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Stochastic model reduction: convergence and applications
to climate equations

SIGURD ASSING, FRANCO FLANDOLI AND UMBERTO PAPPALETTERA

Abstract. We study stochastic model reduction for evolution equations in infinite-dimensional Hilbert
spaces and show the convergence to the reduced equations via abstract results of Wong—Zakai type for
stochastic equations driven by a scaled Ornstein—Uhlenbeck process. Both weak and strong convergence
are investigated, depending on the presence of quadratic interactions between reduced variables and driving
noise. Finally, we are able to apply our results to a class of equations used in climate modeling.

1. Introduction

In this paper we study stochastic model reduction for a system of nonlinear evolution
equations in infinite-dimensional Hilbert spaces which is general enough to cover well-
established systems of equations used in climate modeling. The big advantage of such
a procedure is the lower complexity of the reduced equations, since complexity is
still one of the major issues when predicting the evolution of systems over time spans
which are typical for climate rather than meteorology.

Following [9,17], we assume that the climate variables of the system, i.e., those
more relevant to climate prediction, evolve on longer time scales than the unresolved
variables, which can be modeled stochastically and have a typical time scale much
shorter than the climate variables. To be able to close the equation for the climate
variables, the task is to understand the effects of unresolved variables when stretching
time to climate time. In what follows, we also refer to climate variables as resolved
variables.

Climate modeling typically starts with equations containing quadratic nonlinearities
which can describe many features of oceanic and atmospheric dynamics at meteoro-
logical time—see [18,25]. In abstract mathematical terms, such equations would look
like

dz,

e fi +AZ, + B(Z,, Z,), (1)
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where A : H — H is alinear operator, B : H x H — H is a bilinear operator, and f
is an external forcing term. Here, the variable Z taking values in H is supposed to be
a complex mix of climate and unresolved variables, and hence, the space H has to be
‘big enough’ to ‘host’ variables of that type. We therefore choose H to be a separable
infinite-dimensional Hilbert space.

Now, there is a variety of procedures to identify climate variables in practice which
we will not discuss in this paper. We rather assume that climate variables have been
identified spanning a Hilbert-subspace H; C H, and we further assume that the
orthogonal complement Hy,, H = H; ® Hwo, gives the space of unresolved variables.
When projecting Z onto H;, Hso via the projection maps 74, 7o, Eq. (1) gives raise
to two equations

dX ~ -

4 = A A+ BL (X X0 + BL (X Y + By (Y Y (2)
and

dy; 2 2 2 2 2 2

Ez‘ft +A1Xl+A2Yl+B11(Xt,X;)+312(Xt,Y[)+B22(Y1,Y[) (3)

for the collection of climate variables X = m;(Z) and unresolved variables ¥ =
TTo(Z), respectively.

The next step, called stochastic climate modeling, consists in replacing the compli-
cated nonlinear self-interaction termin (3) by a linear random term. Such a replacement
could be justified by the assumption that quickly varying fluctuations of small-scale
unresolved variables are more or less indistinguishable from the combined effect of
a large number of weakly coupled factors, usually leading to Gaussian driving forces
via central limit theorem. But such effects would only become visible at climate time
and not at meteorological time used in (2) and (3), so that we are looking to replace
B222(Y .—1,, Y.—1,) by a linear random term, stretching meteorological time to ¢~ 'z,
using a small parameter ¢ < 1.

In this work, following [17,22], we suppose that

B3, (Y,-1,, Y,-1,) is replaced by — ue ™ 'Y,-1, + o W,,

where (, o are positive constants, and W is Gaussian noise, white in time, and colored
in space. This way, the parameter ¢ is used to scale time, but also to adjust for the size
of the involved variables when scaling time.

Another assumption made in [ 17] is that climate variables at climate time have small
forcing and self-interaction, and hence, we also suppose that

fLi, + AX, 1, + Bl (X1, X,) is replaced by e F! + A} X1, + eBJ | (X1, X,1,),

avoiding so-called fast forcing and fast waves.

Allin all, when introducing the notation X; = X -1, for climate variables at climate
time, and Y7 = 871Y8—lt for the effect of unresolved variables at climate time, Egs.
(2) and (3) translate into
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dx¢

o= B AT+ Y+ B X XD+ BL(X] Y + e BV YY), (4)
dYZS -2 2 —2 42 vye —1 42vye -2 p2 e &

W =& f€_1t+8 AIXZ‘ + ¢ AZYI + ¢ BII(XI’XT)

+ e B (XS, YS) — e 2YF 4+ 672 W, (5)

where we have set © = o = 1 for the sake of simplicity.

The hope is now that, when ¢ tends to zero, climate variables at climate time can
be approximated by a random variable X which solves a closed stochastic equation
with new coefficients not depending on unresolved variables any more. Of course,
these new coefficients will be functions of the coefficients of Egs. (4) and (5), and the
process of finding these new coefficients is called stochastic model reduction.

Stochastic model reduction of finite-dimensional systems similar to (4), (5) was
extensively discussed in [17]. However, one of the key steps, i.e., proving the con-
vergence X° — X, & | 0, was kept rather short. Indeed, the authors first sketch a
perturbation method based on a theorem by T.G. Kurtz, [16], which is their general
method, and they then briefly describe a so-called direct averaging method for special
cases based on limits of solutions to stochastic differential equations. In particular,
the latter method lacks a certain amount of rigor because the convergence of the in-
volved stochastic processes is not shown, and this gap has not been closed in follow-up
papers—see [6,7,13] for example.

In this paper we are not only closing this gap, but also develop a new method of
proof.

We at first identify the limit process X, and then study the convergence X¢ — X
as ¢ | 0, when X* solves a general evolution equation of type

&

X
dtf =F(t,X5) +o(t, XOYF +eBYE, YY), 6)

where Y is a decoupled infinite-dimensional Ornstein—Uhlenbeck process satisfying

dy; :
dt’ = —e2YF T2 W, (7)

Since Eq. (6) is more general than (4), once stochastic model reduction is established
for the system (6), (7) with decoupled unresolved variables, it also follows for an
interesting subclass of systems of type (4), (5) with coupled unresolved variables—
basically those systems for which 3122 = 0, see Theorem 5.3. Part (ii) of this theorem
deals with the case of linear scattering, that is 8212 = 0, and in this case we achieve
showing ‘strong’ convergence in probability:

lin%)]P){sup X8 — X¢llm, > 5} =0, V§>0, (8)
E—>

t<T

on a given climate time interval [0, 7']. When the quadratic interaction term B212 is
non-trivial, we can only show convergence in law, as stated in Theorem 5.3(i). We
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refer to Remark 4.3(ii) for an argument which suggests that one cannot expect much
more than a weak-type convergence in the general case. This insight of course sheds
new light on the results given in [17] and follow-up papers.

At this point it should be mentioned that throughout this paper we assume that H; is
finite-dimensional which seems to be a natural choice when it comes to climate mod-
eling. However, our arguments are general and can be adapted to infinite-dimensional
subspaces, see [5].

In the case of the more abstract system (6), (7), the process Y will eventually
behave like white noise, as ¢ | 0. This limiting behavior is fundamental for finding
the limit of Eq. (6) because it opens the door for using arguments similar to those
of Wong and Zakai in [26]. Of course, Wong and Zakai formulated their results in a
finite-dimensional setting. There have been earlier attempts of proving similar results
in infinite dimensions; we refer to [2,23,24], for example. However, we would like to
emphasize that these earlier attempts dealt with piecewise linear approximations of
noise rather than an infinite-dimensional Ornstein—Uhlenbeck process. Note that it is
typical for Wong—Zakai results that stochastic integral terms of limiting equations are
interpreted in the sense of Stratonovich.

Finally, it is worth comparing our results with those in the literature concerning
averaging principles, see, for instance, [8, Sect. 7.9], [20,21] and references therein.
Roughly speaking, in those results the unresolved variables satisfy the equation dY; =
-y fdr+e~ 1 dW;, with a weaker noise intensity compared to our, and therefore, the
resolved variables only undergo a change of drift in the limit ¢ | 0. On the contrary,
in our setting a diffusion term also appears in the limit, see (13) below.

The paper is structured as follows.

In Sect. 2, we formulate our main results on the convergence of solutions to (6),
(7). First, the limiting equation for X is identified, and then conditions for weak
convergence X — X are stated in Theorem 2.2(i). However, when (6) is a simpler
equation, i.e., § = 0, even the stronger convergence (8) can be shown under the same
conditions—see Theorem 2.2(ii).

In Sect. 3, we give the proof of Theorem 2.2(ii). The proof relies on preliminary
localization and discretization arguments which allow to consider, instead of (8), its
discrete version

limIP{sup X8 — X llm, > 3} =0, V§>0,
e—0 k k

for only finitely many # < [0, T].

In Sect. 4, we give the proof of Theorem 2.2(i) which, at the beginning, requires a
careful analysis of the quadratic term B(Y/, Y/), but otherwise is an adaptation of the
proof given in the previous section.

