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Abstract 

 
Machine learning (ML) methods are attracting considerable attention among academics in 
the field of finance. However, it is commonly perceived that ML has not transformed the asset 
management industry to the same extent as other sectors. This survey focuses on the ML 
methods and empirical results available in the literature that matter most for active portfolio 
management. ML has asset management applications for signal generation, portfolio con-
struction, and trade execution and report promising findings. Reinforcement learning (RL), in 
particular, is expected play a more significant role in the industry. Nevertheless, the perfor-
mance of a sample of active exchange-traded funds (ETF) that use ML in their investments 
tends to be mixed. Overall, ML techniques show great promise for active portfolio manage-
ment, but investors should be cautioned against their main potential pitfalls. 
 
 
The opinions and statements expressed in this paper are those of the authors and may be different to 
views or opinions otherwise held or expressed by or within Goldman Sachs. The content of this paper 
is not investment advice or advice of any other kind. None of the authors, Goldman Sachs or its affili-
ates, officers, employees or representatives accepts any liability whatsoever in connection with any 
of the content of this paper or for any action or inaction of any person taken in reliance upon such 
content or any part thereof. 
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THREE KEY TAKEAWAYS: 
 
1- Machine learning (ML) methods have several advantages that can lead to successful ap-
plications to active portfolio management, including the ability to capture non-linear pat-
terns and the focus on prediction through ensemble learning. 
2- ML methods can be applied to different steps of the investment process, including signal 
generation, portfolio construction, and trade execution, with reinforcement learning ex-
pected to play a more significant role in the industry. 
3- Empirically, the investment performance of ML-based active exchange-traded funds (ETF) 
is mixed. 
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MACHINE LEARNING FOR ACTIVE PORTFOLIO MANAGEMENT 
 
 

Machine learning (ML) is a branch of artificial intelligence (AI) concerned with the construc-
tion of computer algorithms that automatically improve as they gain experience [Mitchell, 
1977, xv.]. In financial contexts, Gu et al. [2020] narrow this down to a set of high-dimensional 
statistical models that incorporate optimization algorithms and “regularization” methods (to 
select the model specification and prevent overfitting). The promising ability of such models 
to make financial predictions and learn patterns from data has led to a surge in their applica-
tion by asset managers in recent years [Bartram et al., 2020]. Their popularity is expected to 
grow because quantum computing, which is seen as a key innovation that will revolutionize 
the processing power of computers, facilitates the use of computationally intensive ML mod-
els [see Egger et al., 2020]. 

In this paper, we focus on the use of ML methods in active portfolio management and 
the relevant empirical findings in the literature. Signals for portfolio construction often rely 
on one or more factors that predict future returns. Multifactor signals combine a range of 
indicators (e.g., technical and fundamental) with a history of return predictability in the cross 
section. However, the recent proliferation of style factors has led to serious concerns regard-
ing the robustness of these predictors out of sample. ML approaches that have regularization 
and variable selection features (e.g., LASSO regressions, elastic nets, and artificial neural net-
works) are known to be useful in selecting the most relevant factors. This often leads to more 
robust signal estimates that are less likely to overfit and be based on spurious patterns in the 
data. Ensemble models that combine predictions from several types of ML models can further 
mitigate the overfitting issue. 

ML approaches (e.g., artificial neural networks, support vector machines, and tree-
based methods) are often able to capture non-linear patterns, including interactions between 
input variables. This feature can enhance single and multifactor signal construction by cap-
turing higher-order relations and complex information contained in input variables. In addi-
tion, the natural language processing (NLP) branch of ML tools can enable factors based on 
textual information (e.g., corporate reports, news articles, social media posts, and conference 
call transcripts). The evidence suggests that NLP tools can successfully extract information 
that is relevant for the prediction of returns. This is usually carried out by either training the 
NLP model to make return forecasts directly or by using the model to capture sentiment and 
tone from the text. 

Classic portfolio optimization approaches, such as the Markowitz [1952] approach, 
face various shortcomings that are rooted in their stringent structure and difficulty in estimat-
ing return and variance-covariance inputs. ML tools can mitigate these issues by producing 
more accurate estimates of expected returns and replacing the variance-covariance matrix 
with more robust structures. In addition, evolutionary algorithms can allow the portfolio op-
timization problem to incorporate additional constraints (e.g., holding thresholds) that pre-
vent the model from having a closed-form solution. ML approaches such as deep learning and 
reinforcement learning (RL) can also be used to construct portfolios directly. These algorithms 
take historical market data as inputs and learn to track an index as closely as possible or to 
maximize portfolio Sharpe ratios. 
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Executing and rebalancing portfolios often involve modeling transaction costs, partic-
ularly market impact costs, and execution strategies that minimize such costs. An extensive 
literature has considered ML tools for the modeling and forecasting of market impact costs. 
Nonparametric ML tools (e.g., artificial neural networks and random forests) can capture non-
linearities and complex dynamics in trades and quotes, and parametric ML tools (e.g., LASSO 
regressions) can shed light on market impact drivers. Unsupervised ML methods, such as clus-
ter analysis, are useful for categorizing assets and using information from peer assets to pro-
vide liquidity and market impact estimates. 

A recent, promising set of ML tools is based on reinforcement learning, which is de-
signed to make a sequence of decisions (e.g., trades over a period of time) that reach a specific 
goal (e.g., maximizing Sharpe ratio). RL is not widely discussed in the literature partly because 
it is often more computationally intensive than other ML approaches. However, this major 
hurdle is expected to be lifted soon with the advent of quantum computing. Currently, RL is 
primarily used to devise optimal execution strategies. However, it is shown to be able to au-
tomate all stages of portfolio management (i.e., signal generation, optimization, transaction 
cost analysis, and execution). The main advantage of RL is its ability to sequentially learn and 
improve from experience, which is the closest an ML approach can get to the original objec-
tive set by Mitchell [1977, xv.]. 

A number of active exchange-traded funds (ETFs) claim to use AI or ML in their invest-
ment strategies. While these funds do not represent a significant share of the market, their 
assets under management have grown sharply over the past few years. Their active risk seems 
to be largely driven by factor exposures, which indicates that they tend to focus on style bets, 
on average. At 0.75%, their average management fees are slightly above the level typically 
charged by active ETFs.1 An equally weighted portfolio of all these funds has a Sharpe ratio of 
0.88 and has outperformed a broad market benchmark since inception. However, over the 
relatively short sample period, these funds do not exhibit a significant alpha after accounting 
for the portfolio’s exposure to a set of standard style factors. Focusing on the US equity mar-
ket (which accounts for a large proportion of the holdings), the aggregated portfolio loads 
positively on the market, momentum, and size factors but negatively on value, investment, 
and profitability. 

SIGNAL GENERATION 
 

One area of application of ML tools is the prediction of returns to financial assets. Such pre-
dictions are typically used as inputs, along with risk models, in portfolio construction. 
 
Building multi-factor signals 
 

A number of recent papers have attempted to select and combine existing individual signals 
by using ML methods. This problem has a long history in financial economics, mostly in the 
fields of asset pricing and portfolio optimization. Over the years, the literature has witnessed 
a proliferation of trading strategies not explained by risk (often referred to as “anomalies”) as 
more and more stock characteristics are shown to have persistent predictive power for the 

                                                           
1 Using data from ETF Global, we find that the average management fee of active ETFs that are listed in the 
United States and belong to the equity asset class is 0.68% as of April 2021. 
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cross section of stock returns. The set of available candidate signals is so large that a recent 
strand of literature has cast doubt on the robustness of the traditional tests used to identify 
useful predictors [see Harvey et al., 2016]. 
 

Against this backdrop, the recent literature stresses the properties of ML methods 
that render them suitable for the task. These include the focus on prediction, the ability to 
detect potentially complex nonlinear relations, and the ability to deal with a large number of 
features. Regularized regression methods, particularly LASSO, have proved popular in this 
area of research. Feng et al. [2020] and Freyberger et al. [2020] employ LASSO to create data-
driven combinations of stock return predictors from large sets of signals. Similarly, Rapach et 
al. [2019] use LASSO to identify the most significant predictors and create optimal combina-
tions among a large set of industry and market returns. Rapach et al. [2013] use adaptive 
elastic nets to explore the predictive ability of lagged US market returns on global indices. Gu 
et al. [2020] provide an example of the application of elastic nets to the selection and combi-
nation of both fundamental and technical signals to predict stock returns. Messmer and 
Audrino [2017] conclude that adaptive LASSO outperforms both OLS and LASSO when used 
to select from a vast number of features. Kozak et al. [2020] adopt a shrinkage approach to 
build a stochastic discount factor summarizing the joint explanatory power of a large set of 
stock characteristics. As an alternative to these data-driven approaches, Bew et al. [2019] and 
Papaioannou and Giamouridis [2020] consider expert predictions as model inputs instead of 
stock characteristics. 

