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An outbreak of a novel coronaviruswas first reported in China on 31December
2019. As of 9 February 2020, cases have been reported in 25 countries, including
probable human-to-human transmission in England. We adapted an existing
national-scale metapopulation model to capture the spread of COVID-19 in
England and Wales. We used 2011 census data to inform population sizes
and movements, together with parameter estimates from the outbreak
in China. We predict that the epidemic will peak 126 to 147 days (approx.
4 months) after the start of person-to-person transmission in the absence of
controls. Assuming biological parameters remain unchanged and transmission
persists from February, we expect the peak to occur in June. Starting location
and model stochasticity have a minimal impact on peak timing. However,
realistic parameter uncertainty leads to peak time estimates ranging from
78 to 241 days following sustained transmission. Seasonal changes in trans-
mission rate can substantially impact the timing and size of the epidemic. We
provide initial estimates of the epidemic potential of COVID-19. These results
can be refined withmore precise parameters. Seasonal changes in transmission
could shift the timing of the peak into winter, with important implications for
healthcare capacity planning.

This article is part of the theme issue ‘Modelling that shaped the early
COVID-19 pandemic response in the UK.
1. Introduction
An outbreak of a novel coronavirus, recently renamed COVID-19, was first
reported from Wuhan, China on 31 December 2019. During January 2020, the
outbreak spread to multiple cities in China, and the first cases started appearing
outside China. By the end of January 2020, 9720 cases had been confirmed in
China, with 106 confirmed cases outside China across 19 different countries [1].

Epidemiological analysis of the outbreak was quickly used to start estimat-
ing the most relevant parameters, such as the basic reproduction number, the
serial interval, the incubation period and the case fatality rate [2–7]. Initial esti-
mates suggested that the reproduction number was between 2 and 3 and the
case fatality rate was less than 4% [8]. Control of spread by contact tracing
and isolation appears to be challenging, given what is currently known about
the virus [9].

Mathematical models are useful tools for understanding and predicting the
possible course of an outbreak, given a set of underlying assumptions. Here, we
adapt a metapopulation model of disease transmission in England and Wales to
capture the spread of COVID-19 [10]. The aim is to provide predictions about
the likely timing of the peak of the epidemic in England and Wales and spatial
features of spread.

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2020.0272&domain=pdf&date_stamp=2021-05-31
http://dx.doi.org/10.1098/rstb/376/1829
http://dx.doi.org/10.1098/rstb/376/1829
mailto:l.danon@bristol.ac.uk
http://orcid.org/
http://orcid.org/0000-0002-7076-1871
http://orcid.org/0000-0002-5984-4932
http://orcid.org/0000-0003-4639-4765
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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susceptible
to infection

infected and not
infectious

mild symptoms symptomatic recovered
and
immune

infectious period
3.6 days Read et al. [6]

serial interval 3–8 days
7.5 (5.3, 19) days Li et al. [2]
generation time 8.4 days Imai et al. [3]

R0
3.8 (3.6, 4.0) Read et al. [6]
2.2 (1.4, 3.9) Li et al. [2]
(2, 2.7) Abbott et al. [5]
(1.6, 2.9) Kucharski et al. [11]
2.9 (2.3, 3.7) Liu et al. [4]

5.2 days (4.1,7.0) Li
et al. [2]
5–6 days Imai et al. [3]
4 days Read et al. [6]
4.8 days Liu et al. [4]

4–5 days Imai et al. [3]
2.9 days Liu et al. [4]

transmission progression symptom
onset

recovery

Figure 1. Model structure within each ward, together with associated parameters estimated from the literature. (Online version in colour.)

Table 1. Biological parameters and distributions used in the model.

parameter

values and

distribution reference

incubation

period

lognormal (meanlog =

5.2, s.d.log = 0.35)

Li et al. [2]

reproduction

number

gamma (scale =

2.2/100,

shape = 100)

Li et al. [2]

infectious

period

uniform (2,3) estimated from the mean serial

interval (7.5 days) minus the

mean incubation period

(5.2 days) from Li et al. [2]
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2. Methods
(a) Model description
We use an existing national-scale stochastic metapopulation
model of disease transmission in England and Wales. The
model structure is based on the metapopulation model described
in detail in Danon et al. [10]. In this model, the population is
divided into electoral wards. Because of the changes in data link-
age, we restricted the model to England and Wales, whereas the
original model covered Great Britain.

(b) Movement between wards
Transmission between wards occurs via the daily movement of
individuals. For each ward, we assume that individuals contribute
to the force of infection in their ‘home’ ward during the night and
their ‘work’ ward during the day. Regular movements that model
commuting behaviour are included in the model as well as
irregular movements that represent the population that does not
commute to work. See Danon et al. [10] for further details.