In Sect. 5, we eventually use the results of Sect. 2 to prove Theorem 5.3 under quite
natural conditions, thus making the connection to our main applications in climate
modeling.



Stochastic model reduction: convergence and applications

2. Notation and main result

Let H;, H be real separable Hilbert spaces. Assume that Hy is finite-dimensional,
dim H; = d, with given orthonormal basis ey, ..., e;, and that Hy is infinite-
dimensional with given orthonormal basis fq, f5, . ..

Given two Banach spaces U, V, let L(U, V') denote the Banach space of continuous
linear operators mapping U to V, endowed with the operator norm.

For each ¢ > 0, consider the pair of stochastic processes (X¢, Y¢), taking values
in H; x H, where X¢ satisfies (6) over a fixed finite time interval [0, T'], and Y? is
given by

t

-2

Y, = / e 27 =W, >0,
—00

where W is a Wiener process in Hy, with real-valued time parameter and self-adjoint

trace class covariance operator Q € L(Hso, Hxo)-

Remark 2.1. (i) A Wiener process with real-valued time parameter can be obtained
in the following way: given two independent Wiener processes (W,");=o and
(W,”);=0 defined on filtered probability spaces (2, (F,"), PT)and (2, (F,),
P7), respectively, set W, = Wt+, fort > 0,and W, = W_,, fort < 0.

(i1) Using such a representation of W, we can also write

o0 t
Ytg — _/ 8_26_8_2(t+s)dwv_ +/ 8—26—8_2(1—5)(1“/:-’ t>0,
0 0
which clearly is a stationary Ornstein—Uhlenbeck process on (2, 7, ® .7-";2), P),
where Q@ = Q7 x Q1 and P = P~ ® P, see [3]. Furthermore, setting up the
stochastic basis for our processes (X¢, Y?), let (2, F, P) be the completion of
(2, FL ® J—“;;, P), and (F;);>0 be the augmentation of the filtration (F ®
]—",+) +>0. Note that this filtration would satisfy the usual conditions.

(iii) Since Q is trace class, both W and Y? take values in H,,. Without loss of
generality, we can assume that Q is diagonal with respect to the chosen basis
{£,, }men of Hyo, that the eigenvalues of Q form a sequence {g,, },,eN satisfying
> mdm < 00, and that E [(W,, fm)%loc] = |t|gm, forevery t > O and m € N.
Moreover, since

t
(YE ) p, = / 62 2D W, )

—00

we also have E [(Yf, fm)%lm] = %qm foreveryt > 0and m € N.
(iv) Let Z be an e-independent stationary Ornstein—Uhlenbeck process solving d Z,
= —Z,dt + dW;, which is explicitly given by the formula

t
Z = / e dw,, > 0. 9)
—0Q
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Due to the self-similarity of W, itis easy to check that the process (¥} );>0 equals
in law the process (¢! Z, «—2)1>0, thus making more transparent why we expect
the process Y to behave like a white noise as € | 0, see, for instance, [1].

Adopting the useful notation W/ = fé Y;ds, we can write (6) in integral form as

t

t t
X! = xo +/ F(s, X{)ds +/ o(s, XJ)dw¢ +f eB(Y, Y )ds, te€[0,T],
0 0 0

(10)

where xo € H, is a deterministic initial condition, as well as F : [0, T] x H; — Hj,
o :[0,T] x Hi — L(Hws, Hy), B : Hx X Hoo — Hy. We make the following
assumptions on these coefficients:
(A1) F € C([0,T]1xHy, Hyg),and F (¢, -) € Lip;,.(Hg, Hg),uniformlyint € [0, T];
(A2) o € C7([0, T] x Hy, L(Hso, Hy)), the space of C! functions with y-Holder
derivative, for some y € (0, 1) and its space-differential Do (¢, -) € Lip;,.(Hqa,
L(Hy, L(Hso, Hy))), uniformly in ¢t € [0, T'];
(A3) B: Hx x Hx, — Hj is a continuous bilinear map.
Of course, by standard theory (see [3], for example), Eq. (10) admits a unique local
strong solution, for each ¢ > 0.
Next, we introduce the limiting equation for the wanted limit X of the processes X¢,
when ¢ | 0. First, define the so-called Stratonovich correctionterm C : [0, T x H; —
H; by

d
4 1 . .
C'(s, 1) =(Cs, 1), €)= :equ Z IDJ'G”'"(s,X)GJ’m(s,X), i=1,....d,
m j=

(1)
where

o (s,x) = (o (s, )y, &)y, i=1,....,d, meN,

is matrix notation for the linear map o (s, x) € L(H, Hy) with respect to our chosen
basis vectors; second, let

qeqm
>

by = (BEe.Tn). €)n, i=1,....d ¢, meN. (12)

Then, our limiting equation would read
— t — —
X = xo +/ (F(s, Xy) + C(s, Xy)) ds
0

t
+ [ ot XadWe+ 3 bW, rel0.7) (13
0 £,meN
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where W is the same Wiener process used to define Y* in Remark 2.1, while
(wtmy ¢.meN 18 a family of independent one-dimensional standard Wiener processes,
which are also independent of W.

As for (10), also (13) admits a unique local strong solution. However, in view of the
interpretation of our results with respect to climate modeling, it is natural to further
assume that

(A4) both Egs. (10) and (13) admit global solutions on [0, T'].

Another assumption specific to climate modeling, which has been advocated in [17],
is the zero-mean property of (Y, YS), s > 0. Since all Y* are stationary under P,
see Remark 2.1(ii), this assumption would translate into

-2
E[(BYE Y em] =) (,B(fi,fm),ei)HdE[Zf’ZXf"n] =Y (B(Ee. o) €)my £ g =0,

2
¢,meN teN

where Yf’z is short notation for the coordinates (Y7, f¢)p ., £ =1,2,..., s € [0, T].
As a consequence, we also impose the zero-mean condition

(A5) > yen(Be. fo), € ;g =0, foralli =1,...,4d,

which is usually true for equations from fluid dynamics and can in general be under-
stood as a renormalization procedure for the quadratic term.
The following theorem is the main result of this paper.

Theorem 2.2. (i) Assume (Al)—(AS). Then, X¢ converges to X, in law, € | 0.
(ii) However, if (Al)—(A4) and (A5) comes via B = 0, then the stronger convergence
(8) holds true.

In what follows, to keep notation light in proofs, when no confusion may occur, the
norms in both spaces H; and H, will be denoted by | - |, and their scalar products
by (-, -). The symbol < means inequality up to a multiplicative constant, possibly
depending on the parameters of our equations, but not on ¢.

3. Strong convergence

In this section we give the proof of Theorem 2.2(ii), which is divided into several
steps.

First, by localization, we argue that we can restrict ourselves to | X} |, |)_( | < R, for
some large R, which is effectively leading to Lipschitz continuity of the coefficients
of (10).

Second, we discretize the problem, which allows us to reduce the proof of Theorem
2.2(ii) to its discrete version:

lim]P’{sup|ka - X, | > 5} =0, V§>0,
e—0 k
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for only finitely many # € [0, T]. Here, we choose #; = kA, where A = A, is a
positive parameter whose e-dependence has to be carefully chosen in the proof—see
Remark 3.9.

Third, we prove the above discretized version.

3.1. Localization
Fixe > 0, § € (0, 1), and define
th =inf{t > 0:|Xf| > R+ 1} Ainf{t >0:|X,| > R}, forR >0,

so that
Pisup X — X,|> 8¢ =P sup|X?—X,|> 6, sup|X,| >R
t<T t<T t<T
+P{sup|XF — X,| > 8, sup |X;| < R
t<T =T
=P isup|X: — X;| > 8, sup|X;| > R
t<T t<T

HP’{ sup |X? — X;| > &, sup |X,| < R}

t<T Aty 1=T

§]P{sup|)_(,| zR}—HP’{ sup |X¢ — X;| >8}.

t<T t<T Aty

(14)

Therefore, since (A4) implies

P{suplf(ﬂ > R} — 0, as R 1 oo,

t<T

to prove (8), it is sufficient to show the convergence of the second summand on the
right-hand side of (14), when ¢ | 0, for fixed § € (0, 1), R > 0. Furthermore, by
Markov inequality,

I@! sup |Xf—)_(t|>8}§8_1’1[<3|: sup |Xf—)_(,|”j|, (15)

t<T Aty t<T Aty

for every p > 0, 6 € (0, 1), and hence showing convergence of the above right-hand
side, only, is enough. To keep notation light, we are going to use 7° instead of 7}, as
R > 0 will be fixed, in what follows.
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3.2. Discretization

Fix ¢ > 0. We show that the expectation on the right-hand side of (15) can be
replaced by an expectation of the same quantity, but with the supremum taken over a
finite number (diverging to 0o, as ¢ |, 0) of times #, see Corollary 3.7 below.

To start with, we have the following useful a priori estimate.