 
Decision and regression trees are another popular class of ML methods employed in 

generating multi-factor signals. In fact, Bryzgalova et al. [2019] point out that the standard 
factor models of Fama and French [1993; 2015] can be viewed as simple tree models with just 
two splitting points based on the quantiles of the distributions of company fundamentals, 
such as the book to price ratio or operating profitability. Coqueret and Guida [2018] produce 
tree-based forecasts of the returns of a large set of US equities between 2002 and 2016 using 
extreme gradient boosted trees. Coqueret and Guida [2020] recommend training multifactor 
models in the tails of the distribution of the dependent variable in order to reduce training 
time without losing out-of-sample accuracy. 

 
Gu et al. [2020] estimate a number of tree-based regression models using gradient 

boosted regression trees. Most papers agree that shallow trees and models with a limited 
number of trees seem to outperform in applications to equities. Leung et al. [2020] use gra-
dient-boosted trees to predict monthly stock returns using 20 stock characteristics. They con-
clude that, despite the statistical advantage of machine learning model predictions, the eco-
nomic gains tend to be more limited and depend critically on the ability to take risk and im-
plement trades efficiently. 

 
In addition to decision and regression trees, support vector machines (SVMs) and ar-

tificial neural networks (ANNs) have promising applications in multi-factor signal generation 
thanks to their ability to capture nonlinear dynamics. SVMs are among the most recently de-
veloped ML tools and have not been studied as much ANNs. Nevertheless, several studies 
have successfully employed SVMs in financial modeling and forecasting [e.g., Cao and Tay, 
2003; Kim, 2003; Huang et al., 2005; Chen et al., 2006; Arrieta Ibarra and Lobato, 2015]. 
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The most successful technique emerging from this line of work is arguably ANNs. The 
adoption of ANN is not new in finance (see Trippi and Efraim [1992] for early examples). How-
ever, the recent advancements in the field and available computational power have rekindled 
the enthusiasm of researchers. Vui et al. [2013] provide a short review of the literature. Gu et 
al. [2020] tackle the problem of building a multifactor strategy from more than 900 potential 
predictors of stock returns. They conclude that neural networks outperform other ML ap-
proaches in this setting. In particular, they argue that shallow networks (with three layers) 
seem to do a better job than deep ones. Similarly, Abe and Nakayama [2018] use ANN, among 
other techniques, in order to predict one-month ahead returns for Japanese equities. Unlike 
Gu et al. [2020], they find that deep neural networks (NNs) yield the best results. Krauss et al. 
[2017] is another example of this approach. They apply deep NNs to the prediction of daily 
stock returns and find that they are outperformed both by random forests and gradient-
boosted trees. 

 
A common challenge when dealing with ANNs is the interpretability of results. This 

issue is particularly relevant to the task of building a predictive model for active portfolio 
management. When running a day-to-day investment process, it is crucial to be able to audit 
all past decisions. Therefore, portfolio managers appreciate models that allow for a clear at-
tribution of risk and return to the individual building blocks of the model. A NN model with 
tens of thousands of parameters is sometimes perceived as a “black box”. That is, it is difficult 
to trace a certain decision back to the main drivers of the model. This issue has spurred a 
series of attempts [e.g., Gu et al., 2020] to use recent advances in the ML literature to inter-
pret the importance of individual features. Dixon and Polson [2019] explore ways to interpret 
NNs statistically using confidence intervals and by ranking the importance of input variables 
and interaction effects. 

 
A common modeling strategy in this literature involves averaging the forecasts of sev-

eral ML models. The resulting hybrid model, typically referred to as an ensemble, often man-
ages to further improve the trade-off between bias and variance. Tan et al. [2011], Tsai et al. 
[2011], Geva and Zahavi [2014], Nuji et al. [2014], and Krauss et al. [2017] provide examples 
of the application of this approach to the equity market. In a recent paper, Borghi and De 
Rossi [2020] experiment with an ensemble of random forest models, neural networks, gradi-
ent boosted trees, and regularized regressions to predict stock returns. Their main conclusion 
is that a trading strategy based on model combinations tends to outperform strategies based 
on individual ML models. Wolff and Echterling [2020] build ML models to predict weekly re-
turns for the constituents of the S&P 500 index. They find that an ensemble of deep NNs, 
random forests, long short-term memory (LSTM) NNs, and regularized regressions delivers 
the best risk-adjusted performance. Rasekhschaffe and Jones [2019] stress the importance of 
model averaging to mitigate overfitting and recommend different types of forecast combina-
tions (across different models, training sets, and forecast horizons). 

 
A common result in the literature is that ML-driven multifactor models tend to load 

predominantly on factors that generate high turnover, such as price momentum and short-
term reversals. As a consequence, it is crucial to limit transaction costs when implementing 
such strategies. Wolff and Echterling [2020] warn that transaction costs have to be marginal 
for investors to be able to capitalize on the strategies. Avramov et al. [2020] reach a similar 
conclusion after analyzing several ML approaches to building a multi-factor signal. The paper 
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also argues that, particularly in the case of deep learning techniques, the profitability of the 
resulting signal tends to be concentrated in small, illiquid stocks or securities issued by dis-
tressed firms. In addition, the authors highlight two advantages of ML-driven strategies over 
traditional anomalies: They show that ML-driven strategies profit both from their long and 
their short positions and, unlike a number of well-established anomaly portfolios, do not suf-
fer from a steep decline in their performance over the last 20 years. 

Enhancing single-factor strategies 
 

ML methods can also be applied to signal generation by re-engineering a traditional invest-
ment factor (primarily price momentum and short-term reversal). An early example is pro-
vided by Takeuchi and Lee [2013], who propose an enhanced price momentum signal derived 
by using an autoencoder composed of stacked restricted Boltzmann machines. Fischer and 
Krauss [2018] derive a new short-term reversal signal by feeding a large number of features 
(each representing a lagged return for a specific window) to a neural network model. One of 
the contributions of their paper is to apply LSTM networks to the financial prediction problem. 
They conclude that their data-driven approach delivers a better indicator of price reversals 
and outperforms the traditional indicators established in the literature. Krauss et al. [2017] 
extend the analysis by employing a range of ML approaches. Varaku [2020] also uses recur-
rent NNs to predict stock returns based on lagged observations. 
 

Moritz and Zimmermann [2016] propose a new method to obtain conditional portfolio 
sorts based on past returns. Their approach, which shares some important features with ran-
dom forests, consists of averaging the forecasts of a number of shallow trees, in which split-
ting variables and splitting points are estimated using the data. A recent paper by Lim et al. 
[2019] seeks to use NNs to derive an enhanced time series momentum signal and design trad-
ing strategies employing futures contracts. Among the approaches that are surveyed by the 
authors, LSTM networks (coupled with volatility scaling) seem to deliver the best results in 
terms of predictive accuracy and profitability of the resulting strategy. Booth et al. [2014] 
propose the use of ML to capture seasonality effects in stock returns. In particular, the au-
thors adopt performance weighted ensembles of random forests and argue that the proposed 
methodology yields significant improvements in the traditional seasonality signals. 

 
In a high-frequency context, Chinco et al. [2019] use LASSO to predict 1-minute returns 

of NYSE stocks using lagged returns of all available securities. Tashiro et al. [2019] adopt con-
volutional NNs to extract predictive signals from order-based features. A common theme 
among these studies is the emphasis on “feature engineering,” which plays a crucial role in 
highly data-driven forecasting procedures [Rasekhschaffe and Jones, 2019]. Given the low sig-
nal-to-noise ratio, it is important to incorporate domain knowledge in the process in order to 
avoid overfitting. 

Natural language processing (NLP) applications 
 

Recent research also uses NLP tools to extract information from textual media that is not 
readily available in a structured form. The body of literature is vast to the point that several 
surveys have already been published [Das, 2014; Kearney and Liu, 2014; Fisher et al., 2016; 
Loughran and MacDonald, 2016]. In a recent study, Azimi and Agrawal [2019] apply deep 
learning to annual reports of US companies and show that it is possible to extract a sentiment 
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indicator that predicts abnormal returns around the publication date. Earlier efforts in this 
field include Li [2010] and Loughran and McDonald [2011]. 
 

Analyst conference calls are another type of company disclosure that has received 
considerable attention in the literature. Larcker and Zakolyukina [2012] and Borochin et al. 
[2018] are two notable examples. Most of the existing literature highlights the fact that the 
signals obtained from analyst conference calls have limited overlap with well-known effects, 
such as earnings momentum and the post-earnings announcement drift. The additional infor-
mation contained in conference call transcripts is often attributed to behavioral effects. For 
example, a company may decide to exaggerate the losses experienced in a given period, 
thereby causing a significant deterioration in the company’s fundamentals. However, during 
the conference call, it is likely that the language used by the management will reflect a more 
positive view of the future compared to the view implied by accounting numbers. Sentiment 
indicators have also been derived from the language used in analyst reports [Huang et al., 
2014], earnings press releases [Demers and Vega, 2008], and even SEC comment letters 
[Ryans, 2019]. 

 
News analytics is another notable area of interest, which can be traced back to the 

early work of Tetlock et al. [2008]. Papers in this strand of literature are typically focused on 
short-term predictions of returns based on changes in sentiment that are detected in real 
time from the news coverage attracted by an issuer. While simple techniques like Bag-of-
Words dominate the early literature [e.g., Bartram et al., 2011], recent contributions have 
explored more sophisticated approaches. 

