or monitoring a circadian-phase marker 

such as melatonin (plasma or saliva) or its derivative metabolite, aMT6s (6-sulphatox-

ymelatonin); methods of measuring such markers are reviewed here [110]. Having a cir-

cadian-phase marker, such as melatonin, allows for metabolite data collected over the 

time course to be plotted against biological time (e.g., against melatonin onset) as opposed 

to social time as demonstrated here [98,111]. Use of cosinor analysis and MetaCycle to 

determine rhythmicity is the standard approach within the field [112,113], though defin-

ing the amplitude of such rhythms is of equal importance. The amplitude of a 24 h metab-

olite rhythm and the minimum and maximum values represents the range of values a 

metabolite is present at in a sample. These data are therefore of great value and the pub-

lishing of such data for groups researching metabolite rhythms is encouraged with Davies 

et al. [51] setting an excellent example within their supplementary material by including 

minimum and maximum metabolite concentration values across their 48 h time course 

study which employed a targeted metabolomics assay. 

3.4. Investigating Metabolite Rhythms—The Next Steps 

A common outcome for many of the studies reviewed above was the identification 

of rhythmic/gradient metabolites; with a second common feature for many studies being 

the analytical platform employed. Upon observing the methods of the reviewed studies it 

becomes quickly apparent that particular assays have been collectively favoured with var-

iations of LC-MS the most commonly used across 19 studies (two of which applied HILIC 

assay and 17 applied reversed- and/or normal-phase assays) followed by NMR (six stud-

ies), GC-MS (gas chromatography mass spectrometry) (six studies), FIA-MS (Flow injec-

tion analysis mass spectrometry) (four studies), SESI-MS (two studies), DI-MS (direct in-

fusion mass spectrometry) (one study). Each of these platforms possesses its own ad-

vantages and limitations with regard to what metabolites can be detected thus influencing 

the collected dataset and metabolome coverage, resulting analysis and interpretation [1]. 

With this in mind, the curated list of metabolites undergoing time of day variation is some-

what limited and indeed biased towards lipids and non-polar metabolites which see better 

retention within reversed-phase assays. By contrast polar metabolites may be underrepre-

sented since they exhibit poor retention in these assays and are better retained and de-

tected within HILIC assays. Further utilisation of HILIC methodology may yield addi-

tional rhythmic metabolites similar to the outcomes of the study by Grant et al. [65]. It is 
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also of interest to note that whilst various studies used multiple analytical platforms and 

assays in tandem, no study has yet to incorporate both HILIC and reversed-phase assays 

in parallel producing a more ‘complete’ dataset and coverage of the metabolome. Further 

untargeted studies employing a greater diversity of U(H)PLC (ultra high performance 

liquid chromatography) assays would benefit this growing body of work moving for-

ward. Despite this potential limitation over 400 metabolites have been observed to be ei-

ther significantly rhythmic or undergo significant time of day changes in a morning vs. 

evening fashion (Table S1) based upon putative or definitive metabolite identification. Of 

these metabolites, 35 have been observed in at least five studies (Table 7). This compiled 

information provides insight into metabolic pathways likely influenced by time of day 

variation with amino acids and their derivatives being amongst the most frequently ob-

served rhythmic/gradient metabolites. This information provides an adequate starting 

point for the development of bespoke targeted assays to investigate such pathways, quan-

tify observed rhythms in metabolite concentrations similar to Davies et al. [51] and con-

sider the biological significance of the rhythm, or lack thereof, under particular conditions 

such as shift work or disease state [61,64,67]. Expanding upon the number of biofluids/tis-

sues investigated to observe diurnal/circadian variation presents a challenge due to the 

need for repeated and regular sampling over a 24 h time course, methods used for single 

sample collection, such as a biopsy, may thus prove too invasive or impractical for re-

peated and regular sampling. However, ambulatory microdialysis sampling techniques 

capable of high resolution sampling in humans hold promise [114]. In the near future it 

may be more practical then to expand upon the base of work on the five currently inves-

tigated sample types of which serum/plasma have been favoured leaving saliva, urine, 

skeletal muscle, and breath under investigated by relative comparison. 

A general challenge for identifying and validating biological rhythms in -omic da-

tasets across studies is the distinction between rhythmic and non-rhythmic time series. 

Many detection algorithms or combination of algorithms have been proposed. Two of 

these have already been mentioned above (i.e., cosinor and MetaCycle) but many other 

workflows and applications such as Multi-Omics Selection with Amplitude Independent 

Criteria (MOSAIC) [115], Rhythmicity Analysis Incorporating Non-parametric methods 

(RAIN) [116], Extended Circadian Harmonic Oscillator (ECHO) [117] and others [118,119] 

are available. As any one method is open to critique, MetaCycle, for example, is already 

combining a number of different methods to determine different regulation of rhythmicity 

in different groups of a study or between studies. Venn diagram analysis (VDA) employs 

any one of the methods above, e.g., RAIN, to identify changes in rhythmic items (tran-

scripts/metabolites) between test groups. Recent findings, however, highlight inter-group 

and even inter-study comparisons where VDA has overestimated differences in rhythmic 

items [120]. The authors highlight the shortcomings of VDA and propose a novel ap-

proach to circumvent these issues implemented in the R package compareRhythms that 

compares circadian parameters (amplitude and phase) between the groups under com-

parison. This allows compareRhythms to discern between metabolites that have remained 

the ”same” (rhythmic across test conditions) and have undergone a ”change” (still rhyth-

mic but phase/amplitude change between test conditions) whilst VDA cannot. 

3.5. Summary 

In summary, the primary objective of this review was to establish the sample types 

in which time of day variation of metabolite concentrations have been reported using a 

metabolomics platform, with a focus on identifying rhythmic metabolites. The extent of 

this time of day variation on the complete metabolome has also been reported to highlight 

the number of detected metabolites which have been shown to vary with time. The metab-

olome of blood, urine, saliva, breath, and skeletal muscle are influenced by diurnal and/or 

circadian rhythms. This most likely extends to other human biofluids and tissues in a sim-

ilar fashion to how gene transcripts are rhythmic across a range of tissues in mammals 

[34,121]. Changes to external time cues (Zeitgeber), such as the light/dark and 
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feeding/fasting cycle, result in changes to these rhythms and should thus be considered 

potential controllable variables, e.g., enforcing a specified light/dark, sleep/wake protocol 

for all participants, or setting meal times, excluding shift workers, dependent on the na-

ture of the study being performed. Moving forward, additional data are suggested to be 

collected and shared within the metadata of metabolomics studies pertaining to history 

of shift work in participants, sleep/wake times and a person’s chronotype, complete 

time/calendar date and geographical location in which samples were taken, all of which 

may influence the metabolite profiles, the resulting analysis and biological interpretation. 

Supplementary Materials: The following are available online at www.mdpi.com/2218-

1989/11/5/328/s1, Figure S1: Percentage of significantly gradient metabolites or features per sample 

type, morning vs evening studies, Figure S2: Percentage of significantly rhythmic metabolites or 

features per sample type, > 24 h time course studies, Table S1: Common rhythmic metabolites, Table 

S2: Blood plasma study data, Table S3: Urine study data, Table S4: Saliva study data, Table S5: Breath 

study data, Table S6: Muscle study data. Rhythmic/gradient metabolite lists organised by subtheme, 

Table S7: Circadian, Table S8: Sleep deprivation, Table S9: Sex differences, Table S10. Shift work, 

Table S11: Health, Table S12. Diet composition. 
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