Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/156808

How to cite:
Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.
Beamforming and Jamming Optimization for IRS-Aided Secure NOMA Networks

Wei Wang, Graduate Student Member, IEEE, Xin Liu, Senior Member, IEEE, Jie Tang, Senior Member, IEEE, Nan Zhao, Senior Member, IEEE, Yunfei Chen, Senior Member, IEEE, Zhiguo Ding, Fellow, IEEE, and Xianbin Wang, Fellow, IEEE

Abstract—The integration of intelligent reflecting surface (IRS) and multiple access provides a promising solution to improved coverage and massive connections at low cost. However, securing IRS-aided networks remains a challenge since the potential eavesdropper also has access to an additional IRS reflection link, especially when the eavesdropping channel state information is unknown. In this paper, we propose an IRS-assisted non-orthogonal multiple access (NOMA) scheme to achieve secure communication via artificial jamming, where the multi-antenna base station sends the NOMA and jamming signals together to the legitimate users with the assistance of IRS, in the presence of a passive eavesdropper. The sum rate of legitimate users is maximized by optimizing the transmit beamforming, the jamming vector and the IRS reflecting vector, satisfying the quality of service requirement, the IRS reflecting constraint and the successive interference cancellation (SIC) decoding condition. In addition, the received jamming power is adapted at the highest level at all legitimate users for successful cancellation via SIC. To tackle this non-convex optimization problem, we first decompose it into two subproblems, and then each subproblem is converted into a convex one using successive convex approximation. An alternate optimization algorithm is proposed to solve them iteratively. Numerical results show that the secure transmission in the proposed IRS-NOMA scheme can be effectively guaranteed with the assistance of artificial jamming.

Index Terms—Artificial jamming, beamforming optimization, intelligent reflecting surface, non-orthogonal multiple access, physical layer security.

I. INTRODUCTION

Intelligent reflecting surface (IRS) is a promising technique to improve communication quality via reconfiguration of propagation environment [2]. As a two-dimensional surface consisting of a large number of passive reconfigurable reflecting units, IRS can be flexibly deployed on the facade of buildings. Compared with traditional relays, IRS consumes less power because it only reflects signals by using low-cost reflecting elements [3], [4]. On the other hand, due to its flexible reconfigurability of IRS, it can easily work in the full-duplex mode without involving interference [5]. Therefore, IRS has drawn tremendous attention from both academia and industry recently [6].

IRS has a great potential to enhance physical layer security (PLS) for wireless networks [7]–[11], as the reflected signal can be beamformed at legitimate receivers and suppressed at the eavesdropper by adjusting IRS reflecting elements. In [7], Chen et al. proposed a programmable secure wireless environment using this reconfiguration capability of IRS. Thus, there is no need to deploy extra relay or jammer to degrade the reception at the eavesdropper, which greatly reduces the transmission power. In [8], the achievable secrecy rate of an IRS-assisted system was maximized by Guan et al. via jointly optimizing the precoding with artificial noise and IRS beamforming. The exceptional performance of IRS in secure transmission has been utilized in both multi-input single-output (MISO) and multi-input multi-output (MIMO) systems [9], [10]. Furthermore, the secure communication of IRS-MISO systems was investigated in [11] by Yu et al., taking into account the imperfect channel state information (CSI) of eavesdropping channels. However, all these works are based on the assumption that the full CSI or partial CSI of the eavesdropper is available in legitimate networks [7]–[11], which is challenging in practice since the eavesdropper is usually passive and does not actively exchange its CSI with the transmitter.

On the other hand, non-orthogonal multiple access (NOMA) is considered as an effective solution to enhancing spectrum efficiency and achieving massive connectivity in future wireless networks [12], [13]. Different from the conventional orthogonal multiple access (OMA), the power-domain NOMA allows the allocation of the resource block (i.e., frequency/code) to multiple users simultaneously [14]. At the transmitter, the signals for different users use different power levels according to the difference in channel gain, and then superimposed in
the power domain. At the receiver, successive interference cancellation (SIC) is utilized to eliminate the multiple-access interference and decode the desired information [15]. Due to its concurrent communications nature, NOMA systems are susceptible to different security and confidentiality related issues. To guarantee the secure transmission in NOMA networks, various PLS methods have been proposed, e.g., beamforming [16]–[18], cooperative relaying [19], [20], artificial jamming [21], [22], etc.