Lemma 3.1. For any p > 1, the Ornstein—Uhlenbeck process Y? satisfies

E |:sup |Yf|p:| < e Plogh/? (1 +£_2).
t<T
Proof. First, using the decomposition Y = Y + (Yf — Y(f), Gaussian estimates on
Yg and [15, Theorem 2.2], the result is true in one dimension.

In the infinite-dimensional case, by Holder’s inequality, we can suppose p > 2.
Therefore, since Q is trace class with eigenvalues satisfying ", .y gm < 00, when
o = (p —2)/p, we obtain that

p/2
E | sup
t<T

YS

p

o —a|yem|2

:|=E sup Z Amm }Yt |
t=T meN, g, >0

A

— 2
> an " E[ sup

meN, g, >0 t=T

SeMlogh? (1+67%),

(p—2)/2
Yts,m‘p] (Z qglp/(,l’z)>

meN

having used the one-dimensional result for the coordinates Yf’m = (Y. f,), m =
1,2,... O

Remark 3.2. In view of Remark 2.1(iv), the previous result could also be obtained
from the analogous result for (9) and parabolic scaling. Indeed, it would be sufficient
to prove E [sup, -7 |Z;|P] < logP/?>(1 + T) for every p > 1.

Now, we introduce the discretization of the time interval [0, T']. Let A > 0, and
let [T/ A] be the largest integer less or equal than 7//A. In what follows, A will also
depend on ¢, in a way to be determined later. Also, to make it easier to bound terms
by powers of € or A, without loss of generality, we will always assume that both & and
A are less than one.

The next two lemmas control the excursion of X* between adjacent nodes in terms
of the ratio A /e.

Lemma 3.3. For any p > 1, and any deterministic time Tt > 0,

T\?
E sup IX{ ok — Xgal? | S (—) log?’?(1 4+ ¢72).
k=0,1,...,[T/A] &
t<t,t+kA<T AT®
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Proof. Since B = 0, by (10), the increment X7, \ — X}, can be written as
t+kA t+kA
Xf+kA—XiA=f F(S,X:f)ds+/ o(s, X))dW?, fort +kA <T At°.
kA kA
Therefore, using (A1), (A2), boundedness of X® on [0, t¢], and Lemma 3.1, we obtain
that
P
E sup | X{on — Xgal? | STP(1+E| sup |Yf
k=0,1,....[T/A] 1<TAté
t<t,t+kA<T AT®
T\P
S (2) 1ogn2a 467,

where W} = fot Y¢ds was defined in Sect. 2. O

Lemma 3.4. Forany p > 1, and any fixedk € {0, 1, ...,[T/A]} suchthatkA < T,

_ AN _
E[IXfernane = Xianee”] S AP24e” log?2(1 + 672+ (;) log (1 +7%).

Proof. 1t suffices to bound every single term on the right-hand side of the equation
(k+1)AATE

ka+1)AAr8 - XliA/\rs 2/ Fs, Xi)ds
kANTE

(k+1)AATE
+/ (0(s, X5) — 0 (kA AT, Xipppe)) AW
k

ANTE

(k+1)AATE
+ / o (kA AT, XE L )dWE.
k

ANT®

First, by (A1) and boundedness of X¢ on [0, 7¢], we have that

(k+1)AAT® P
E / F(s, X{)ds < AP,
k

ANTE
Second, using Holder’s inequality with ¢’ > 1/p and Lemma 3.1,
p
E
P
< E|sup (s, X5) — o (kA AT, Xippge)
o(s,X5) — o (kA ANT®, Xppge)

t<T
(k+1)AnT®
-/kA/\‘re

(k+1)AATE
/ (U(s, Xf:)—a(kAAtg,X,fAMg))de
k

ANT®
/(k+1)AATS
kANTE

< e Plog??(1 +672) (]E [

p

Ye ds

ds

1)q’:|>l/q/
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Since pg’ > 1 by assumption, we can estimate the integral above using Holder’s
inequality with exponents pq’ and pq’/(pq’ — 1), (A2) and Lemma 3.3 to obtain

(k+1)AATE rq’ /¢’
gl
‘ kANTE

(k+1)AnTE

<|E ‘/I;A . ds U(S,Xf)—(r(kA/\tg,XiAME)
AT®

, (k+1)AATE rq’ / vl

< APV (R / + (s — kAT | ds
kANTE

Lo DA rd , 4’
< arl4 [ E + (s —kA)YPY | ds
kANTE

’
(k+1)AATE 1/q
< ap-ld (f (s — kAyPd' (a*l’q’ logP?'/2(1 +672) + 1) ds)
k

ds

0 (s, X5) —o (kA ANT®, X[ pppe)

pq'—1 /<k+1)Am€
k

rd’ 1/q'
ds

ANTE

t3 &€
Xs = Xkance

& £
Xs = Xiance

ANTE
(k+1)Ant®

1/q'
(s — kA)pq/ds> < 6P logP2(1 + 6~2)A2P.
ANTE

|

<e P logp/z(l + E*Z)AP*I/(]/ (/
k

Finally,

d

S AP f 6P logl 2 (1 +672),

(k+1)AAT®
/ o (kA AT, Xppppe )WY
k

ANT®

4
} <E HW@) Wi

because, for every tr, > t; > 0,

15 s B
Wl‘; — Wzi =/ (/ g2 ¢ 2(Sr)dW,) ds
11 —00

B —e 2 (ta—r) . —e72(t1—r)
=W, — Wi, — e dW, + e dw,. (16)

—0o0 —00

O

The next lemma controls the excursion of the limiting process X between adjacent
nodes.

Lemma 3.5. For any p > 1, any deterministic time T € (0, 1), and any fixed k €
{0,1,...,[T/A]l},

- - 2
E sup [ Xi4ka — Xkal? | S T2
t<rt, t+kA§T/\‘L’S

Proof. Since B = 0, by (13), the increment X trkA — XA can be written as

_ _ t+kA _ _
Rpora — Xin = / (F(s. Xy) + Cs. X)) ds
kA
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t+kA .
+ / o(s, X,)dW,, fort +kA <T AT°.
kA

Therefore, using (A1), (A2), boundedness of X¢ on [0, t¥], and Burkholder—Davis—
Gundy’s inequality, we obtain that

E sup | Xitka — Xxal? | S
t<t,t+kA<T AT®
t+kA _ r »
+E sup f o(s, Xs)dW; Sttt
t<t,t+kA<T AT® kA
which proves the lemma since 7 < 1. U
Corollary 3.6. Forany p > 1,
E sup Xipia — Xeal? | S AL
k=0,1,....[T/A]

<A, t+kA<T AT®

Proof. The claim easily follows from Lemma 3.5 with T = A, and the inequality

[T/A]
E sup (Xiska—Xial” | S Y E sup | Xt4ka — Xial?
k=0,1,..., [T/A] k=0 <A, t+kA<T AT?
<A, t+kA<T ATE -
[T/A]
< Z AP/2 — A5
k=0

O
Corollary 3.7. Let A = A, > 0 depend on ¢ such that AJe — 0, as ¢ | 0. Then,

E| sup |Xf—)_(,|2 <E sup |X,§A—)_(kA|2 +o(1).
1<TATE k=0,1,..,[T/A]
kA<t®

Proof. First, by Holder’s inequality with ¢ > 1 and Lemma 3.6, we have that

v v 2 v v 2 1
E sup | Xiska—Xkal” | S(E sup | Xiska—Xial? | )1/
k=0,1,....[T/A] k=0,1,....[T/A]
t<A,t+kA<T AT* t<A,t+kA<T AT*

<AV S 0ase |0,

since we have taken g > 1. Thus, the proof can easily be completed by combining the
above and Lemma 3.3, while taking into account

1Xe — X, 1> < |XF - X’ft/A]AI2 + X[ /a1n — Xijaial® + X818 — Xil?,

where [7/A] is again our notation for the floor of 7/A. O
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3.3. Proof of the discretized version

We now discuss our strategy to prove part (ii) of Theorem 2.2. Recall that we want

Pisup|Xf —X,|>8; — 0,
(<T

for every fixed § > 0, as ¢ | 0. As we have seen, by (14), (15) and Corollary 3.7, it
suffices to prove

2

E sup Xip — Xia

k=0,...,[T/A]
kA<t®

—-0, €/0, a7

for some A = A, = o(¢). The proof is inspired by [11, Sect. VL.7].