 
Schumaker and Chen [2006] consider three textual document representations: Bag-

of-Words, Noun Phrases, and Named Entities. They use SVMs to model the impact of news 
articles on equity prices 20 minutes after publication. The authors conclude that Noun Phrase 
outperforms the traditional methods and that SVM is successful in capturing the impact of 
news on stock prices. Ke et al. [2019] attempt to predict returns directly from textual data, as 
opposed to building and training a sentiment indicator that can then be used as a predictor. 
The authors consider a practical application to Dow Jones Newswires data and argue that the 
proposed method yields a very effective predictive signal. 

 
Finally, NLP methods have been applied to detecting sentiment in social media forums 

and internet search data. Early examples of this approach include Antweiler and Frank [2004] 
and Das and Chen [2007], which analyze large sets of postings on an internet message board. 
Sprenger et al. [2014] find that tweet sentiment from stock microblogs is associated with sub-
sequent stock returns. However, papers such as Checkley et al. [2017] and Oliveira et al. 
[2017] report that Twitter-based sentiment measures are weak predictors of future stock re-
turns. The main concern in this strand of literature is the amount of noise that characterizes 
the data extracted from a platform like Twitter. A solution advocated by Chen et al. [2014] is 
to focus on platforms that attract finance experts, such as StockTwits. More recently, Groß-
Klußmann et al. [2019] propose a method to identify expert users who focus mostly on finan-
cial topics. They find a strong link between their proposed directional sentiment metrics and 
aggregate stock index returns globally. This method can be used to enhance trend-following 
strategies. 
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PORTFOLIO CONSTRUCTION 
 

It is commonly perceived that the standard approach to portfolio construction in the financial 
industry is still deeply rooted in the mean-variance tradition, almost 70 years after the work 
of Markowitz [1952] was published. Key textbook-length works on quantitative portfolio man-
agement, such as Grinold and Kahn [2000], Connor et al. [2010], and Qian et al. [2007], make 
substantial use of mean-variance methods. However, critics, such as Michaud and Michaud 
[2008] and Kolm et al. [2014], have pointed out that in practice the mean-variance paradigm 
suffers from the difficulty of estimating its main inputs, particularly expected returns. A re-
markable consequence of the inaccuracy of the typical return predictions is that a simple 
equally-weighted portfolio of all available assets, which makes no assumptions on the direc-
tionality of future returns, turns out to be a hard benchmark to beat for optimized portfolios 
[DeMiguel et al., 2007]. Hence, it is natural to view portfolio construction as an area in which 
the recent advances in ML techniques may inspire wide-ranging innovation. 
 

A good starting point is the estimation of portfolio risk. Several recent papers have 
relied on ML techniques to improve the estimation of portfolio risk, in some cases dispensing 
with the covariance matrix altogether. An example is a study by De Prado [2016], who re-
places the structure of return covariances among assets with a tree structure using hierar-
chical cluster analysis. While the information processed by this method is the same as in the 
traditional mean-variance paradigm, it requires fewer estimates, and therefore, delivers bet-
ter stability and robustness. The author reports that, when the proposed method is used to 
build a minimum variance portfolio, it results in a 31% improvement in Sharpe ratio compared 
to the standard approach. 

 
As mentioned above, imposing sparsity on the structure of dependence among finan-

cial assets is one of the potential avenues to address the shortcomings of the implementation 
of the mean-variance paradigm. Penalized regression methods are a natural choice in this 
context, as the extensive survey conducted by Fan et al. [2011] documents. The connection 
with LASSO is elegantly exposed by Fan et al. [2012]. 

 
The so-called “econphysics” literature has also suggested various ML approaches to 

modeling the dependence structure of a large set of assets. Previde et al. [2019], for example, 
propose a topological learning algorithm named Maximally Filtered Clique Forest (MFCF). We 
refer the reader to the literature review in the paper for more details on this line of research. 

 
A separate strand of literature consists of papers that attempt to use ML directly to 

obtain optimal portfolios. NNs seem to be a common approach in this area of research due 
to their flexibility in accommodating complex rules and constraints into the decision process. 
Chapados and Bengio [2001], for example, use NNs to learn the optimal asset allocation sub-
ject to value-at-risk constraints. They highlight an effective use of committee methods to sys-
tematize the choice of hyperparameters during neural network training. In a similar vein, Yu 
et al. [2008] go beyond the first two moments by training a NN to build mean-variance-skew-
ness efficient portfolios. Zimmermann et al. [2002] incorporate the Black and Littermann 
[1992] framework into a NN model in order to augment the set of inputs with views about 
future returns. 
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An alternative approach, based on boosting and expert weighting, is proposed by 
Creamer and Freund [2010]. The authors develop a layered structure comprised of a machine 
learning algorithm that combines trading signals to generate a number of “experts,” an online 
learning utility that selects and combines the expert forecasts, and a risk management over-
lay. In a recent paper, Zhang et al. [2020] suggest a deep learning approach to directly opti-
mize a portfolio’s Sharpe ratio. The advantage of this approach is that it delivers optimal port-
folio weights by updating model parameters through gradient ascent without the need for a 
forecasting step required by the classical mean-variance framework. 

 
Index tracking is an area of portfolio management that can significantly benefit from 

ML approaches. An early example is Lowe [1994], who applies feedforward NNs to portfolio 
optimization under various constraints. The paper argues that the proposed methodology is 
able to replicate the FTSE 100 index using a small subset of the constituents, thereby, reducing 
transaction costs and allowing for more efficient portfolio management. Heaton et al. [2017] 
describe a procedure for data-driven portfolio selection consisting of four steps. The auto-
encoding step fits the data set of historical returns. The goal of the second step (termed the 
decode step) is to find a portfolio-map to achieve a pre-specified goal. Finally, an out-of-sam-
ple validation step is used to tune hyperparameters, and particularly, to optimize the amount 
of regularization needed in the first two steps. This leads to the generation of an efficient 
frontier that can be used in the fourth step for model selection. The paper discusses the ap-
plications of this approach to tracking an equity index and enhanced indexation. 

 
Finally, it is worth mentioning that several papers have advocated the application of 

evolutionary algorithms to portfolio construction. Branke et al. [2009] show that this ap-
proach can be used to incorporate complex rules, such as constraints on the number of assets 
in the portfolio and minimum holding thresholds. Skolpadungket et al. [2016] report signifi-
cant improvements in Sharpe ratios by incorporating model risk in the portfolio construction 
framework through evolutionary algorithms. The main goal of these papers is to exploit the 
flexibility of evolutionary algorithms in order to deal with increasingly complex optimization 
problems. 

EXECUTION 
 

To realign the holdings with the investment objectives, investment portfolios are rebalanced 
by executing orders based on portfolio optimization. Early studies by Almgren and Chriss 
[2001] and Bertsimas and Lo [1998] formalize order execution as a dynamic programming 
problem, where the goal is to split trades optimally over a pre-specified length of time (e.g., 
one day). Two main components are needed to fully characterize the problem: a market im-
pact model and a model of the intraday dynamics of security prices. The optimal solution will 
then strike a balance between minimizing price risk (which can be achieved by rapidly execut-
ing trades) and minimizing market impact (which typically requires a passive execution style). 
 

Estimating market impact, particularly in the equity markets, naturally relies on ML 
techniques because of the vast number of available inputs, the nonlinearity of relationships, 
and the complex dynamics typically found in the data. Booth et al. [2015] propose using per-
formance-weighted random forests to build data-driven nonparametric models that predict 
market impact as a function of the characteristics of an order. They find that this approach 
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significantly outperforms linear regressions, NNs, and SVMs out of sample. Park et al. [2016] 
run a similar analysis and conclude that several ML models (i.e., NNs, Bayesian NNs, and 
Gaussian process regressions) significantly outperform a standard parametric benchmark, 
while support vector regression yields less unambiguous conclusions. 

 
Zheng et al. [2013] use logistic regressions to investigate the relation between market 

impact and a large set of potential predictors. LASSO is used for variable selection. They find 
that trade sign, market order size, and liquidity based on best limit order prices tend to be 
selected as the most relevant features. Brière et al. [2019] use Bayesian networks to forecast 
implementation shortfall as a measure of transaction cost. This approach is particularly useful 
in cases of missing data, as it can impute the most probable value given the available infor-
mation. The authors, thus, incorporate net order flow imbalance as a predictor and show that 
the resulting model improves on the standard approaches, particularly when the order size is 
large and when market volatility is low. 

 
Alongside supervised methods, such as the ones mentioned above, unsupervised 

models, such as cluster analysis, can be used for market impact modeling. Bloomberg’s liquid-
ity assessment tool (LQA) and the stock clustering framework developed by Goldman Sachs 
[2019] are examples of this approach. Cluster analysis can be used to group securities that 
have similar characteristics from a trade execution point of view into a small number of cate-
gories using a large set of historical microstructure features. This method has applications for 
trading cost analysis, anomaly detection, and market impact prediction. 

 
Philip [2020] advocates the use of RL to estimate permanent price impact. The study 

shows that vector autoregression (VAR) models, which are common tools for estimating per-
manent price impact, can lead to incorrect inferences in the presence of nonlinear market 
impact dynamics. The advantage of RL is that it can learn the nonlinear relations between 
trades and quotes. Therefore, RL can produce significantly better predictions of permanent 
market impact compared to vector autoregressions. 

