Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Investigating the epidemiology of heartwater (Cowdria ruminantium infection) by means of a transmission dynamics model

Tools
- Tools
+ Tools

UNSPECIFIED (1998) Investigating the epidemiology of heartwater (Cowdria ruminantium infection) by means of a transmission dynamics model. PARASITOLOGY, 117 (Part 1). pp. 49-61.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Request Changes to record.

Abstract

A mathematical model of the transmission dynamics of Cowdria ruminantium by the ixodid tick Amblyomma hebraeum in the bovine host is developed and used to investigate the epidemiology of heartwater across a range of vector challenge. The processes described are supported by empirical data. The pattern of outcome measures (incidence, case-fatality and proportion of infected hosts) predicted agrees with those described anecdotally from field experience and empirical observation, and demonstrates the concept of endemic stability. The underlying theory is explored and it is shown that endemic stability may be due principally to the protection of calves against disease by either innate or maternally derived factors. The role of vertical infection in the establishment and maintenance of endemic stability is also investigated. Although increasing the vertical infection proportion results in endemic stability occurring at progressively lower levels of tick challenge, the concomitant reduction in incidence and case-fatality predictions across the range of tick challenge means the endemically stable state simultaneously becomes less discernible. Model limitations and future developments are discussed. The essential role of a transmission dynamics model in assessing the impact of new vaccines in conjunction with vector control programmes is highlighted.

Item Type: Journal Article
Subjects: Q Science > QL Zoology
Journal or Publication Title: PARASITOLOGY
Publisher: CAMBRIDGE UNIV PRESS
ISSN: 0031-1820
Official Date: July 1998
Dates:
DateEvent
July 1998UNSPECIFIED
Volume: 117
Number: Part 1
Number of Pages: 13
Page Range: pp. 49-61
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us