Hereafter, do denotes the derivative of o with respect its first variable, and Do
denotes the derivative of o with respect its second variable. To start with, by (10)
without B-term, (A2), and (16), we have that

(k+1)A (k+1)A
Xrna =Xia +/ F(s, X7)ds +/ o (s, X)dwy
kA kA
(k+1)A
=X;’§A+/kA (F(s, X5) — F(kA, X[ ,)) ds

(k+1)A
+/ F(kA, X{ ,)ds
k

A
(k+1)A (k+1)A

+/ (o(s. X5 — o kA, X{0)) dWE +/ o(kA, XE)dWE
kA kA

(k+1)A
=X,§A+/kA (F(s, X)) — F(kA, X;,)) ds

(k+1)A
+f F(kA,X,ﬁA)ds
kA

(k+1)A s
+ / (f (80 (r, X£) 4+ Do (r, X)) F (r, X5)) dr) dw?
k kA

A

(k+1)A s
+/ (/ (Do (r, X))o (r, XE) — Do (kA, X{ )0 (kA, X§ L)) de) dw¢
kA kA

(k+DA s _ _
+/ (/ (Da(kA,X}:A)U(kA,XZA)—D(T(kA,XkA)U(kA,XkA))de) dw¢
kA kA

k+1)A s _ B
+/ (/ DU(kA,XkA)O'(kA,XkA)de) dWSg
kA kA

(k+1)A
+/ o (kA, X} A)dW
kA

+0 kA, X; e (Yia = Yignya)

=X I 0 (18)

forany k =0,...,[T/A]suchthat (k+ DA <T.
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Similarly, using (13) instead of (10), the process X satisfies

. . (k+1)A . .
Xk+va =Xk +/ (F(s, Xy) — F(kA, Xga))ds
kA

(k+1)A B
+ f F(A, Xia)ds
kA

(k+1)A _ B
+/ (C(s, Xy) — C(kA, Xia)) ds
kA

(k+1)A _
+/ C(kA, Xip)ds
kA

(k+DA _ ) (k+1)A .
+/ (o(s, Xy) — o (kA, Xya)) dW +/ o kA, Xia)dW;
kA kA

=Xia +Jf +IE+ IS+ T+ TE+ UL (19)

Having in mind to apply Gronwall’s lemma, it turns out to be useful to summarize
the contributions of the right-hand sides of (18), (19) as follows:

h—1 h—1 h—1 h—1
Xia—Xna =3 (= sF) 22 (= ak) + > (1= sE) + Dt
k=0 k=0 k=0 k=0
h—1
(- g - = ), 20)
k=0

forany h = 1, ..., [T/A], which splits the difference X;A — Xja into 5 sums.

We at first prove that the 2nd and the 5th sum can be neglected when proving (17).
The summands of the 5th sum are discussed in Lemma 3.8 below. The contribution
of the 2nd sum though is more delicate and requires a martingale argument similar to
that of [11, Theorem VI1.7.1].

The remaining sums will be controlled in terms of the difference X¢ — X itself,
which allows them to be estimated via Gronwall’s lemma.

Of course, under assumption (A1), the function F' is uniformly continuous when
restricted to [0, T'] x Bg(0), where Bg(0) is the closed ball of radius R in H;. In what
follows, we will denote by wp : [0, T] — [0, co) the (local) modulus of continuity
of F(-,x):

|F(t,x) — F(s,x)| < wp(jt —s]), foreveryt,s €[0,T], andx € Bg(0).

Obviously, the function wr vanishes at zero, and without loss of generality, it can
be chosen to be both non-decreasing and continuous.

Denote by w, the corresponding modulus of continuity of the derivative Do (-, x),
and let wr » = wf + ws. Recall that, under assumption (A2), one can take wy () =
CtY for some positive constant C and y € (0, 1).
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Lemma 3.8. Forany p > 1:

h—1 P h—1 p ANP
E sup I{‘ +‘ Zlf‘ < (—) 10gp/2(1+5*2)+wF(A)P;
h=1,...[T/A]l; 5 k=0 €
hA<t®
h—1 P A2 p
E sup Z[f Sl log* P2 (1 + &72)
h=1...[T/All 12 e
hA<t®

A p
+ (?) logP (1 + £72) we (A)P;

h—1 P 82 P/2 82 P
E sup Zlé‘ <|— logP?(1+e 2+ [ =) log?(1 +&7%)
h=1....[T/A1 (2 A A
hA<t®
A\P
+ (—) log” (1 +e72);
&
h=1 . p h=l . p k=1 p
E sup I+ ZJé" + ZJSI“ S AP 4 wp o (AP,
h=1,.AT/A =0 k=0 k=0
hA<t®

Proof. Throughout this proof, we will frequently make use of (Al), (A2) without
explicit mentioning.
For ) 1 k by Holder’s inequality and Lemma 3.3,

h=1""p h=1 ck+1)A
E sup Zl{“ <E sup Z/ (‘Xf—X,‘iA
h=1,..[T/A1 {25 h=1,..[T/A] | [=g Tk
hA<t® hA<t®

Ywp(s —kA))ds

]

k+1DA
e e
/I;A E Hxs/\rg - XkA/\r‘9

(T/A]-1 »

+ wF(A)p} ds
k=0

P
< <é> 1og”/2(1 + £72) + wp(A)P.
&€

~

For ) Ié‘, by Holder’s inequality and Lemma 3.1,

h—1 h=1 . (k+1)A p
E sup Ié“ <E sup sup Y/ Z/ (s —kA)ds
h=1,..,[T/A]| £ h=1,..,[T/A]| t<T — JkA
k=0 k=0
hA<t® L  hA<t®
i pIT/AI-1 in)a P
S E|sup|Yf / s —kA| ds
t<T k=0 kA

P
< (é> log?/2(1 + e~2).
&€
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For Y I ¥, by Holder’s inequality, Lemmas 3.1 and 3.3,

P
E sup ZL{‘
h=1....[T/Al | [ =5
T
2h=l gk A gops 4
SE sup sup | Y7 Zf (f (Xf—X,iA +wg(r—kA)>dr)ds
44444 [T/A]] t<T o Jka kA
L hA<‘r
2p h=1 (k+1)A s P
<E sup  sup |Y/ Z/ / (Xf — XA +a)g(r—kA)>dr ds
o JkA kA

h=1,..., [T/AJt<T
L hA<t®

[T/Al=1 L (k+1)A

Z / (s — kayr !

rd’ 1/4'
+ wc,(A)Pff} dr) ds)

1/q'

< e 2P logl(14+¢67%) (

5
INE
kA
(T/AI=T e+ 1)A

< e3P log3P? (1 +¢72) Z / (s — kA)2Pd s

£ &
Xr/\rs - XkA/\15

A
+<8—2) log” (1 4+ £72) w, (A)P

AZ 4
S (*3) log*2(1 +¢72)

&€

AN 5
+(8—2) log’ (1 + &™) wy (A)P.

We now consider ) I, é‘. Here, theideais to convert Y ®-increments into X -increments
via integration by parts since X¢-increments are easier to control. This way, applying
Lemmas 3.1 and 3.4,

h—1 h—1 »
E sup Z it | <E sup ZO’(/{A, X¢ e <Y,fA—Y5{+1)A)
h=1....[T/A] ] (25 h=1....[T/A] | (=)
hA<r hA<r
h P

<E su okA, XE\) —a((k — DA, X¢ )) e2Y¢
~ p > AkA » A k—1)A kA

h=1...[T/A] | 1=

L  hA<t®

L h p

SE sup sup (& Yts Z ( XkA (k—l)A + A)

h=1,..., [T/A]t<T _

hA<t?®
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" Ve
pq ] h Pq
<E|sup |e?Yf E sup Z (‘X,‘EA = XGg_na| t A)
(<T h=1....[T/A1| (=
hA<té -
(T/A1 T od’ 1
<egP log”/z(l " 8_2)A1/q -p Z E ’Ximzf _ ka—l)Ams 4+ AP ]
k=1 L

! ! ’ A zpq/
<P log”/z(l +eTHATP (qu 12 4 gP4 log?? PA+e72)+ (—)
)

’ 1/q'
log”? (1 + 8_2))

&2 p/2 2\7? AP

<{=) logP?(U+e )+ (=) log’r(l+e 2+ (=) log’(l1+&2).
A A €

In a similar way, for >_ J lk and Y J k now applying Lemma 3.5,

h—1 h—1

p p
E sup Z Jlk + Z J3k
h=1,..,[T/A) | i —
il A =0 k=0
h=1 s@+nA ) p
<E sup Zf (’X — Xia +wF,a(s—kA)> ds
h=1,...[T/A]| =5 Jka
hA<t®
[T/A1=1 k)a [y _ . P
S > / E[ Ronee = Kanee| + wF,g(A)"} ds
i Jka

S AP 4 wp (AP

For the last sum y_ J ¥ by Burkholder-Davis—Gundy’s inequality and Lemma 3.5,

h=1,...,[T/A]
hA<t®
(k+1)Ant®
<E /
kANTE

(k+1D)AATE
<E /
kANTE
[T/Al=1 Gy 1)A
< / E
<[z [

k=0

h—1 P

h=1 (k+1)A ~ ~
/ (05, Ry) — o (kAL Ky p)) AW,
k

k=0 VKA
p/z}
12
P }

1/2
2p
+(s— kA)ZI’] ds) < AP,

<E sup

[T/A]-1 2

o(s, Xs) —o(kA, Xpa)| ds

k=0

[T/A]-1 2

o(s, Xs) —o(kA, Xpa)| ds

k=0

Xsnre — Xrance
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Remark 3.9. The estimates given in Lemma 3.8 motivate the following choice of how
A = A, should behave when ¢ goes to zero:

A? A 2
—log? (146720, log(l + &%) ws(A)—0, % log'?(14+¢7%) — 0.
I &

Such a choice is always possible. Indeed, under assumption (A2), one can take w, () =
CtY for some positive constant C and y € (0, 2/3), and therefore the choice A, =

e 4v/2 satisfies all the requirements above. We will maintain this choice of A in the
remainder of the paper.