 
Another topic that has attracted a great deal of attention in recent times is optimal 

execution. Rather than relying on dynamic programming, this growing body of work adopts a 
data-driven approach to let the algorithm learn the optimal execution strategy as a function 
of the evolution of the inputs. RL algorithms prove particularly popular in this area of research. 
Nevmyvaka et al. [2006], Kearns and Nevmyvaka [2013], and Hendricks and Wilcox [2014] are 
examples of this approach. Deep RL approaches, which include RL algorithms that use deep 
neural networks for function approximation, are successfully applied to optimal execution. 
Dabérius et al. [2019] examine the two cutting-edge approaches of proximal policy optimiza-
tion (PPO) and deep double Q-network (DDQN) for this exercise. They show that both meth-
ods are able to outperform the time-weighted-average-price (TWAP) benchmark, one of the 
references used by traders. This result is mostly driven by environments in which TWAP is not 
optimal, such as when prices have a drift, are mean reverting, or both. In another interesting 
application of deep RL, Baldacci and Manziuk [2020] devise a framework for optimal partial 
execution of limit orders at multiple venues. This model captures the dependencies between 
the imbalance and the spread of venues and accounts for changing market conditions, market 
impact, and hidden liquidity. 
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Leal et al. [2020] use a deep NN to generate optimal rules for trading using high-fre-
quency data. The advantage of their approach is that it learns the mapping between a trader’s 
risk aversion and the optimal trading speed. The authors provide a tool to project the learned 
control onto the functional space spanned by the closed-form solution to the stylized optimal 
control problem. This addresses the perceived lack of transparency in NN models and the 
resulting potential regulatory concerns. 

 
Mounjid and Lehalle [2020] propose a methodological improvement on the RL algo-

rithms typically adopted in the literature. Their innovation consists of introducing a dynamic 
optimal policy for the choice of the learning rate used in stochastic approximation. In the 
empirical part of the study, they demonstrate the improvement generated by their proposed 
methodology as applied to the optimal execution of a large number of shares. 

 
A common problem in the application of RL to optimal execution is the need for a 

detailed model of the world or a realistic simulation engine (to account for the impact of an 
agent’s trades on price dynamics). Mounjid and Lehalle [2020] propose the use of transfer 
learning to address this issue. In their framework, the NN is first trained on simulated trajec-
tories, leading to a good initialization before training on historical trajectories. 

A CLOSER LOOK AT REINFORCEMENT LEARNING 
 

RL has three key advantages over the common supervised and unsupervised learning ap-
proaches used in finance. First, it can directly learn to maximize investors’ objective functions 
(e.g., Sharpe ratios) rather than simply predict returns, which is what supervised learning is 
often used for. Second, RL, unlike most other ML approaches, can provide a convenient 
framework to account for market frictions, transaction costs, and liquidity constraints. Third, 
RL can make sequential decisions and learn from the outcomes of those decisions to improve 
itself. This feature makes it an ideal tool for automated trading platforms and algorithmic 
trading. 

The recent success of DeepMind’s AlphaGo Zero, the algorithm that defeated several 
top Go players, has generated renewed interest in RL. However, RL is currently barely used 
by the asset management industry. This is because these algorithms are often expensive, dif-
ficult to implement and test, and more data-savvy and computationally intensive than most 
other ML tools [Snow, 2020a]. Nevertheless, RL’s important advantages, as stated above, and 
rapid growth in computing power are likely to make these approaches more prevalent in years 
to come [Snow, 2020b]. 

Fischer [2018] categorizes RL algorithms as critic-only, actor-only, and actor-critic. Critic-
only algorithms [see Nevmyvaka et al., 2006; Jin and El-Saawy, 2016; Kolm and Ritter, 2019] are 
the most extensively studied RL approaches. These models aim to learn value functions that pro-
duce the expected reward value from each action at each point in time. This allows the algorithm 
to choose the action with the best outcome. These algorithms are often unable to deal with many 
assets and can only consider discrete action spaces (e.g., buy, sell). Actor-only [see Jiang, Xu, and 
Liang, 2017; Lim et al., 2019; Chaouki et al., 2020; Ferreira, 2020] algorithms learn to map states 
(e.g., market conditions) to actions directly. These models are more transparent and can accom-
modate continuous action spaces (e.g., portfolio weights). However, they require the reward 
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function (e.g., portfolio Sharpe ratio, investor utility) to be differentiable when the action space 
is continuous. Exhibit 1 depicts the structure of the actor-only and critic-only models. 

 
Exhibit 1: Actor-only and critic-only RL algorithms 

 
Exhibit 1 illustrates the structure of actor-only and critic-only RL algorithms. 
 
Actor-critic approaches [see Xiong et al., 2018; Baldacci and Manziuk, 2020] are com-

prised of two models. The first (the actor model) determines the action depending on the current 
state, and the second (the critic model) evaluates the performance of the chosen action. The 
idea is to iteratively adjust the actor model so that it maximizes the expected reward produced 
by the critic model. Fischer [2018] reviews a large number of studies related to each of these 
approaches and concludes that there is no clear winner in terms of performance. 

Several papers indicate that RL has recently been adopted to build portfolios of assets 
directly from historical data on market-price dynamics and particular signals. The main idea 
is to let the algorithm learn the optimal allocation based on the available information about 
the market and the history of previous trades. The learning mechanism relies on reward sig-
nals received by the algorithm at each iteration in response to its actions. RL allows for highly 
complex path-dependent actions in dynamic environments, a feature that is potentially valu-
able for portfolio construction and systematic trading system designs. 

The use of RL for portfolio construction dates back to Moody et al.’s [1998] study. 
However, more recent studies explore significantly larger samples of stocks and conduct more 
extensive empirical analyses [Xiong et al., 2018; Cong et al., 2020; Lee et al., 2020; Wang and 
Zhou, 2020; Zhang et al., 2020]. These papers consider US financial markets and report Sharpe 
ratios between 0.75 and 5.5, which are greater than the S&P 500’s Sharpe ratio. Furthermore, 
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Cong et al.’s [2020] study contains two interesting ML innovations. First, they use transformer 
encoders (TEs) to extract features from a list of technical and fundamental explanatory varia-
bles. TEs are particularly useful for shrinking high-dimensional panel data while preserving 
complex nonlinear and interaction effects. Moreover, they use surrogate modeling and poly-
nomial sensitivity analysis to interpret the RL algorithm’s outputs and highlight the model’s 
driving features. This is a crucial step since reinforcement algorithms are often notoriously 
opaque. Therefore, such interpretation approaches are necessary to address the black box 
issue and shed light on what the model is capturing from the data. We refer readers to Sutton 
and Barto [2018] for technical explanations and Fischer [2018], Zhang et al. [2019], Charpen-
tier et al. [2020], and Kolm and Ritter [2020] for financial application surveys. 

ACTIVE AI-DRIVEN EXCHANGE-TRADED FUNDS 
 

The recent launch of a number of active ETFs that claim to implement AI-driven strategies is 
a sign of growing investor interest in the topic. In order to provide a brief overview of the 
sector, we perform a keyword search in the description of all ETFs traded in the US market 
using data from ETF Global. In addition, the same keywords are used for a search in the his-
torical Reuters/Refinitiv news feed to identify any active ETFs whose investment process is 
driven by AI or ML techniques. After filtering out funds that invest in companies engaged in 
AI, the results yield 13 funds that are analyzed using data from ETF Global and CRSP. The full 
list is reported in Exhibit 3. 
 

While assets under management remain modest (below 1% of the total managed by 
active ETFs in equities), this category of funds has enjoyed significant growth since 2017, as 
shown in Exhibit 2. Roughly half of the assets are managed by active equity funds, while the 
rest are held by multi-asset products. Of the equity funds, all but one invest exclusively in US 
equities. The AI-Powered International Equity ETF (AIIQ) is the only equity fund that invests 
globally. 

 
Exhibit 2: AI-driven active ETF assets under management 

 
Exhibit 2 shows the trend in total assets under management (AuMs) (in millions of U.S. 

Dollars) by AI-driven active ETFs. Using data from ETF Global and Refinitiv, we identify all eq-
uity ETFs listed in US markets that implement AI-driven strategies. The list of these ETFs is 
presented in Exhibit 3. The sample period is March 31, 2017 – April 8, 2021. 
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Exhibit 3: Active AI-driven ETFs 

 

Exhibit 3 presents the list of active AI-driven ETFs in our sample. In order to obtain 
the list we perform a keyword search in the description of all ETFs traded in the US market 
using data from ETF Global. In addition, the same keywords are used for a search in the his-
torical Reuters/Refinitiv news feed to identify any active ETFs whose investment process is 
driven by AI or, more generally, by ML techniques. Funds that invest in companies engaged 
in AI are filtered out from the initial results. 

