Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

A simple avalanche model as an analogue for magnetospheric activity

Tools
- Tools
+ Tools

UNSPECIFIED (1998) A simple avalanche model as an analogue for magnetospheric activity. GEOPHYSICAL RESEARCH LETTERS, 25 (13). pp. 2397-2400. ISSN 0094-8276.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Request Changes to record.

Abstract

The power law dependence of the power spectrum of auroral indices, and in-situ magnetic field observations in the earth's geotail, may be evidence that the coupled solar wind-magnetospheric system exhibits scale free self organised criticality and can to some extent be described by avalanche models. In contrast, the intensity of, and time interval between, substorms both have well defined probability distributions with characteristic scales. We present results from a simple cellular automaton that models avalanches in a one dimensional "sandpile"; here we examine the simplest case of constant inflow. This model generates a probability distribution of energy discharges due to internal reorganization that is a power law implying SOC, whereas systemwide discharges (flow of "sand" out of the system) form a distinct group which do not exhibit SOC. The energy dissipated in a systemwide discharge follows a probability distribution with a well defined mean, as does the time interval between one systemwide discharge and the next. Internal and external avalanches can therefore in principle be identified with distinct processes in the dynamic geotail. If so, the avalanche model places restrictions on the class of physical process that may be invoked to explain the observed geomagnetic dynamics.

Item Type: Journal Article
Subjects: Q Science > QE Geology
Journal or Publication Title: GEOPHYSICAL RESEARCH LETTERS
Publisher: AMER GEOPHYSICAL UNION
ISSN: 0094-8276
Official Date: 1 July 1998
Dates:
DateEvent
1 July 1998UNSPECIFIED
Volume: 25
Number: 13
Number of Pages: 4
Page Range: pp. 2397-2400
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us