(c) Population and movement data
Data for population and movement of individuals come from the
2011 census of the United Kingdom. The population size of each
of the 8570 electoral wards is available directly from the Office of
National Statistics (ONS) website. The number of individuals
moving between locations is also available from the ONS web-
site, but at the level of census output areas (OAs). We
aggregated the data from OA level to electoral wards level. The
spatial location of electoral ward centres is extracted from
maps available from the ONS websites.

(d) COVID-19 specific parameters
We use a Susceptible-Exposed-Infectious-Infectious-Recovered
(SEIIR) model within each ward to capture the progression of
disease within an individual (figure 1). Initial analyses used
SARS-like parameters for the incubation period and infectious
period, which now appear to differ from COVID-19 [4,11].
Li et al. [2] analysed data on 425 cases reported in Wuhan in
China and fitted a lognormal distribution to the incubation
period, and a gamma distribution for the serial interval. The
infectious period for SARS was estimated as the serial interval
minus the incubation period, but as Li et al. did not report the
correlation between incubation period and serial interval, we
were not able to estimate the infectious period distribution
from the data but used a uniform distribution between 2 and 3
days, to give a mean serial interval of approximately 7–8 days,
in line with current estimates. We used two infectious states to
represent a mildly symptomatic or prodromal period and a
period with more pronounced symptoms. In the absence of
data on the relative magnitude of these two infections states,
we assumed the same length of time in each infectious state
and assumed that each state was equally infectious. We sampled
from each of the distributions 100 times independently (table 1).

(e) Initialization and baseline model
The census data are used to initialize the population sizes within
each of the 8570 wards that hold between 200 and10 000 individ-
uals. At the start of the model, all individuals are assumed to be
susceptible to infection with no underlying immunity in the
population. To seed infection in a ward, we move five individ-
uals (non-commuters) from the susceptible compartment to the
first infectious state.

We investigated a range of starting scenarios by seeding the
infection in example wards in London, Birmingham, Liverpool,
Bristol, Manchester, Sheffield and Cardiff. We also investigated
a generalized epidemic case, where cases were simultaneously
imported in three different locations, seeding the infection in
London, Birmingham and Manchester simultaneously on day 1.
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using best-guess parameters from Li et al. [2] (a) Daily infection dynamics. (b) The distribution of predicted time to peak incidence. (c) The distribution of predicted
attack rate. (Online version in colour.)
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( f ) Impact of seasonality
We investigated the impact of a seasonally affected transmission
rate, to capture potential decreased transmission during the
summer months. We captured seasonal transmission by repla-
cing the constant transmission rate with a time-varying
transmission rate given by:

transmission rate ¼ b 1� m
2

1� cos
2pt
365

� �� �
,

where m is the magnitude of the seasonal difference in transmis-
sion, ranging from m = 0 (no seasonality) to m = 1 (maximum
seasonality with no transmission at the peak of the summer).

(g) Epidemic characteristics
From the model, we extracted the total number of infections
per day, as the number of individuals in both of the Infectious
states, and the number of infected wards per day as the total
number of wards with at least one individual in one of the
two Infectious states. The spatial growth of the epidemic in
England andWales was visualized using interactive maps. We esti-
mated the timing of the epidemic peak from the aggregated
epidemic curve and calculated 95% prediction intervals from the
model simulations.

(h) Implementation and data availability
The model is coded in C and is available on GitHub (http://
github.com/ldanon/MetaWards), with an updated imple-
mentation in python (http://metwards.org). The data for
parameterizing the model are freely available from the ONS web-
site or can be downloaded with the code at the GitHub repository.

3. Results
We predict that, in the absence of any interventions, a disease
with ‘best-guess’ COVID-19-like parameters will peak at
a median of 133 days (range 126–147 days) following the
start of person-to-person transmission in England and Wales.
Intrinsic model stochasticity is responsible for variation
between model runs. Using exactly the same parameters and
seeding the infection in the same initial wards resulted in a
difference in peak timing of +/− 10 days (figure 2). The attack
rate for best-guess parameters had a median of 45 799 874
(81.67% range 81.64–81.69), with a peak incidence median of
1116 692.

Model predictions are highly sensitive to parameter
values and incorporating parameter uncertainty increases
model variability substantially. In the absence of any control
measures, all predictions resulted in epidemics that peaked
within a year from the start of person-to-person transmission
in England and Wales. Estimates of peak time ranged from
78 days to 241 days, albeit with a low probability (figure 3).
The model peak time was particularly sensitive to the value
of incubation period and the transmission rate; these were
chosen from ranges given in table 1.