 
As Exhibit 4 shows, the strategies have relatively short track records, with an overall 

average age of 1.36 years. Equity funds exist for slightly longer, particularly if we consider the 
value-weighted average age (2.45 years). Two funds (i.e., BUZZ U.S. Sentiment Leaders ETF 
and Rogers AI Global Macro ETF) closed down in 2019. Management fees are on average 
0.75% for equity funds and slightly higher for multi-asset ones. This puts the management 
fees (and net expense ratios) of AI-driven ETFs toward the top of the range for ETFs in general 
and above the average level for active equity ETFs (0.64%). 

 
Exhibit 4: Descriptive statistics of AI-driven active ETFs 

 

ETF name Ticker

AdvisorShares Alpha DNA Equity Sentiment ETF SENT

AI Powered Equity ETF AIEQ

AI Powered International Equity ETF AIIQ

BUZZ U.S. Sentiment Leaders ETF BUZZ

Merlyn.AI Best-of-Breed Core Momentum ETF BOB 

Merlyn.AI Bull-Rider Bear-Fighter ETF WIZ

Merlyn.AI SectorSurfer Momentum ETF DUDE

Merlyn.AI Tactical Growth and Income ETF SNUG

Qraft AI-Enhanced Next Value ETF NVQ

QRAFT AI-Enhanced U.S. Large Cap ETF QRFT

QRAFT AI-Enhanced U.S. Large Cap Momentum ETF AMOM

Qraft AI-Enhanced US High Dividend ETF HDIV

Rogers AI Global Macro ETF BIKR
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Exhibit 4 reports descriptive statistics of AI-driven active ETFs as of April 8, 2021 
listed in Exhibit 3. The ETF holdings and fund characteristics data are from ETF Global. 
The Axioma Suite is used to analyze the holdings and produce the risk measures. The 
S&P 500 index is used as the benchmark for domestic equity ETFs and international 
funds are benchmarked against the MSCI EAFE index. Mgmt fee and Net exp are the 
management fee and the total expense ratio charged by the fund, respectively. Volatility 
and tracking error are computed ex ante based on the Axioma Suite risk model. The ex 
ante tracking error is decomposed into risk factors and idiosyncratic components. The 
table also shows the average proportion of active risk attributed to style exposures and 

sector exposures. Active share is defined as ∑ |𝑤𝑖 − 𝑤𝑖
𝐵|/2𝑖 , where 𝑤𝑖  and 𝑤𝑖

𝐵 are the 

portfolio and benchmark weights of stock 𝑖. 
 
We focus on the equity portfolios and analyze their holdings using the Axioma suite of 

risk models. As reported in Exhibit 4, AI-driven equity portfolios appear to be well diversified, 
with more than 150 holdings on average, and highly active, as suggested by the average active 
share of more than 80 and the tracking error above 10%. The bulk of the active risk, as ana-
lyzed through a standard risk model, can be attributed to factor exposure (i.e., 83.9% of active 
variance on average). In particular, a large proportion of the active exposure seems to stem 
from style bets, as we would expect from an active quantitative strategy. 

In order to analyze the performance of these funds, we use daily CRSP data for each 
fund’s longest available period. Since the CRSP database does not include data for 2021 yet, 
we use data from Bloomberg Terminal to extend our time series to April 12, 2021. We con-
struct two equally-weighted fund portfolios and explore their performance separately. The 
“US-only equity funds” portfolio contains the funds that only invest in US equities, while the 
portfolio labelled “All funds” contains all 13 funds. 

Panel A in Exhibit 5 reports a number of basic performance metrics. On average, the 
13 ETF funds generate returns of 15.6% in excess of the risk-free rate and 3.46% in excess of 
the market. The Sharpe and information ratios are 0.88 and 0.42, respectively. The US-only 

Simple 

average

Weighted 

average

Simple 

average

Weighted 

average

AuM, USDm 38.15 112.96 50.39 119.78

Mgmt fee 0.76 0.75 0.81 0.91

Net exp 0.81 0.84 0.85 0.97

Age, years 1.68 2.45 1.36 1.54

Number of holdings 152.14 156.94 99.73 80.31

Number of stocks held 145.57 152.47

Volatility 24.04 26.97

Tracking Error 11.14 13.36

% Factor active risk 83.90 88.61

% Style active risk 59.83 77.76

% Sector active risk 18.56 9.41

Active share 86.03 81.10

Equity funds All funds
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equity funds generate a larger average excess return of 18.3%, but their Sharpe and infor-
mation ratios are lower. It should be noted that the performances of the two portfolios are 
not directly comparable because they cover different time periods. 

Exhibit 5: Performance of AI-driven active ETFs 

 
 

Exhibit 5 presents the performance indicators (Panel A) and factor regression esti-
mates (Panel B) for equally-weighted portfolios of the AI-driven ETFs listed in Exhibit 3. We 
use daily return data from CRSP for each fund’s longest available period and use the data from 
Bloomberg Terminal to extend our time series to April 12, 2021. We construct two equally-
weighted fund portfolios: a US-only equity funds portfolio, containing the funds that only in-
vest in US equities, and a portfolio labeled “All funds,” containing all the 13 funds. Average 
return minus risk-free rate is the annualized average daily excess return. Average return minus 
market return is the annualized average daily return in excess of the market return. Sharpe 
ratio is the annualized Sharpe ratio of daily returns. Information ratio is the annualized aver-
age daily information ratio using the market index as the benchmark. Volatility is the annual-
ized daily return volatility. Idiosyncratic volatility is the annualized volatility of the daily resid-
uals from the five-factor model of Fama and French [2015]. Number of daily returns is the 
number of available daily fund returns in our sample. Sample start date and Sample end date 

US-only equity funds All funds

Average return minus risk-free rate 18.31% 15.63%

Average return minus market return 1.54% 3.46%

Sharpe ratio 0.84 0.88

Information ratio 0.24 0.42

Volatility 0.22 0.18

Idiosyncratic volatility 0.05 0.07

Number of daily returns 873 1,252

Sample start date 19/10/2017 20/04/2016

Sample end date 12/04/2021 12/04/2021

Intercept (Alpha) 0.03% 1.34%

(0.01) (0.51)

Mkt - RF    0.95***    0.97***

(58.90) (49.50)

SMB    0.11***   -0.21***

(5.23) (-5.18)

HML   -0.17***   -0.26***

(-6.41) (-3.98)

MOM    0.07***    0.07**

(2.38) (1.88)

CMA    0.03   -0.27***

(0.80) (-3.03)

RMW   -0.15***   -0.44***

(-5.36) (-5.41)

R2 0.96 0.84

Panel A: Performance metrics

Panel B: Factor regressions
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indicate when the sample period starts and ends for each fund. The estimates in Panel B are 
based on daily factor regression using the Fama and French [2015] five-factor model. 

Panel B in Exhibit 5 reports the results of the time series factor regressions for the US-
only equity funds portfolio and all funds portfolio. For the US-only equity portfolio, we use 
Fama and French’s [2015] original five US factors plus momentum. For the all funds portfolio, 
we use the Developed Countries version of these factors. All factor data is sourced from Ken 
French’s website.1 The estimated alphas in Exhibit 5 are positive, but the corresponding t-
statistics (0.01 and 0.51) are well below the critical values. These results indicate that our AI-
driven ETF portfolios did not generate statistically significant abnormal returns. 

The portfolio of all funds has positive exposures to the market and momentum and 
negative exposures to size, value, investment, and profitability factors. The portfolio of US-
only funds has similar exposures with the exception of a positive loading on the size factor 
and an insignificant loading on the investment factor. It is likely that the ML portfolios under-
weight value due to its poor recent performance while overweighting momentum, which has 
had a positive run over the same period. As we argue in Section 2.1, momentum is invariably 
found to be one of the key drivers of returns in the ML literature. The exposure to small-cap 
stocks echoes the concerns raised by Avramov et al. [2020] that ML strategies may not be 
scalable because they tend to concentrate on small, illiquid stocks. 

CONCLUSION 
 

A number of recent studies highlight promising applications for ML tools in active portfolio 
management. These tools can be used at various stages of the active portfolio management 
process, including signal generation, portfolio optimization, and order execution. The key ad-
vantage of ML over alternative approaches is its ability to extract information efficiently from 
a wide range of often large numerical and textual datasets with minimal human supervision. 
This is expected to make ML an integral part of active portfolio management as the speed of 
markets and the breadth and extent of available information make it ever more difficult for 
humans to keep up. Furthermore, computing power, which currently acts as the main con-
straint for the wider application of ML, has risen to the extent that is likely to allow more 
complex ML approaches, such as RL, to become more popular in practice. Such models can 
significantly enhance current non-ML-based automated portfolio management systems (e.g., 
robo-advisors and algorithmic trading systems). 

The adoption of ML for active portfolio management involves various risks and chal-
lenges [see Israel et al., 2020]. First, ML tools are highly dependent on data quality, and poor-
quality, noisy data can easily result in unreliable models. By ML standards, financial time se-
ries are often very short relative to cross sections. This significantly inhibits the models’ full 
potential to learn from the data. Even in cases where the time series dimension is large, such 
as high-frequency market data, the signal-to-noise ratio is typically found to be lower than in 
successful ML applications outside of finance. In addition, financial data evolves over time. 
While the basic economic principles underlying market behaviors remain the same, the envi-
ronment in which investors operate evolves due to changes in regulation, market microstruc-
ture, accounting principles, and other institutional aspects. ML models, especially those with 

                                                           
1 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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more flexible structures, often have a difficult time distinguishing between stationary and 
evolving market patterns. 