We now discuss the 2nd sum on the right-hand side of (20), that is

h—1 (k+1)A s ~ _ (k+DA ~

> / (f Da(kA,XkA)a(kA,XkA)de> dw¢ —/ C(kA, Xyp)ds |,
o \VJka kA kA

the i-th component of which, when plugging in (11), reads

h—1
YD Dot kA, Kea)o M kAL Rea) (e (A 0) = 8 BrA)),

2
k=0 ¢,meN j=1,....d

where clg,m(A, ) is given by

k+1)A s
(A e) = /kA (/M de»‘) dwem,

Taking the conditional expectation of c’g’m (A, e) with respect to Fya yields

]E[ck (A, e) | F ]— R YoLyem | Fealdr)d
Lm\=s kA | = A P kA | dr)ds

kA

¢ (k+1)A K _2( L2k
=Y Y””/ (/ e & s dr) ds
katka kA kA

K+DA / ps =2
+ 3£,m/ (/ﬂ QZL (e—sfz(x—r) _ e—g*Z(r-O-.r—ZkA)) dr) ds,
kA ka2

where the following representation of Y?,

K
Yfm — Y]f,Ame—g‘z(s—kA) +f 6_8_2(S_r)8_2dWrm,
kA

has been used, and this conditional expectation can easily be calculated as

k et elvem [ —e2A 2
]E[cg,m(A,sﬂka]:?Yk’AYk’A (e —1>

q 3 .2 1 5.
+8€,m7m<A+82<—§+26 ¢ A—Ee 24

21
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Now, since ijl ’’’’’ d Djai”" kA, )_(,sA(kA))oj'Z(kA, )_(TSA(kA)) is FrA measur-
able, for every £,m € N,i = 1, ..., d, each process M h=1,..., [T/A], given
by

My=3" 3" 3 Dot A, Keengano M KA Reena) (c (A, 0)

k=0 ¢,meN j=1,....d

~E[cf,, (8. ) | Fua ).

is a discrete martingale with respect to the filtration (F, A)[T/ Al

Lemma 3.10. Foreachi =1, ...,d,

AN2
E sup S (—) log(1 +&72) + Alog*>(1 + ¢ 72).
&

Proof. Combining Doob’s maximal inequality and martingale property gives

2 2
E sup M;; <E ‘M{T/A]
h=1,...,[T/A]
hA<t®
[T/A]-1 2
Z E Z (A &) —Ele, (A 8) | Fral| |
k=0 £,meN
where
2 2
> ke —E[d, a0 Fa]| [SE[| X daael |,
£,meN ¢,meN
for each k = 0,...,[T/A] — 1, because the conditional expectation is an L2-

projection. Thus, by independence of Y#-¢ and Y™ for every £ # m, we can estimate

T/A 1 (k+1)A 2
5| s uif|s Y v (e = wii)awe
h:l,...,TS/A k=0 ¢,meN
hA<t
by [}
k=0 ¢,meN kA

’

T/A-1 2¢' V4
j| ds

(k+1)A . '
£, &,
S Xoaf ey

k=0 ¢,meN A

Ys,m

N

2q 1/q
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T/A-l (k+1)A
S Y GugmAelog(l + 5—2)f (A +&2log(1 + 5—2)) ds
k=0 ¢ kA
= ,meN

A 2
< (-) log(1 +&72) 4+ Alog?(1 +&72).
£

O

To eventually cover the remainder of the 2nd sum on the right-hand side of (20),
after subtracting the martingale term M},, we introduce

h—1
' i % j ¢ 7 k 4q
Np=3 3 30 Dot kA Kea)o (kA Kia) (E[chna o1 Fia] —oemTta).
k=0 ¢,meN j=1,..., d
Lemma 3.11. Foreachi =1, ...,d,
2 2\ 2
E sup Ny | S (—) log>(1 +¢72).
h=1,...[T/A] A
hA<t®
Proof. The proof is an easy consequence of (21). Indeed,
) 2 h—1 2
E sup Ny, <E sup Z Z E [clg_m(A, )| ka] — (Sg,m%A
h=1,...,[T/A h=1,...[T/A) | {2 '
i hASITS/ I hAg[re/ k=0 ¢,meN
[T/Al-1
< etlog?(1 + 67 H)A™! Z Z qedm
k=0 ¢,meN
2\’
<[ =) 1ol +e72).
N <A) og”(14+¢7)
O

All in all, Lemmas 3.10 and 3.11 together imply

h—1

2 2
E| swp | (I(’f - Jf) —E| sup |(My+ Ny
h=1,...1T/A1| (2o h=1,...[T/A]
hA<t® hA<t®

A\2 2\?
< (7) 10g(1+s_2)+A10g2(1+s_2)+(%) log(1 +¢72),
£

showing that the 2nd sum on the right-hand side of (20) can be neglected, like the 5th
one, when ¢ | 0, and A = A, behaves as described in Remark 3.9.

Recall that we wanted to control the remaining sums in terms of the difference
X® — X itself, which is obvious for the first and third sum on the right-hand side
of (20). However, in case of the fourth sum, applying almost the same martingale
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argument used in case of the 2nd sum, each term Ié‘ can be formally replaced by

k(ZH)A (C(kA , X,fA) —C(kA, )_(kA)) ds, subject to a sufficiently small e-correction,
eventually leading to the wanted contraction argument in this case, too.
On the whole, we have justified that, if A = A, behaves as described in Remark

3.9, then

2 h—1 2
E sup | Xp A — Xpa < r(A,£)~|—ZAIE sup ‘X,‘i,A—Xk/A ,
K'=0,...,h =0 K'=0,....k
KA<t® KA<t®

h=1,...,[T/Al

where (A, €) — 0, ¢ | 0, finally proving (17), by Gronwall’s lemma.
The proof of Theorem 2.2(ii) is thus complete.

4. Weak convergence

In this section we prove part (i) of Theorem 2.2. The idea of proof is similar to the
one of part (ii), except that now B # 0 is possible. It is the existence of this bilinear
term which prevents us from proving convergence in probability—we only succeed
in showing convergence in law (see Remark 4.3(ii)).

First, we prove weak convergence of the bilinear term.

Second, we prove convergence in law of X?, ¢ | 0, using bounds similar to those
obtained in Sect. 3.

4.1. Weak convergence of the bilinear term

For any ¢ > 0, define the process U¢ by

t
UF = / eB(YE, YE)ds, 1 e[0, T, (22)
0

where Y ¢ is the stationary Ornstein—Uhlenbeck process introduced in Remark 2.1. By
(AS), the process U*¢ has zero mean, and, using (A3), its second moments,

t t
Bl [eporan.eds [ v ear].
0o ‘S>— 0 ‘—
BI(YE,YE) BI(YE,YE)
can be calculated to be

1 2 -
5 2 (Bt ) (BEtn). ) degm <r+ 5 (e - 1))

¢,meN

i .
/Sé,m /Sé/m

fori,j=1,...,d,and £,m € N.
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Recalling (12), using the above short notation, we also have that

b = Bl @ i=1,....d, t,meN.

Next, since de’lZ = —8‘2Yt8’zdt + 8‘2d(W,, f¢), Itd’s formula implies
! t
yolyEm = yetyem — 25—2/0 yetyEmds + 8_2/(; YELd (W, £,)
—4

_ ! te
+é 2 / Yge’md“/Vsafﬂ + TCIUSZ,m’
0

for any £, m € N, and hence

!;l / Z ﬂ[nglxgmdS_ 8/ Z ‘B[mYsld (Wy, £)

¢,meN €,meN
8 i ely,e,m ey e.m 8_1 i
- = Z Bem (yf Yt =Yy, )+ T’Zﬂz,etn
t,meN teN
I P i
= M, _EVt +TZZ/3LUIZ,

teN

where M? is a d-dimensional continuous local martingale, while the process V¢ sat-

isfies
E |:sup 4 ,,} —E |:sup e (B (Y7, Y7) - B (Y5, Y5)) ,,} Sellogl(1+67%), Vp>1,
t<T t<T (23)
by combining (A3) and Lemma3.1.
Remark 4.1. Using Ze,meN ﬂé’mqmm < ooforeveryi = 1,...,d, itis possible to

prove that M¢ is a square integrable martingale for every ¢ > 0. However, we will not
need this in the following.