Nevertheless, it is worth noticing that NOMA can achieve better spectrum efficiency than OMA only when the channel gains of the users are considerably different. Since IRS can digitally adjust the phase shift of reflected signals, it has a great potential to enhance the channel difference and obtain the NOMA gain in various scenarios. Due to the advantages of IRS and NOMA, these two techniques have been combined recently [23]–[26]. In [23], Mu et al. considered a joint active and passive beamforming design problem to maximize the sum rate in IRS-aided NOMA networks. The downlink communication of IRS-assisted NOMA systems was investigated by Zuo et al. [24], in which the system throughput was maximized by jointly optimizing the channel assignment, SIC decoding order, power allocation, and IRS coefficients. In [25], Ding et al. proposed a design of IRS-assisted NOMA to guarantee the service of cell-edge users by applying IRS to align the cell-edge users channel vectors. As a further advance, an IRS enhanced millimeter-wave (mmWave) NOMA system was considered in [26], which confirms that by introducing IRS, the coverage of mmWave-NOMA systems has a significant improvement, especially when there are no direct links between the base station (BS) and users.

However, to the best of our knowledge, the security aspect of IRS-assisted NOMA networks has not been investigated. Different from NOMA, introducing IRS provides an additional reflection link that may enhance the signals received by the potential eavesdropper, especially when the eavesdropping CSI is unknown. Thus, this will be a double-edged sword for the secure transmission. Motivated by the aforementioned discussion, in this paper, we propose an artificial jamming aided IRS-NOMA scheme, in which the jamming signal is generated with NOMA information to disrupt the potential eavesdropping. The contributions of this paper are summarized as follows.

- To the best of our knowledge, research on the security of IRS-assisted NOMA networks has not been done. Thus, the first contribution of this paper is the proposal of an artificial jamming aided IRS-NOMA scheme, which could maximize the legitimate sum rate while guaranteeing the security via artificial jamming.
- In the proposed scheme, the artificial jamming is generated together with the NOMA information, which can suppress the eavesdropping efficiently. At legitimate receivers, the jamming signal can be completely eliminated via SIC with the help of the transmit beamforming and IRS reflecting optimization.
- Due to the non-convexity of the proposed optimization problem, it is first decomposed into two subproblems, i.e., optimizing the transmit beamforming vectors with fixed IRS reflecting vector and vice versa. Then, these two subproblems are approximated into convex ones via successive convex approximation (SCA) and the original problem can be solved effectively by an iterative algorithm based on alternating optimization.

The rest of this paper is organized as follows. Section II introduces the system model. The optimization problem is formulated in Section III. In Section IV, the formulated problem is first decomposed into two subproblems, and then an algorithm is proposed to solve them iteratively. In Section V, simulation results are presented, followed by conclusions in Section VI.

Notation: $\mathbb{C}^{M \times N}$ is the space of complex matrices. $\mathbb{R}^{a \times b}$ is the $a \times b$-dimensional real matrix. $\mathbf{1}_N$ is the $N \times N$ identity matrix. \mathbf{a}^H and $\text{diag}(\mathbf{a})$ denote the conjugate transpose and the diagonal matrix of \mathbf{a}, respectively. $\mathcal{CN}(\mathbf{n}, \mathbf{N})$ is the complex Gaussian distribution with mean matrix \mathbf{n} and covariance matrix \mathbf{N}. $\mathbf{A} \succeq 0$ denotes that \mathbf{A} is a Hermitian positive semidefinite matrix. ∇_x denotes the gradient of the variable x, and $\text{Re}(\cdot)$ is the real operator.