The second major concern with the use of ML stems from its complexity and lack of 
transparency. Most popular methods, such as ANN and RL, are often difficult to interpret and 
do not provide insights into how they generate results. This lack of interpretability makes it 
difficult to understand whether the model is capturing meaningful patterns or noise. The im-
mediate consequences of this could be poor model performance and risk assessment. The 
latter could be a major concern because asset managers often rely on risk management and 
oversight procedures to gain investors’ trust, especially during more turbulent times. Re-
cently, progress has been made in so-called explainable artificial intelligence (XAI) to provide 
solutions for interpreting opaque ML. However, these solutions are still far more limited than 
the statistical inference tools available for econometric models. 

In an attempt to mitigate some of the challenges associated with the use of AI and ML, 
the European Commission [2020] recently published a regulatory framework. This represents 
the first major international effort to regulate the use of AI. The key objective of the frame-
work is to ensure the trustworthiness of AI. Seven key requirements are stated for a trustwor-
thy AI approach: human agency and oversight, technical robustness and safety, privacy and 
data governance, transparency, diversity, non-discrimination and fairness, societal and envi-
ronmental wellbeing, and accountability. It is not yet clear how the different sectors will com-
ply with these requirements; however, the successful implementation of these regulations 
can lead to other international regulatory bodies soon following suit. This is likely to reshape 
the future landscape of ML research and its application in active portfolio management.  

 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

Acknowledgments  

Helpful comments and suggestions by Frank J. Fabozzi and Marcos Lopez de Prado (the edi-
tors) as well as Arash Aloosh, Marie Briere (Amundi), Braiden Coleman, Bryan Cross (UBS), 
Vladimir Lucic (Macquarie), and seminar participants at the 2021 CERF in the City Confer-
ence, the Bank of England, the French Association of Asset and Liability Managers (AFGAP) 
Webinar on Machine Learning in Asset Management, the Global Markets Media Conference 
on Artificial Intelligence in Asset Management, and the Paris Fintech and Cryptofinance 
Webinar are gratefully acknowledged.  



21 
 

References 

Abe, M. and Nakayama H. 2018. “Deep learning for forecasting stock returns in the cross-
section” in Phung, D., Tseng, V. S., Webb, G. I., Ho, B., Ganji, M. and Rashidi, L. (eds) Ad-
vances in Knowledge Discovery and Data Mining, New York, Springer. 

Almgren, R. and Chriss, N. 2001. “Optimal execution of portfolio transactions.” Journal of 
Risk, vol. 3: 5–40. 

Antweiler, W. and Frank, M. Z. 2004. “Is all that talk just noise? The information content of 
Internet stock message boards.” Journal of Finance, vol. 59: 1259–1294. 

Arrieta-ibarra, I. and Ignacio, N. L. 2015. “Testing for predictability in financial returns using 
statistical learning procedures.” Journal of Time Series Analysis, vol. 36: 672–686. 

Avramov, D., Cheng, S. and Metzker, L. 2020. Machine learning versus economic restrictions: 
Evidence from stock return predictability [Online], Working paper, SSRN. Available at 
https://ssrn.com/abstract=3450322 or http://dx.doi.org/10.2139/ssrn.3450322 

Azimi, M. and Agrawal, A. 2019. Is positive sentiment in corporate annual reports informa-
tive? Evidence from deep learning [Online], SSRN. Available at SSRN 3258821. 

Baldacci, B. and Manziuk, I. 2020. Adaptive trading strategies across liquidity pools. arXiv 
preprint arXiv:2008.07807. 

Bartram, S. M., Branke, J. and Motahari, M. 2020. Artificial intelligence in asset manage-
ment, CFA Institute Research Foundation, Charlottesville (Va.). 

Bartram, S. M., Brown, G. W. and Conrad, J. 2011. The effects of derivatives on firm risk and 
value, Journal of Financial and Quantitative Analysis, Vol.46, No.4, 967-999. 

Bertsimas, D. and Lo, A. W. 1998. “Optimal control of execution costs.” Journal of Financial 
Markets, vol. 1, no. 1: 1–50. 

Bew, D., Campbell, R. H., Ledford, A., Radnor, S. and Sinclair, A. 2019. “Modeling analysts” 
recommendations via Bayesian machine learning.” The Journal of Financial Data Science, 
vol. 1: 75–98. 

Black, F. and Litterman, R. 1992. “Global portfolio optimization.” Financial Analysts Journal, 
vol. 48, no. 5: 28–43. 

Booth, A., Gerding, E. and McGroarty, F. 2014. “Automated trading with performance 
weighted random forests and seasonality.” Expert Systems with Applications, vol. 41, no. 8: 
3651–3661. 

Booth, A., Gerding, E. and McGroarty, F. 2015. “Performance-weighted ensembles of ran-
dom forests for predicting price impact.” Quantitative Finance, vol. 15: 1823–1835. 

Borghi, R. and De Rossi, G. 2020. “The Artificial Intelligence Approach to Picking Stocks.” in 
Jurczenko, E. (ed.) Machine Learning and Asset Management, Wiley. 

Borochin, P. A., Cicon, J. E., DeLisle, R. J. and Price, S. M. 2018. “The effects of conference 
call tones on market perceptions of value uncertainty.” Journal of Financial Markets, vol. 40: 
75–91. 

http://dx.doi.org/10.2139/ssrn.3450322
http://dx.doi.org/10.1017/S0022109011000275
http://dx.doi.org/10.1017/S0022109011000275


22 
 

Branke, J., Scheckenbach, B., Stein, M., Deb, K. and Schmeck, H. 2009. “Portfolio optimiza-
tion with an envelope-based multi-objective evolutionary algorithm.” European Journal of 
Operational Research, vol. 199: 684–693. 

Brière, M., Lehalle, C., Nefedova, T. and Raboun, A. 2019. Modelling transaction costs when 
trades may be crowded: A Bayesian network using partially observable orders imbalance 
[Online], SSRN. Available at SSRN 3420665. 

Bryzgalova, S., Pelger, M. and Zhu, J. 2019. Forest through the trees: Building cross-sections 
of stock returns [Online], SSRN. Available at SSRN 3493458. 

Cao, L. and Tay, F. 2003. “Support vector machine with adaptive parameters in financial 
time series forecasting.” Neural Netw. IEEE Trans, vol. 14, no. 6: 1506–1518. 

Chaouki, A., Hardiman, S., Schmidt, C., Sérié, E. and De Lataillade, J. 2020. “Deep determinis-
tic portfolio optimization.” The Journal of Finance and Data Science, vol. 6: 16–30. 

Chapados, N. and Bengio, Y. 2001. “Cost functions and model combination for var-based as-
set allocation using neural networks.” IEEE Transactions on Neural Networks, vol. 12: 890–
906. 

Charpentier, A., Elie, R. and Remlinger, C. 2020. Reinforcement learning in economics and 
finance. arXiv preprint arXiv:2003.10014. 

Checkley, M., Higón, D. A., Alles, H. 2017. “The hasty wisdom of the mob: How market senti-
ment predicts stock market behaviour.” Expert Systems with Applications, vol. 77: 256–263. 

Chen, H., De, P., Hu, Y. J. and Hwang, B. H. 2014. “Wisdom of crowds: The value of stock 
opinions transmitted through social media.” The Review of Financial Studies, vol. 27, no. 5: 
1367–1403. 

Chen, W. H., Shih, J. Y. and Wu, S. 2006. “Comparison of support-vector machines and back 
propagation neural networks in forecasting the six major Asian stock markets.” International 
Journal of Electronic Finance, vol. 1: 49–67. 

Chinco, A., Clark-Joseph, A. D. and Ye, M. 2019. “Sparse Signals in the Cross-Section of Re-
turns.” The Journal of Finance, vol. 74: 449–492 [Online]. DOI:10.1111/jofi.12733 

Cong, L.W., Tang, K., Wang, J. and Zhang, Y. 2020. Alpha Portfolio for investment and eco-
nomically interpretable AI [Online], SSRN. Available at SSRN 3554486. 

Connor, G., Goldberg, L. and Korajczyk, R. A. 2010. Portfolio Risk Analysis. Princeton, Prince-
ton University Press.  

Coqueret, G. and Guida, T. 2018. Stock returns and the cross section of characteristics: A 
tree-based approach [Online], SSRN. Available at https://papers.ssrn.com/sol3/pa-
pers.cfm?abstract_id=3169773 

Coqueret, G. and Guida, T. 2020. “Training trees on tails with applications to portfolio 
choice.” Ann Oper Res, vol. 288: 181–221. 

Creamer, G. and Freund, Y. 2010. “Automated trading with boosting and expert weighting.” 
Quantitative Finance, vol. 10: 401–420. 

Dabérius, K., Granat, E. and Karlsson, P. 2019. Deep Execution-Value and Policy Based Rein-
forcement Learning for Trading and Beating Market Benchmarks [Online], SSRN. Available at 
SSRN 3374766. 