The above representation of U?, though very simple, has been used in a variety
of cases in a fruitful way, see for instance [19] or [10]. Observe that, by (AS), the
Itd-correction actually cancels out, being otherwise a contribution of order ¢ ~!. The
process U?, nevertheless, has got an interesting limit in law:

Proposition 4.2. The couple of processes (U¢, W) converges in law, ¢ | 0, to a
pair of processes (n, w), where n is a d-dimensional Wiener process with covariance
(ZZ,mEN . mbé m)l =D and w is a Q-Wiener process, like W. Furthermore, n and
w are independent.

Proof. First, by (23), it is sufficient to prove the proposition for (M¢, W) instead of
Ue, w).
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Since all components of the processes M¢, ¢ > 0, and of W are continuous local
martingales, the distributional properties of the limit (1, w) would follow from [4,
Chapter VII, Theorem 1.4], if

2
B [m o] =0 3 blbl, ) |00 edo, (24)
! £,meN
foreacht € [0, T],and i, j = 1,...,d, as well as

E [([M@”’, (W, f,,,)]t )2] 0, £10,

foreachtr € [0,T],i=1,...,d,and m € N.
First, fix ¢+ € [0,T], as well asi, j = 1,...,d. Then, the quadratic covariation
[M#1, M7 is given by

t . ,
[MSJ’ M’s’]]t - 82/0 Z Z ﬁz,mﬂl{/,mquS&ZYf’e ds,

meN £,0/eN

so that

o -
B|([mo M) =0 37 b0,
£,meN

t
. : . : / e VA
— ¢ / /0 S S BBlBinBl dminE [Yflysg,l vetys —]dsdr

m,meN ¢ ¢'eN
£.l'eN
2 (! j Cyel j
i J g, £, i J
~ 2 / S BBl panE [ ds (13 b0,
0 eNg,eN £,meN

2

+e > by b

£,meN

Now, using that one can easily calculate E [Y o Lty f’el] = %qg 8¢ ¢, it follows from
Isserlis—Wick’s theorem, see [14, Theorem 1.28], that

—4
NN € 02 s—
]E[Yf'gyf’e Yf*Y’&] =7 (qmﬁ‘sl"f"sﬁé’+q€q‘f’e b (‘Sﬁ,@ew+54,§’5£’,£))’

which yields

i ¥ . j
| ([ ) 1 3 b
£,meN
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_ i J i J
=17 Z bﬁ,mb[,m_t Z bl,mb(i,m

£,meN £,meN
+0(s?) < &%

proving (24).
Second, fixt € [0, T],aswellasi =1, ...,d, m € N. Then,

[M“', (W, fm>]t - /Ot Bl (eYE, Of,) ds.

where, using Lemma 3.1,

t t
]E|:|/ Bl (eYE, Of,) ds |2] = E[us"(e/ Yéds, Ofy) |2}
0 0

eWr—e3(YF—Y§)
—_——

L e 2 2, elo
S Ellef Yids|g,1— O,
0

finishing the proof of the proposition. U

Remark 4.3. (i) Of course, a d-dimensional Wiener process with covariance
(Qemen bé’mbiym)f.{j:l canalways berepresented by » .,y be.m W™ where
{WZ’”‘ }e.men 1s a family of independent one-dimensional standard Wiener pro-
cesses.

(ii)) We would like to stress that we do not expect a much stronger convergence of
U?, when ¢ | 0, as the one stated in the above proposition. Indeed, it turns out
to be that the sequence {M*}.- is not even a Cauchy sequence in L2(S2 Rd).
To see this, for fixed 0 < ¢ < ¢, and some 1 <i < d, consider

, |2 t ' 2
E|sup |M;" —M;"| | =E | sup / > B (er’@ —ng") d(Wy, )
t<T =T 1Jo , N ’
But, by Burkholder—Davis—Gundy’s inequality, the above expectation can be
bound from below by
T 2
E / > (Zﬂé,m (eve —ng")) dnds
0 meN \LeN
i 2 1e™!
— i 2 =2
=T Z Bo.m) " qeqm <1 - m) ,
£,meN -
where
. 217!
lim|1—-————=) =1, foreveryfixede > 0,
e—0 g2 + §_2 -

so that {M®},_( cannot be Cauchy in L?(£).
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4.2. Weak convergence of solutions

We now prove X¢ — X, in law, when ¢ 0.
First, for each ¢ > 0, let X¢ be the solution of

t t
X = x +/0 (F(s, X8) + Cs, xﬁ)) ds +f0 o (s, XOdW, + UE, 1 €0, T],
(25)

where U? is given by (22), and let 7§ = inf{r > 0: |X?| > R} Ainf{r > 0: |X?| >
R}.

Note that, if (A4), then the coefficients F, C, o, B must have properties such that
each of the above equations admits global solutions on [0, T'], too.

)4
i| < e PlogP (1 4+ ¢72%) we

Next, taking into account E H supsepo.71 EB(Ys, Y5)

can estimate increments of U¢ with

T\P
E S Uys — Uial” | S () logP 467 26)
k=0,1,...[T/A] e
t<t, t+kA<T ATy

As a consequence, it can easily be verified that the analogous of Lemmas 3.3 and 3.4
would still be valid for the process X¢, despite 8 7# 0, on the one hand, and that the
following versions

~ N p
E[ sup le+kA—XiA|P}5r’z’+(5) log” (1 + &2,
&

t<t, t+kA5T/\r§

p>1,71e(0,1), kel{01,...,[T/Al},

and

~ ~ P Apil )
E sup IXfin = Xpal? | SATT + log(1+¢7), p>1,
k=0,1,....[T/A] ep
t<A, t+kA<T ATR

of Lemmas 3.5 and 3.6, respectively, would hold true when replacing X by X¢, on the
other. We point out that the proof of this claim differs from those in Sect. 3 only for
the term U?, which however can be controlled by (26).

Therefore, when expanding X¢ and X¢ asin (18) and (19), but including the B-term,
and then arguing as in the proof of Theorem 2.2(ii) in Sect. 3, it would immediately
follow that Xf”fmlge — )A(?M;; — 0, in probability, ¢ | 0, for any R > 0, once the
following lemma is also available.
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Lemma 4.4. Assume that A = A, behaves as described in Remark 3.9. Then,

h=1 L (k+1)A s 2
E sup Z/ (/ Da(r,Xf)sﬂ(Yf,Yf)dr)de —0, &1]0.
h=1,..[T/A | 2 JkA kA
hA<t$,

R

Proof. To start with, write

(k+DA s
/ (/ Do (r, XE)eB(YE, Yf)dr) dw¢
kA kA

(k+1)A s
= / (/ (Do (r, XD)eB(YE, YE) — Do (kA, X7 )eB(YE, YY) dr> dw¢
kA kA

(k+1)A N
+/ </ Do (kA, X5 )eB(YE, Yf)dr> dwe,
kA kA

which creates two summands, for any fixed 0 < k < [T/A] — 1.
We estimate the impact of each summand separately.
First, using | Do (r, X;) — Do (kA, X \)| S |1X; — XA | + @ (A), we obtain that

h=1 (k+1)A / ps 2
E| sup f (/ (Do, xf)gg(yf,yf)_Da(kA,x,iA)g,s(yf,yf))dr)dwf
h=1,..[T/A) | ;= TkA kA
hASrIS-\,
h=1 (k+D)A s 2
< e log?(1 4+ 6 E sup Z/ (/ (1XF = XPAl + 05 (D)) dr) ds
h=1,..[T/A] | ;g kA kA
hAgr;
[T7ATg1/A-1 G+DA | ps )
< e log?(14+ 6 HE Z / [ (1XE = XFAl + @0 (A) dr| ds
= kA kA
4y 2 2 TR perna g 2 2
— — € £
Setlog?( +67%) kg [kA (s—kA)/kA <IE[|XWISe _XkAm;J ]—i—wo(A) )drds
2
A? A2
< <3) log® (14 &72) + (—2) log2(1 + e 2) wy (A)2.
& &
Second, we approach
h=1" L (k+1)A s
Z/ (/ Do (kA, X{)eB(YE, Yf)dr) dwe 27
kA kA

k=0

following the method used when discussing the 2nd sum on the right-hand side of (20)
in the proof of Theorem 2.2(ii), but now for triple moments of Y¢.
Indeed, define

k+1)A
k (A ) . ( + ) * YS,[Ys,md YS,nd
Ci,m,n €)= LA LA r r r K S,
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and take the conditional expectation with respect to Fia, that is

N

(k+1)A
E [cl@im’”(A’ 2 ]:kA] - fk (/k E [Yrs'eyf’myf’" | ka] dr) ds.
A A

Since
E[YEOEmren | Fia] = YEYEmY e e o
(YN Bmndn + YRSt + Y,ffag,mqg)

-2
87 (efs*%-fm) _ efe’z(s+2r73kA)) ’

we have that

4
& -2 1 1 )
E [clg,m’n(A, e) | ka] = Y,ffy,f*A’”Y,f’A"7 (1 —ef A 3+ ge_3€ A)