The initial location of cases had some, but limited impact
on the timing of the epidemic in England and Wales.

http://github.com/ldanon/MetaWards
http://github.com/ldanon/MetaWards
http://github.com/ldanon/MetaWards
http://metwards.org
http://metwards.org
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Figure 3. The variability in predicted epidemic curves for a COVID-19 outbreak in England and Wales, seeded in Brighton, in the absence of any control measures.
Unlike in figure 2, here we incorporate measured parameter uncertainty. (a) Daily infection dynamics. (b) The distribution of predicted time to peak incidence.
(c) The distribution of predicted attack rate.

region
East Midlands
East of England
London
North East
North West
South East
South West
Wales
West Midlands
Yorkshire and the Humber

ca
se

s

0

0 50 100 150 200 250
time (days)

5 × 105

5 × 106
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Epidemics seeded in Brighton, London, Birmingham and
Sheffield resulted in synchronized epidemics in England,
reaching urban areas first followed by rural areas. Epidemics
started in Cardiff had a slower time to peak but still resulted
in a generalized outbreak. We also investigated a generalized
seeding scenario, where cases were simultaneously imported
in three different locations, seeding the infection in London,
Birmingham and Manchester at the same time.

Spatially, some disaggregation between England andWales
regions is observed. An outbreak starting in Brighton, (South
East England) peaks in London and the South East first, and
North East England, Yorkshire and Humber and Wales last,
with a 10-day lag between regional peaks (figure 4).

Figure 5 shows the impact of seeding location on the
spatial distribution of cases in more fine-grained detail. Seed-
ing the infection in a single city leads to an earlier peak
burden in that city. Setting London and Birmingham as
seeds led to the most synchronized countrywide outbreaks.
Seeding in London resulted in other major cities peaking
two weeks after peak burden in London. By contrast, seeding



Birmingham

24

20

16

12

24nu
m

be
r 

of
 w

ee
ks

 to
 p

ea
k

20

16

12

destination city

R0 = 1.95

R
0  =

 1.85
R

0  =
 2.4

Sheffield

Manchester

London

Liverpool

de
st

in
at

io
n 

ci
ty

Cardiff

Bristol

Birmingham

B
ir

m
in

gh
am

B
ri

st
ol

C
ar

di
ff

L
iv

er
po

ol
L

on
do

n
M

an
ch

es
te

r
Sh

ef
fi

el
d

B
ir

m
in

gh
am

B
ri

st
ol

C
ar

di
ff

L
iv

er
po

ol
L

on
do

n
M

an
ch

es
te

r
Sh

ef
fi

el
d

B
ir

m
in

gh
am

B
ri

st
ol

C
ar

di
ff

L
iv

er
po

ol
L

on
do

n
M

an
ch

es
te

r
Sh

ef
fi

el
d

B
ir

m
in

gh
am

B
ri

st
ol

C
ar

di
ff

L
iv

er
po

ol
L

on
do

n
M

an
ch

es
te

r
Sh

ef
fi

el
d

B
ir

m
in

gh
am

B
ri

st
ol

C
ar

di
ff

L
iv

er
po

ol
L

on
do

n
M

an
ch

es
te

r
Sh

ef
fi

el
d

B
ir

m
in

gh
am

B
ri

st
ol

C
ar

di
ff

L
iv

er
po

ol
L

on
do

n
M

an
ch

es
te

r
Sh

ef
fi

el
d

B
ir

m
in

gh
am

B
ri

st
ol

C
ar

di
ff

L
iv

er
po

ol
L

on
do

n
M

an
ch

es
te

r
Sh

ef
fi

el
d

Bristol Cardiff Liverpool London Manchester Sheffield

R0 = 2.4

mean time to peak

22

20

18

16

B
ir

m
in

gh
am

B
ri

st
ol

C
ar

di
ff

L
iv

er
po

ol

L
on

do
n

M
an

ch
es

te
r

Sh
ef

fi
el

d

B
ir

m
in

gh
am

B
ri

st
ol

C
ar

di
ff

L
iv

er
po

ol

L
on

do
n

M
an

ch
es

te
r

Sh
ef

fi
el

d

seeding city

(a)

(b)
(i)

(i) (ii) (iii) (iv) (v) (vi) (vii)

(viii) (ix) (x) (xi) (xii) (xiii) (xiv)

(ii)

Figure 5. (a) Peak time in major cities from various starting locations. Each panel is a starting location and the box plots show the distribution in peak times in each
destination city from 10 runs. (b) Average peak time in each city shown as a matrix from the start location. (Online version in colour.)