23 
 

Das, S. R. 2014. “Text and context: Language analytics in finance.” Foundations and Trends in 
Finance, vol. 8: 145–261. 

Das, S. R. and Chen, M. Y. 2007. “Yahoo! For Amazon: Sentiment extraction from small talk 
on the web.” Management Science, vol. 53, no. 9: 1375–1388. 

Demers, E. and Vega, C. 2008. “Soft information in earnings announcements: News or 
Noise?” Board of Governors of the Federal Reserve System International Finance Discussion 
Papers 951. 

DeMiguel, V., Garlappi, L. and Uppal, R. 2007. “Optimal versus naive diversification: How in-
efficient is the 1/n portfolio strategy?.” The Review of Financial Studies, vol. 22: 1915–1953. 

De Prado, M. L. 2016. “Building diversified portfolios that outperform out of sample.” Jour-
nal of Portfolio Management, vol. 42: 56–69. 

Dixon, M. and Polson, N. G. 2019. Deep fundamental factor models. Available at arXiv 
1711.04837. 

Egger, D. J., Gambella, C., Marecek, J., McFaddin, S., Mevissen, M., Raymond, R., Simonetto, 
A., Woerner, S. and Yndurain, E. 2020. “Quantum computing for Finance: state of the art 
and future prospects.” IEEE Transactions on Quantum Engineering, vol. 1: 1–24. 

European Commission 2020. “White Paper On Artificial Intelligence – A European approach 
to excellence and trust” [Online]. Available at https://ec.europa.eu/info/sites/de-
fault/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf 

Fama, E. F. and French, K. R. 1993. “Common risk factors in the returns on stocks and 
bonds.” Journal of Financial Economics, vol. 33, no. 1: 3–56 [Online]. DOI: 
https://doi.org/10.1016/0304-405X(93)90023-5 

Fama, E. F. and French, K. R. 2015. “A five-factor asset pricing model.” Journal of Financial 
Economics, vol. 116, no. 1: 1–22 [Online]. DOI: 
https://doi.org/10.1016/j.jfineco.2014.10.010 

Fan, J., Lv, J. and Qi, L. 2011. “Sparse high-dimensional models in economics.” Annu. Rev. 
Econ., vol. 3, no. 1: 291–317. 

Fan, J., Zhang, J. and Yu, K. 2012. “Vast portfolio selection with gross-exposure constraints.” 
Journal of the American Statistical Association, vol. 107, no. 498: 592–606. 

Feng, G., Giglio, S. and Xiu, D. 2020. “Taming the factor zoo.” Journal of Finance, vol. 75: 
1327–1370. 

Ferreira, T. A. 2020. Reinforced Deep Markov Models With Applications in Automatic Trad-
ing. arXiv preprint arXiv:2011.04391. 

Fisher, I. E., Garnsey, M. R. and Hughes, M. E. 2016. “Natural language processing in ac-
counting, auditing and finance: A synthesis of the literature with a roadmap for future re-
search.” Intelligent Systems in Accounting, Finance and Management, vol. 23: 157–214. 

Fischer, T. G. 2018. “Reinforcement learning in financial markets-a survey (No. 12/2018).” 
FAU Discussion Papers in Economics. 

Fischer, T.G., and Krauss, C. 2018. “Deep learning with long short-term memory networks 
for financial market predictions.” European Journal of Operational Research, vol. 270, no. 2: 
654–669. 

https://doi.org/10.1016/0304-405X(93)90023-5
https://doi.org/10.1016/j.jfineco.2014.10.010


24 
 

Freyberger, J., Neuhierl, A. and Weber, M. 2020. “Dissecting characteristics nonparametri-
cally.” Review of Financial Studies, vol. 33, no. 5: 2326–2377. 

Geva, T. and Zahavi, J. 2014. “Empirical evaluation of an automated intraday stock recom-
mendation system incorporating both market data and textual news.” Decision Support Sys-
tems, vol. 57: 212–223. 

Goldman Sachs 2019. “Global Market Microstructure Stock Clustering.” Technical Report, 
Goldman Sachs. 

Grinold, R. C. and Kahn, R. N. 2000. Active portfolio management: A quantitative approach 
for providing superior returns and controlling risk, New York, McGraw-Hill. 

Groß-Klußmann, A., König, S. and Ebner, M. 2019. “Buzzwords build momentum: Global fi-
nancial Twitter sentiment and the aggregate stock market.” Expert Systems with Applica-
tions, vol. 136: 171–186. 

Gu, S., Kelly, B. and Xiu, D. 2018. “Empirical asset pricing via machine learning.” Review of 
Financial Studies, vol. 33, no. 5: 2223–2273. 

Harvey, C. R., Liu, Y. and Zhu, H. 2016. “… and the Cross-Section of Expected Returns.” The 
Review of Financial Studies, vol. 29, no. 1: 5–68 [Online]. DOI: 
https://doi.org/10.1093/rfs/hhv059 

Heaton, J. B., Polson, N. G. and Witte, J. H. 2017. “Deep learning for finance: deep portfo-
lios.” Applied Stochastic Models in Business and Industry, vol. 33: 3–12. 

Hendricks, D. and Wilcox, D. 2014. “A reinforcement learning extension to the Almgren-
Chriss framework for optimal trade execution.” IEEE Conference on Computational Intelli-
gence for Financial Engineering Economics (CIFEr): 457–464. 

Huang, A.H., Zang, A.Y. and Zheng, R. 2014. “Evidence on the information content of text in 
analyst reports.” Accounting Review, vol. 89: 2151–2180. 

Huang, W., Nakamori, Y. and Wang, S. 2005. “Forecasting stock market movement direction 
with support vector machine.” Computers and Operations Research, vol. 32: 2513–2522. 

Israel, R., Kelly, B.T. and Moskowitz, T.J. 2020. Can machines “learn” finance? [Online], SSRN. 
Available at SSRN 3449401. 

Jiang, Z., Xu, D. and Liang, J. 2017. A deep reinforcement learning framework for the financial 
portfolio management problem. arXiv preprint arXiv:1706.10059. 

Jin, O. and El-Saawy, H. 2016. Portfolio management using reinforcement learning, Stanford, 
Stanford University. 

Ke, Z., Kelly, B. T. and Xiu, D. 2019. Predicting Returns with Text Data [Online], SSRN. Availa-
ble at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3389884  

Kearney, C. and Liu, S. 2014. “Textual sentiment in finance: A survey of methods and mod-
els.” International Review of Financial Analysis, vol. 33: 171–185. 

Kearns, M. and Nevmyvaka, Y. 2013. Machine learning for market microstructure and high 
frequency trading, High Frequency Trading: New Realities for Traders, Markets, and Regula-
tors, Risk Books. 

https://doi.org/10.1093/rfs/hhv059
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3389884


25 
 

Kim, K. 2003. “Financial time series forecasting using support vector machines.” Neurocom-
puting, vol. 55, no. 1: 307–319. 

Kolm, P. N. and Ritter, G. 2019. “Dynamic replication and hedging: A reinforcement learning 
approach.” The Journal of Financial Data Science, vol. 1, no. 1: 159–171. 

Kolm, P. N. and Ritter, G. 2020. Modern perspectives on reinforcement learning in finance 
[Online], SSRN. Available at SSRN 3449401. 

Kolm, P. N., Tütüncü, R. and Fabozzi, F. J. 2014. “60 Years of portfolio optimization: Practical 
challenges and current trends.” European Journal of Operational Research, vol. 234: 356–
371. 

Kozak, S., Nagel, S. and Santosh, S. 2020. “Shrinking the cross-section.” Journal of Financial 
Economics, vol. 135, no. 2: 271–292 [Online]. DOI: 
https://doi.org/10.1016/j.jfineco.2019.06.008 

Krauss, C., Do, X. A. and Huck, N. 2017. “Deep neural networks, gradient-boosted trees, ran-
dom forests: Statistical arbitrage on the S&P 500.” European Journal of Operational Re-
search, vol. 259, no. 2: 689–702. 

Larcker, D. F. and Zakolyukina, A. A. 2012. “Detecting deceptive discussions in conference 
calls.” Journal of Accounting Research, vol. 50: 495–540 [Online]. DOI: 10.1111/j.1475-
679X.2012.00450.x 

Leal, L., Laurière, M. and Lehalle, C. 2020. Learning a functional control for high-frequency 
finance. arXiv:2006.09611 

Lee, J., Kim, R., Yi, S. W. and Kang, J. 2020. MAPS: Multi-agent Reinforcement Learning-
based Portfolio Management System. arXiv preprint arXiv:2007.05402. 

Leung, E., Lohre, H., Mischlich, D., Shea, Y. and Stroh, M. 2020. The Promises and Pitfalls of 
Machine Learning for Predicting Stock Returns [Online], SSRN. Available at 
https://ssrn.com/abstract=3546725 or http://dx.doi.org/10.2139/ssrn.3546725 

Li, F. 2010. “The information content of forward-looking statements in corporate filings – A 
naïve Bayesian machine learning approach.” Journal of Accounting Research, vol. 50: 495–
540. 

Lim, B., Zohren, S. and Roberts, S. 2019. “Enhancing time-series momentum strategies using 
deep neural networks.” The Journal of Financial Data Science, vol. 1: 19–38. 