II. System Model

As shown in Fig. 1, we consider the secure communication from a M-antenna BS to K single-antenna NOMA users in the presence of one passive eavesdropper, where an IRS is deployed on the facade of a surrounding building to strengthen the desired signal. The direct path between the BS and mobile users is blocked due to unfavorable propagation conditions. The kth user $U_k, k \in \mathcal{K}$ has a fixed location $(x_k, y_k, 0)$ on the ground, where $\mathcal{K} = \{1, 2, \ldots, K\}$. The CSI of all the legitimate channels is assumed to be perfectly known by the BS as it can be efficiently obtained via the recent advances in channel estimation for IRS [27], [28].

Assume that a potential eavesdropper exists to collect the confidential information of legitimate users, with its CSI unavailable for the legitimate network due to its passive characteristic. To disrupt the eavesdropping and guarantee the secure transmission of legitimate users, the artificial jamming is generated together with NOMA information at the BS. The
transmitted signal can be expressed as
\[x = \sum_{k \in \mathcal{K}} w_k s_k + w_{\text{jam}} z, \]
\[(1) \]
where \(w_k \in \mathbb{C}^{M \times 1} \) denotes the precoding vector for user \(k \), with \(\| w_k \|^2 = P_k \). \(s_k \) is the NOMA information of \(U_k \) satisfying \(|s_k|^2 = 1 \), \(w_{\text{jam}} \in \mathbb{C}^{M \times 1} \) represents the artificial \(0 \) the deterministic LoS channel component, and \(v \) the jamming signal satisfying \(|z|^2 = 1 \).

The received signal at the \(k \)th user can be given by
\[y_k = h_{r,k} \Phi H_m x + n_k, k \in \mathcal{K}, \]
\[(2) \]
where \(n_k \sim \mathcal{CN}(0, \sigma^2) \) denotes the additive white Gaussian noise (AWGN) at \(U_k \) with mean zero and variance \(\sigma^2 \). \(\Phi = \text{diag}(e^{j\theta_1}, e^{j\theta_2}, \ldots, e^{j\theta_N}) \in \mathbb{C}^{N \times N} \) represents the diagonal phase-shifting matrix by all IRS reflecting elements, where \(N \) denotes the number of elements on the IRS. \(\theta_n \in [0, 2\pi] \) is the phase shift on the combined incident signal by its \(r \)th user to the BS. \(H_m \in \mathbb{C}^{N \times M} \) denotes the Rician channel fading matrix between the BS and the IRS, which can be given by
\[H_m = \sqrt{\beta_0 d_{BI}^{-\alpha_B}} \left(\frac{K_{BI}}{K_{BI} + 1} G_L + \frac{1}{K_{BI} + 1} G_R \right), \]
\[(3) \]
where \(\beta_0 \) represents the path loss at the reference distance of 1 meter, \(d_{BI} \) denotes the distance from the BS to the IRS, and \(\alpha_{BI} \) denotes the path-loss exponent. \(G_L \in \mathbb{C}^{N \times M} \) is the deterministic line-of-sight (LoS) channel component, and \(G_R \sim \mathcal{CN}(0, 1) \) denotes the scattering component. In addition, \(K_{BI} > 0 \) is the corresponding Rician factor.

Similarly, \(h_{r,k} \in \mathbb{C}^{1 \times N} \) is the Rician channel fading vector from the IRS to the \(k \)th user, which can be expressed as
\[h_{r,k} = \sqrt{\beta_0 d_{k}^{-\alpha_{r,k}}} \left(\frac{K_{IU}}{K_{IU} + 1} g_L + \frac{1}{K_{IU} + 1} g_R \right), \]
\[(4) \]
where \(d_k \) is the distance between the IRS and the \(k \)th user, \(\alpha_{r,k} \) is the path-loss exponent, and \(g_L \in \mathbb{C}^{1 \times N} \) and \(g_R \sim \mathcal{CN}(0, 1) \) represent the deterministic LoS channel component and the scattering component, respectively. \(K_{IU} \) is the corresponding Rician factor.