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200272

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 J

ul
y 

20
21

 

in Birmingham led to other major cities peaking four weeks
after peaking in Birmingham.

The spatial proximity of cities can be observed reflected in
the time to peak. For instance, when seeding the infection in
Cardiff, a peak is observed in Bristol two weeks later, with
other cities peaking 4 to 5 weeks after seeding. No epidemic
scenarios we considered had a temporal spread between
major cities of more than eight weeks (figure 5).

Epidemics resulting from multiple importations were
modelled by seeding at multiple locations simultaneously.
Seeding the infection in London, Birmingham and Manche-
ster simultaneously results in early peaks in those cities,
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followed closely by Liverpool, Bristol, Sheffield and Cardiff.
This scenario leads to synchronous epidemics with small
differences between peak times in major cities and peaks
appearing earlier in seeding locations (figure 6).

However, seasonality in transmission has a large impact on
epidemic timing, peak incidence and final attack rates. Assum-
ing no difference in transmission rate during the year leads to a
single large epidemic peak after approximately four months
(June if transmission starts in February), as above. With a
25% reduction in transmission the epidemic is smaller and
peaks later, reducing the overall attack rate by 20%. A 50%
reduction in transmission results in a smaller epidemic
before the summer, followed by a resurgence in cases in the
following winter. The attack rate is 10% less than a non-
seasonal epidemic. A 75% reduction in transmission over the
summer resulted in a delayed large outbreak, but with a simi-
lar attack rate. If transmission decreases to zero over the
summer, then the resulting outbreak experiences stochastic



Table 2. Effect of seasonal variation on the timing (shown in days
following initial seeding), the height of the peak and the final attack rate.

seasonal
term

timing of
peak

incidence at
peak

final attack
rate

0 139 1 172 819 81.9

0.25 159 615 599 65.0

0.50 343 330 311 69.4

0.75 375 1 227 280 80.3

1.0 100 6547 0.53
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fadeout, the peak is dramatically reduced, with a final attack
rate of less than 1% due to extinction (figure 7 and table 2).
This scenario is unlikely as the reintroduction of infection
from outside England and Wales would likely lead to further
waves of infection.
 76:20200272
4. Discussion
We predict that, in the absence of control measures and with
no seasonality in transmission, the introduction of COVID-19
in England and Wales has the potential to result in a synchro-
nized outbreak that peaks at around four months following
the start of person-to-person transmission. Our findings
suggest that the height of the epidemic and the attack rate
is highly dependent on the seasonality of transmission and
that even small changes in transmission risk can lead to
large changes in attack rate due to the spatial disaggregation
of the population at risk.

A combination of control measures and seasonal
changes in transmission rate could shift the peak of the
outbreak to the winter of 2020/21, with little effect on
the final attack rate. If contact tracing and isolation efforts
succeed in reducing transmission but are unable to control
the epidemic [9], an additional influx of severe COVID-19
cases may exacerbate existing challenges with winter
healthcare demand. A careful analysis of the impact of
control measures on the timing of incidence of severe cases
is warranted.

The strength of this model lies in the spatial heterogeneity
which tempers transmission. As a comparison, an equivalent
non-spatial model results in the epidemic peaking after 34
days, nearly four times faster than this spatial model, and
would be unable to capture the interaction between spatial
transmission and seasonality. The estimated total number of
people infected in the spatial model is marginally smaller
than for a non-spatial model, as the infection has the oppor-
tunity to die-out in local parts of the country. As the model
framework was developed and published in 2009, it was
possible to re-deploy the model for these new circumstances;
developing such a model from scratch during an outbreak
would be a significant challenge.

A key element missing from our model is morbidity,
mortality and the treatment of cases. The model in its current
form predicts the total number of infections in the commu-
nity rather than diagnosed cases. Observations from China
suggest that many cases have mild symptoms and that only
around 5% of cases have been reported and diagnosed [3].
The parameter estimates we used from China appear to be
substantially different to previous coronaviruses [6].
Should COVID-19 continue spreading the UK it will
become possible to get UK-specific parameter estimates and
improve prediction accuracy.

As with all modelling, it is impossible to capture the full
complexity of an epidemic. In this model, the major assump-
tions are that we have assumed that there is no change in
behaviour during the course of the epidemic. In practice, as
the epidemic starts spreading in England and Wales, there
may well be a systematic change in behaviour as was seen
during the H1N1 influenza pandemic in 2009. We have not
included any age effects, such as differential mixing, suscep-
tibility or infectiousness. That means that we are not able to
investigate the impact of school closures or the impact of
the summer holidays, which had a large impact on the
H1N1 influenza pandemic in 2009.
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