Loughran, T. and McDonald, B. 2011. “When is a liability not a liability? Textual analysis, dic-
tionaries, and 10-Ks.” Journal of Finance, vol. 66: 35–65. 

Loughran, T. and McDonald, B. 2016. “Textual analysis in accounting and finance.” Journal of 
Accounting Research, vol. 54: 1187–1230. 

Lowe, D. 1994. “Novel exploitation of neural network methods in financial markets.” IEEE 
International Conference on Neural Networks, vol. 6: 3623–3628. 

Markowitz, H. 1952. “Portfolio Selection.” Journal of Finance, vol. 7, no. 1: 77–91. 

Messmer, M. and Audrino, F. 2017. The (adaptive) LASSO in the zoo – firm characteristic se-
lection in the cross-section of expected returns [Online], SSRN. Available at 
http://dx.doi.org/10.2139/ssrn.2930436 

https://doi.org/10.1016/j.jfineco.2019.06.008
http://dx.doi.org/10.2139/ssrn.3546725
http://dx.doi.org/10.2139/ssrn.2930436


26 
 

Michaud, R. O. and Michaud, R. O. 2008. Efficient asset management: a practical guide to 
stock portfolio optimization and asset allocation, Oxford, Oxford University Press. 

Mitchell, T. M. 1997. Machine Learning, McGraw-Hill International Editions. 

Moody, J., Wu, L., Liao, Y. and Saffell, M. 1998. “Performance functions and reinforcement 
learning for trading systems and portfolios.” J. Forecast., vol. 17: 441–470.  

Moritz, B. and Zimmermann, T. 2016. Tree-based conditional portfolio sorts: The relation be-
tween past and future stock returns [Online], SSRN. Available at https://papers.ssrn.com/ab-
stract=2740751 

Mounjid, O. and Lehalle, C. A. 2019. Improving reinforcement learning algorithms: towards 
optimal learning rate policies. arXiv preprint arXiv: 1911.02319. 

Nevmyvaka, Y., Yi, F. and Kearns, M. 2006. “Reinforcement learning for optimized trade exe-
cution.” Proceedings of the 23rd International Conference on Machine learning, ACM: 673–
680. 

Nuij, W., Milea, V., Hogenboom, F., Frasincar, F. and Kaymak, U. 2014. “An automated 
framework for incorporating news into stock trading strategies.” IEEE Transactions on 
Knowledge and Data Engineering, vol. 26: 823–835. 

Oliveira, N., Cortez, P. and Areal, N. 2017. “The impact of microblogging data for stock mar-
ket prediction: Using twitter to predict returns, volatility, trading volume and survey senti-
ment indices.” Expert Systems With Applications, vol. 73: 125–144. 

Papaioannou, G. V. and Giamouridis, D. (forthcoming) “Enhancing alpha signals from trade 
ideas data using supervised learning.” in Machine Learning and Asset Management, 
Springer. 

Park, S., Lee, J. and Son, Y. 2016. “Predicting market impact costs using nonparametric ma-
chine learning models.” Plos One, vol. 11: 1–13. 

Philip, R. 2020. “Estimating permanent price impact via machine learning.” Journal of Econo-
metrics, vol. 215, no. 2: 414–449. 

Previde Massara, G. and Tomaso, A. 2019. Learning Clique Forests. arXiv: 1905.02266. 

Qian, E. E., Hua, R. H. and Sorensen, E. H. 2007. Quantitative Equity Portfolio Management: 
Modern Techniques and Applications, Boca Raton, Chapman & Hall/CRC Financial Mathe-
matics Series. 

Rapach, D. E., Strauss, J. K., Tu, J. and Zhou, G. 2013. “International stock return predictabil-
ity: what is the role of the United States?.” The Journal of Finance, vol. 68: 1633–1662. 

Rapach, D. E., Strauss, J. K., Tu, J. and Zhou, G. 2019. “Industry return predictability: A ma-
chine learning approach.” The Journal of Financial Data Science, vol. 1: 9–28. 

Rasekhschaffe, K. C. and Jones, R. C. 2019. “Machine learning for stock selection.” Financial 
Analysts Journal, vol. 75: 70–88. 

Ryans, J. 2019. Textual Classification of SEC Comment Letters. Review of Accounting Studies 
[Online]. Available at https://ssrn.com/abstract=2474666 or 
http://dx.doi.org/10.2139/ssrn.2474666 

https://papers.ssrn.com/abstract=2740751
https://papers.ssrn.com/abstract=2740751
http://dx.doi.org/10.2139/ssrn.2474666


27 
 

Schumaker, R. and Chen, H. 2006. “Textual analysis of stock market prediction using finan-
cial news articles.” AMCIS Proceedings 185. 

Skolpadungket, P., Keshav, D. and Napat, H. 2016. “Handling model risk in portfolio selection 
using multi-objective genetic algorithm.” in Artificial Intelligence in Financial Markets, 
Springer: 285–310. 

Snow, D. 2020a. “Machine learning in asset management—Part 1: Portfolio construction—
Trading strategies.” The Journal of Financial Data Science, vol. 2, no. 1: 10–23. 

Snow, D. 2020b. “Machine learning in asset management—Part 2: Portfolio construction—
Weight Optimization.” The Journal of Financial Data Science, vol. 2, no. 2: 17–24. 

Sprenger, T. O., Tumasjan, A., Sandner, P. G. and Welpe, I. M. 2014. “Tweets and trades: the 
information content of stock Microblogs.” Eur Financial Management, vol. 20: 926–957 
[Online]. DOI: 10.1111/j.1468-036X.2013.12007.x 

Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learning: An Introduction, Boston, MIT 
Press. 

Takeuchi, L. and Lee, Y. A. 2013. Applying deep learning to enhance momentum trading 
strategies in stocks, Working paper, Stanford, Stanford University. 

Tan, Z., Quek, C. and Cheng, P. Y. K. 2011. “Stock trading with cycles: A financial application 
of anfis and reinforcement learning.” Expert Systems With Applications, vol. 38: 4741–4755. 

Tashiro, D., Matsushima, H., Izumo, K. and Sakaji, S. 2019. “Encoding of high-frequency or-
der information and prediction of short-term stock price by deep learning.” Quantitative Fi-
nance, vol. 19: 1499–1506. 

Tetlock, P.C., Saar-Tsechansky, M. and Macskassy, S. 2008. “More than words: Quantifying 
language to measure firms' Fundamentals.” The Journal of Finance, vol. 63: 1437–1467 
[Online]. DOI: 10.1111/j.1540-6261.2008.01362.x 

Trippi R. and Efraim T. 1992. Neural networks in finance and investing: using artificial intelli-
gence to improve real-world performance, New York, McGraw-Hill. 

Tsai, C., Lin, Y., Yen, D. C. and Chen, Y. 2011. “Predicting stock returns by classifier ensem-
bles, Applied Soft Computing, vol. 11: 2452–2459. 

Varaku, K. 2020. Stock Price Forecasting and Hypothesis Testing Using Neural Networks 
[Online], SSRN. Available at https://ssrn.com/abstract=3597684 or 
http://dx.doi.org/10.2139/ssrn.3597684 

Vui, C. S., Soon, G. K., On, C. K., Alfred, R. and Anthony, P. 2013. “A review of stock market 
prediction with artificial neural network.” International Conference on Control System, Com-
puting and Engineering (ICCSCE), IEEE: 477–482. 

Wang, H. and Zhou, X.Y. 2020. “Continuous-time mean–variance portfolio selection: A rein-
forcement learning framework.” Mathematical Finance, vol. 30, no. 4: 1273–1308. 

Wolff, D. and Echterling, F. 2020. Stock Picking with Machine Learning [Online], SSRN. Avail-
able at https://ssrn.com/abstract=3607845 or http://dx.doi.org/10.2139/ssrn.3607845 

Xiong, Z., Liu, X. Y., Zhong, S., Yang, H. and Walid, A. 2018. Practical deep reinforcement 
learning approach for stock trading. arXiv preprint arXiv: 1811.07522. 

http://dx.doi.org/10.2139/ssrn.3607845


28 
 

Yu, L., Wang, S. and Lai, K. K. 2008. “Neural network-based mean-variance-skewness model 
for portfolio selection.” Computers and Operations Research, vol. 35: 34–46. 

Zhang, Z., Zohren, S. and Roberts, S. 2019. Deep Reinforcement Learning for Trading. 
arXiv:1911.10107. 

Zhang, Z., Zohren, S. and Roberts, S. 2020. Deep Learning for Portfolio Optimisation [Online], 
SSRN. Available at https://ssrn.com/abstract=3613600 or 
http://dx.doi.org/10.2139/ssrn.3613600 

Zheng, B., Moulines, E. and Abergel, F. 2013. “Price jump prediction in a limit order book.” 
Journal of Mathematical Finance, vol. 3: 242–255. 

Zimmermann, H., Neuneier, R. and Grothmann, R. 2002. “Active portfolio management based 
on error correction neural networks.” Advances in Neural Information Processing Systems: 
1465–1472. 

http://dx.doi.org/10.2139/ssrn.3613600