Without loss of generality, we assume that the channel gains between the IRS and legitimate users satisfy
\[0 < \| h_{r,1} \|^2 \leq \cdots \leq \| h_{r,K} \|^2. \]
\[(5) \]
Then, the transmit power from the BS satisfies
\[\sum_{k \in \mathcal{K}} \| w_k \|^2 + \| w_{\text{jam}} \|^2 = P_{\text{max}}, \]
\[(6) \]
where \(P_{\text{max}} \) denotes the maximum transmit power for BS.

For convenience, we define the IRS reflecting vector as \(v = [v_1, v_2, \ldots, v_N] \), where \(v_n = \Phi u_n = e^{j\theta_n}, \forall n \). By changing the variables, we have
\[h_{r,k} \Phi H_m = v^H H_{\text{mrk}}, \]
\[(7) \]
where \(H_{\text{mrk}} = \text{diag}(h_{r,k}) H_m \). Therefore, the signal-to-interference-plus-noise ratio (SINR) at the \(k \)th user can be derived as
\[\gamma_k = \frac{\| v^H H_{\text{mrk}} w_k \|^2}{\sum_{i=k+1}^{K} \| v^H H_{\text{mrk}} w_i \|^2 + \| v^H H_{\text{mrk}} w_{\text{jam}} \|^2 + \sigma^2}. \]
\[(8) \]
In NOMA systems, each receiver utilizes SIC to eliminate the multi-access interference. The SIC decoding order among users is mainly determined by the channel quality. Accordingly, the user with a stronger channel gain should first decode the messages from other users with weaker channels. However, due to the IRS, the decoding order of SIC not only depends on the transmit beamforming vectors \(\{w_k\} \) but also on the IRS reflecting vector \(\{v\} \). Let \(\pi(k) \) denotes the decoding order of the \(k \)th user. Then, \(\pi(k) = m \) means that the message for the \(k \)th user is the \(m \)-th signal to be decoded at the receiver. According to the channel assumption in (5), we define \(\pi(k) = k \). Therefore, the following constraints in the proposed IRS-NOMA scheme should be satisfied for given decoding orders as
\[\max_{l} \| v^H H_{\text{mrk}} w_{\pi(l)} \|^2 \leq \| v^H H_{\text{mrk}} w_{\pi(i)} \|^2, \]
\[\forall l, i, j \in \mathcal{K}, i > j, \quad i \in I, \quad l \in \mathcal{T}, \]
\[(9) \]
where \(I = \{1, 2, \ldots, k\} \), \(\mathcal{T} = \{k, k+1, \ldots, K\} \).

To guarantee the secure transmission for legitimate users, we assume that artificial jamming is generated together with the NOMA signals at BS, which can suppress the reception at the eavesdropper effectively. In order to avoid adverse impact on legitimate receivers, we should make the received jamming power highest at all receivers, which can be decoded and eliminated in the first step of SIC. Thus, the decoding constraints defined in (9) can be modified as
\[\max_{l} \| v^H H_{\text{mrk}} w_{\pi(l)} \|^2 \leq \| v^H H_{\text{mrk}} w_{\pi(i)} \|^2, \]
\[\forall l, i, j \in \mathcal{K}, i > j, \quad i \in I, \quad l \in \mathcal{T}. \]
\[(10) \]
Accordingly, the jamming signal can be removed first, and the SINR in (8) can be revised as
\[\gamma_k^\mathcal{K} = \frac{\| v^H H_{\text{mrk}} w_k \|^2}{\sigma^2}, k \in \mathcal{K}, k \neq K. \]
\[(11) \]
For user \(K \), its desired SINR can be expressed as
\[\gamma_K^\mathcal{K} = \frac{\| v^H H_{\text{mrk}} w_K \|^2}{\sigma^2}. \]
\[(12) \]
Accordingly, the corresponding SINR for the \(l \)th user to
decoding the signal for the kth user can be expressed as
\begin{equation}
\gamma_k = \frac{|v^H H_{mr} w_k|^2}{\sum_{i=k+1}^{K} |v^H H_{mr} w_i|^2 + \sigma^2},
\end{equation}
(13)