NG , ,
+ (YkgA Sm.nqn + Y/fAm(SZ,nCIn + Y/fAn(SZ,mQZ)

2
e AN PN I 25 1 I 5,24
) (826 T2 6 '

Next, foreachi =1, ..., d, the process Mi h=1,..., [T/A], given by

h—1
My=3" 3 3 Dot s Xy eBL (R0 ~E [k, (A, 0) | Fial),

k=0 ¢,m,neN j=I1,....d

is a martingale with respect to the filtration (F, A)E,TZ/IA ], and arguing as in the proof
of Lemma 3.10 yields

|? A3
E sup (M| | S =plo@( 467, i=1,....d.
h=1,....[T/A] &
hA<ty

So, it remains to prove that the remainder, after subtracting the martingale term M},
from (27), also vanishes, when ¢ | 0. Fori = 1,...,d, the ith coordinate of this
remainder reads

h—1
Ni=Y Y Y Dot kA XineB] B[ cf (A e) | Fral,
k=0 ¢,m,neN j=1,....d
2}

and we can easily calculate the below bound,

2 T/A—1
Nil [ SaTh e E[

k=0

¢E [clg’m’n(A, e | ]—‘M]
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2

(£ 3 -2

S (Z) log”(14+¢&79),

finishing the proof of the lemma. U
Corollary 4.5. Forany R > 0, if A = A, behaves as described in Remark 3.9,

t<T Aty

E|: sup |Xf—)?f|2j|—>0, el 0,

and hence X*, . — Xe . —0,in probability, ¢ | 0, in particular.
R

-/\'L'R

The above corollary suggests that it would be sufficient to show that )A(?“M;é —
X. ATEs in law, when ¢ | 0, subject to some procedure allowing to let R go to infinity,
afterwards. So, we at first prove the weak convergence for fixed R and then discuss
the limit-procedure for R — oo.

Modify the coefficients F, o outside the set {(#, x) : |x| < R} in such a way that the
new coefficients Fg, o, but also Dog, are globally bounded, and that both functions
Fg(t,-) and DoR (¢, -) are globally Lipschitz, uniformly in ¢ € [0, T].

Of course, X € - coincides with X 5 , where X&R denotes the solution to the equa-
tion obtained when replacing the coefﬁ01ents of (25) by Fg, o, and the Stratonovich
correction Cg associated with og. Also, let X® denote the solution to the equation
obtained when replacing the coefficients of (13) by Fr, og, Cr.

Proposition 4.6. Fix R > 0. Then, XeR converges to X®, in law, when ¢ |, 0.

Proof. Since

t

t
xR —uf =xo+/ (FR(S,X?R)-FCR(S, X?’R)) d5+/ or(s, X;F)dWs,
0 0

by boundedness of the coefficients on the above right-hand side, we obtain that

'
E |:sup IXf’R - Uf|] S xol+T+E |:sup| or(s, ng'R)dWs|:| ,
t<T t<T JO

where Burkholder—Davis—Gundy’s inequality gives E [SuPng | fé ogr(s, Xf’R)d Wi |]
T1/2
Similarly, E [|(X€ R_ Ug) — (X;; k_ U8)|P] < |ta—11|P/?, forany |t —11] < 1,
and any p > 1. Thus, by Kolmogorov—Chentsov’s theorem, for every o € (0, 1), one
can find A € (0, 1) such that

sup

b (X —ug) — X0 - up)
11,0€[0,T1, [—t1]<A [ty — 1117

<c0nst} > 1l-a, Ve>0,

where const depends on y, but not on &, and y € (0, 1/2) can be freely chosen.
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We therefore have equi-boundedness and equi-continuity of { XeR_y £}e~0 with
arbitrarily high probability, and hence the family (X&R —U*)eaqis tight with respect
to the uniform topology in C([0, T'], RY), first applying Arzela—Ascoli, followed by
Prokhorov’s theorem. Moreover, {U®},~ is trivially tight by Proposition 4.2, so that
adding X&R — U¢ and U would make {)A(g'R}Do tight, too.

All in all, the family of triples {( XeR e w )}eso is tight.

Next, for ¢ > 0, let PR-¢ be the pushforward measure P o (XeR Ue, W)= on the
space

Q = C([0,T], Hy) x C([0,T], Hy) x C([0, T], Hao)

equipped with the Borel-o -algebra I3, and let (£, 1, w) denote the coordinate process
on .

By tightness of {()A(S’R, U€, W)}e=0, there exists a subsequence (&,),eN such that
PR-¢n weakly converges to a probability measure PX on (€2, B), when n 1 co.

Let F be the ]P’R-completion of B, and let (ﬁ,) te[0,7] be the smallest filtration the
process (&, 1, w) is adapted to, on the one hand, and which satisfies the usual conditions
with respect to PR on the other. Also, introduce F n (]i',”) re[0,7] in a similar way with
respect to PR n e N,

Now, it easily follows from Proposition 4.2 that, on (fz, F ,PR), the following
distributional properties must hold for the pair of processes (77, w): 11 is ad-dimensional
Wiener process with covariance (3, ,,cn b, b )¢ w is a Q-Wiener process, 1

Lm“l,m’i, j=1°
and w are independent.
Introduce
t
MF =& —x —/ (Fr(s, &) + Cr(s,&))ds —n,, 1€[0,T], (28)
0

and observe that each component of both processes M* and w, but also

. . t . .
M,R’lM,R“’—/ > op"(s.E)oR" (5. E)gmds. 1 €[0.T], i j=1,....d.

meN
MIR’le—/OaI’ém(s,és)qmds, tel0,T], i=1,....,d, meN,

ot @" — 8¢ mgm, t€[0,T], £,meN,

are continuous local martingales with respect to (-ﬁ")te[o,T] on (Q, F", PRen), for
any n € N, and hence they are continuous local martingales with respect to (.7?,),6[0, ]
on (Q, F, PR), too, by [12, IX. Cor.1.19].

Therefore, applying [3, Theorem 8.2] to the pair of process (M R ») yields

t t
M,R=/ or(s, £)dWE, w,:/ 1dWR =wR, tel0,T],
0 0
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on (fZ, F , IP’R), or an enlargement of this space we still denote by (fZ, F , IP’R), where
W R is another Q-Wiener process, which, by the above representation, even PR - almost
surely coincides with w, so that

t
ME = / or(s, E)dws, t€[0,T], PR — as.
0
Thus, Eq. (28) can be written as

t t
& = xo +/ (FR(s, &) + Cgr(s, &)) ds +/ or(s, &)dws +n,, 1[0, T], PR - as.,
0 0

where w is a Q-Wiener process, while 7 is a d-dimensional Wiener process, indepen-
. . i i \d o

dent of w, and with covariance (3, cxy b’[,mbé,m)i’_j:1 . Observe that the process X X

satisfies the same type of equation, as y £.meN be.m Wt from (13) is a d-dimensional

d

Wiener process with covariance (3", e b) b7 )¢ j=1- too. But, since this type of

L,m~L,m
equation admits a unique strong solution, the laws of £ and XX must be the same,
proving X®»® — X® in law, when n 1 oo. However, the same argument applies to
any converging subsequence, and the limit will always be the same, finally proving

X&R X& inlaw, when ¢ J 0. O

It remains to discuss how R can be taken to infinity.

Recall that X is the solution of (13), and it is not difficult to see that X ® converges
to X, in law, as R — oo.

Now take a function g € C(C([0, T1,R%), [0, 1]), such that or(u) = 0, if
Supepo,7y Il < R — 1, and pgr(u) = 1, if sup, o 7 lus| > R.

Then,

P{tg < T} <P{ sup |}A(f’R| >R: <E [(pR()A(g’R)],
1€[0,T]

and because X&R — X R inlaw, when & 1 0, we deduce that

limsup Pty < T} < IEI:goR()_(R):I <Pq sup |)_(,R| >R—1{=P{ sup |[X;|>R—1¢,
£—0 1€[0,T] 1€[0,T]

where the last probability converges to zero, when R — oo, because X is a global
solution.
As a consequence, for any ¥ € Cp(C([0, T, ]Rd), R),
E[y (X)) -E[y(®)] ‘ < ’E [ (x)] —E[v X, )] ‘ + ‘E [ve o] —E[vdsh] ’
+ ‘E [ i) e[y ‘ + ‘E [we®)] - [vxD) ‘

+ ‘E[wi’*)] ~E[y(D] ‘
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Here, when taking R large enough, we can make all the summands on the right-hand
side, except for the second and fourth, arbitrarily small, uniformly in ¢, and, for fixed
R, the remaining terms go to zero, when ¢ |, 0.

Thus, by a diagonal argument, the convergence in law of X* — X, ¢ | 0, follows,
completing the proof of the theorem.

5. Application to climate models

We now apply Theorem 2.2 to perform stochastic model reduction for a subclass
of the stochastic climate models given by (4), (5) in the introduction: we restrict our-
selves to a simpler version of (5), omitting fast forcing s ~2 fsz, 1, and s_lA%Y £, on the
one hand, but also neglecting the interaction 3122 (X7, Y/), on the other. While the first
two terms we omit are technically demanding but look doable from a wider prospec-
tive, which is beyond this paper, the term 8_13122 (X?,Y/) involving the neglected
interaction is notoriously hard and beyond our understanding, right now.

For each ¢ > 0, let (X, Y?) be a pair of processes satisfying

dx;
dtt = F! + AJX] + AYYS + Bl (X[ XD) + Blp(X[ . Y)) + eBy(Yf YY),
(29)
U 2 A2XE + e 2B (XE, XE) — e 2YF + 672, (30)
a 14 7€ b A, &) —& A T E ts

where A} : Hy — Hy, A; . Hyw — Hy, A% : H; — Hy are bounded linear
operators, 31]1 cH; x Hp — Hy, Bll2 :H; x H — Hy, 32]2 cHy X Hyo — Hy,
3121 : Hy x H; — Hy are continuous bilinear maps, and F1:[0,T] > Hyis a
deterministic continuous external force. Stochastic basis and Wiener process W are
taken to be the same as in Remark 2.1.

In what follows, the above equations will always have initial conditions (xg, yo),
where xo € Hy can be chosen arbitrarily, while yp = ffoo e_zegfzdes will be
fixed to ensure pseudo-stationarity of the scaled unresolved variables. Note that fixing
Yo € Hx this way would not restrict the initial data of the reduced equations.

In fluid dynamics settings like (1), it is customary to assume that A is self-adjoint,
and that the full nonlinearity is skew-symmetric: (B(z',z),z)y = 0, z, 7 € H, see
[18]. We therefore make the following assumptions on the projected coefficients:
(CD A} = (A"

(C2) (B},(x',x),x)n, =0, forall x,x" € Hy;
(C3) (BL,(x',y),x)m, = —(B},(x', x), ), forall x,x" € Hy,y € Heo.

Also, without loss of generality, we can assume that 3212 is symmetric in the sense
of (B, (e, ), €)1, = (Bl (£, £0), &) m,, for all i, £, m; and finally, we will need
the analogue of (AS), that is

(C4) X ,cn(Bay(fe, f0), €0 m, g =0, foralli =1,...,d.
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Note that the latter condition is indeed satisfied for many fluid dynamics models—it
usually holds independently of the structure of the noise because (8212 (e, £,), €i)H,
would be zero on the diagonal, when ¢ = m, for all i.

Next, we bring Egs. (29), (30) into a form which makes them comparable to (6),
.

Using the definition of yg, we have the following mild formulation of (30),
t
YS =Y+ / g 2eme =9 (Afxf + B} (XE, xﬁ)) ds, te[0,T], (31
0
where

t
Yf :/ e 278 2(Iﬂ)dWS, t R,

—00

is a stationary Ornstein—Uhlenbeck process. Plugging (31) into (29), X*¢ alternatively
satisfies

t t t
Xi= x0+f (Fsl+A}X§+B111(X§,X§))ds+/ A§z§ds+f B, (X£, ZF)ds
0 0 0
t - t -
+ [ abias s [ mhot oas
0 0

t t t
+f 83212(1?5,Y§)ds+2/ slez(ff,z_f)dH/ eBl, (25, Z8)ds, 1 €10, T1, (32)
0 0 0

when using the abbreviation
N
zt :/0 &2 0T (ARXS + BR (XL X)) dr.

Since Z¢ is close to A%X? + Blz] (X%, X§), for small ¢, and since both terms
BL,(YE, Z8), B), (Z¢, Z¢) will be shown to vanish with &, too, the process X© should
be close to X¢ satisfying

13 t
Xt = x0+/ (Fl+ALRS + Bl (X5 XD) ds + / A (A3 + BE (%5, X)) ds
0 0
t
+/ Bl (X5, (A3%; + B (XS %) ) ds
0
t B t B B t ~ _
+f Aéyfdsju/ B}Q(Xi,yf)dwr/ eB,(YE, YE)ds, 1€l0,T],
0 0 0
(33)
which is an equation of type (6) with

F(t.x) = F) +Alx+ Bl (0 + 4y (A3x + B .0 ) + Bl (x, (A% + B (. 0)).
o(t,x) = Ay + Biy(x, ),

1
B = By.
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Thus, in this setting, the analogue of (13) would read
- l - - - t - - -
X, =x0+ / (Fxl + Al X, + B, (X;, XS)) ds + f Al (A%XS + B} (Xs, XS)> ds
0 0
t _ ~ L t
o [l (% (AR 4 BR GG R0) a5+ [ ectoas
0

+A;W,+f BL(Xs.dW) + D bemW,S™, 1€[0.T], (34)
t,meN

where the Stratonovich correction term C : H; — Hy simplifies to

(C(x). e, Z%Z (Bly(ej. fn). €) i, (Bly(x.Bu). €}y, i=1.....d,
mGN j=1

b = (Bh (e, ), €)1, /@, i=1,....d t,meN.

Proposition 5.1. When assuming (C1)—(C3), Eq. (34) admits a unique global strong
solution on [0, T].

and

Proof. First, regularity of coefficients guarantees the existence of a unique local strong
solution. Second, by It6’s formula,

1 _ 1 INT _ _ _ _
1Kol = 2 lxol? +f (F + A1 X, + Bii (X, %), X,) ds
0

AT
+ / (A} (ATX, + B (Xy, Xy)) . X,) ds
0

AT

AT
+/ (Bl (X, (A%, + B2y (0. X)) . Xs) ds +/ (C(Ry). Xy)ds
0

INT INT
[ e x4 [ BhGawo. X0+ Z/ (bem, X)W
0 0

£,meN

3 Y AN Pan @A)+ 5 Z/ B b0 Pands + 3 Y Ibenl A0,

meN meN l meN

for any fixed ¢ € [0, T], and any stopping time 7 smaller than a possible explosion
time.
Applying (C1)—(C3), we have the identities

(B}, (X5, X;), X;)n, =0,
(AYBT(Xs. Xy). Xg) iy = (BT (X5, X,), ATX ) e
(Bly (X, ATXy), Xs) 1, = — (B (X5, Xo), ATX ) H
(Bly(Xy. B (X, X)), X)m, = — |1 BY (X, X3,
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leading to

t
E |:sup |Xt/Ar|2:| S (1 +/ E |:Sllp |X5/At|2:| ds) )
t'<t 0 s/ <s

again using the regularity of the coefficients combined with Burkholder—Davis—
Gundy’s inequality. Thus, by Gronwall, the local solution X has to be global on
[0, T]. O

Remark 5.2. In a very similar way, it can be shown that both Eqgs. (32) and (33) admit
unique global strong solutions on [0, T'], too, and hence those proofs are omitted. As
a consequence, simply substituting the solution of (32) into (31), for each ¢ > 0, there
is a unique pair of processes (X¢, Y?) satisfying (29), (30) on [0, T'].

Theorem 5.3. Assume (C1)—(C3), fix e > 0, and let (X¢, Y?) be the unique pair of
processes satisfying (29), (30) on a given climate time interval [0, T].
(i) If(C4), then X convergesin law, & | 0, to the unique process X satisfying (34).
(ii) However, if (C4) comes via le2 = 0, then the stronger convergence (8) holds
true.

Proof. Recall the process X satisfying (33), which is an equation of type (6) with
coefficients F, o, B satisfying (A1)—(A3). Furthermore, by Proposition 5.1 and Re-
mark 5.2, condition (A4) is satisfied, too, while (AS5) and (C4) actually are the same
condition.

All in all, Theorem 2.2 implies that both parts (i) and (ii) of Theorem 5.3 hold true
when replacing X¢ by X¢.

Thus, it is sufficient to prove convergence in probability of X¢ — X¢ to zero, & | 0,
uniformly on compact subsets of a localizing stochastic interval, which can easily be
shown following the lines of proof of Theorem 2.2.

Indeed, by localization and discretization arguments, one would first derive

2 h—1 2
E| sup |Xj,—X{,| | S r(Ae)+ ) AE| sup ’X,i,A—X,i,A ,
K'=0,....h =0 K'=0, ...k
Kastq KA<T,

h=1,...,[T/A]

where t5 = inf{r > 0: [X?| > R} Ainf{r > 0: |X?| > R},andr(A, &) — 0, & | 0,
for a suitable choice of A = A,. Then, combining Gronwall’s lemma and Markov’s
inequality, one would obtain

limP{ sup [|Xf—X|lg, >8; =0, V&>0,
=0 1<TAth

which yields the convergences stated in parts (i) and (ii) of Theorem 5.3 up to time 7.
Since X is globally defined, both types of convergence can be extended to the whole
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interval [0, T'], using similar arguments given in the proof of the corresponding parts
of Theorem 2.2. 0
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