In NOMA networks, the SINR for the lth user to decode the kth signal should be no smaller than the target SINR of the kth user, denoted as $\gamma_l^{tar}, \gamma_k \geq \gamma_l^{tar}$ [29], [30], in order to successfully subtract the message of the lth user. Thus, the eavesdropping SINR towards the legitimate user can be expressed as
\begin{equation}
\gamma_k^{tar} = \min\{\gamma_k, \gamma_{k+1}, \ldots, \gamma_K\}. \quad (14)
\end{equation}

Thus, the corresponding rate for the kth user can be given by
\begin{equation}
R_k = \log_2(1 + \gamma_k^{tar}) = \log_2 \left(1 + \min_{l \in \mathcal{T}} \gamma_l^k \right). \quad (15)
\end{equation}

In addition, the eavesdropping SINR towards the kth user at the potential eavesdropper can be expressed as
\begin{equation}
\text{SINR}_e^k = \frac{|v^H H_{mr} w_k|^2}{\sum_{i=1,i\neq k}^{K} |v^H H_{mr} w_i|^2 + |v^H H_{mr} w_{jam}|^2 + \sigma^2}, \quad (16)
\end{equation}
where $H_{mr} = \text{diag}(h_{r,c})H_m$ and $h_{r,c}$ denotes the channel vector between the IRS and the eavesdropper, which is unavailable for the legitimate network\(^2\). Thus, the secrecy rate from the BS to users in bit/s/Hz can be expressed as
\begin{equation}
R_{sk} = \left[R_k - \log_2 \left(1 + \text{SINR}_e^k \right) \right]^+, \quad (17)
\end{equation}
where $[x]^+ \triangleq \max(x, 0)$. As the eavesdropping CSI is not required by the legitimate network, the proposed scheme can be also applied to the multi-eavesdropper scenario with similar performance.

III. Problem Formulation

In this section, we formulate the optimization design of the transmit beamforming, the artificial jamming vector and the IRS reflecting vector. We aim to maximize the sum rate of all users, subject to the QoS requirement, the IRS reflecting constraint, the SIC decoding condition, and the transmit power constraint. Thus, the optimization problem can be formulated as

\textbf{P0} : \max_{w_1, w_2, \ldots, w_K, w_{jam}, \mathbf{v}} \sum_{k \in \mathcal{K}} R_k \quad \text{s.t.} \begin{align*}
\min_l \gamma_l^k &\geq r_k, l \in \mathcal{T}, \quad (18b) \\
\max_{k \in \mathcal{K}} \|w_k\|^2 &\leq \|w_{jam}\|^2, \quad (18c) \\
\sum_{k \in \mathcal{K}} \|w_k\|^2 + \|w_{jam}\|^2 &\leq P_S, \quad (18d) \\
|v_n| &\leq 1, n = 1, 2, \ldots, N, \quad (18e) \\
(10). &\quad (18f)
\end{align*}

\({}^2\)In this paper, the eavesdropping CSI is used to analyze the secure performance of the proposed schemes in (16) and (17) via simulation results, not for the design of the schemes.

The constraint (18b) ensures that the SINR for the lth user to decode the kth message exceeds $r_k, l \in \mathcal{T}$, where r_k denotes the QoS requirement for the kth user. (18c) guarantees the enough jamming power to disrupt the eavesdropping. (18d) is the constraint of total transmit power at BS. The constraint (18e) indicates that each IRS reflecting element only adjusts the phase shift of incident signal and does not amplify its amplitude. (18f) denotes the SIC decoding constraints.

Note that \textbf{P0} is difficult to solve due to the non-convex constraints as well as the coupled optimization variables. To solve it, we transform the objective function (18) into a more tractable form, i.e., introducing auxiliary variables $z_k \in \mathbb{R}_+, k = 1, 2, \ldots, K$, which satisfy
\begin{equation}
1 + \min_l \gamma_l^k \geq z_k, l \in \mathcal{T}. \quad (19)
\end{equation}

Then, we have
\begin{equation}
\sum_{k \in \mathcal{K}} R_k = \log_2 \left(\prod_{k \in \mathcal{K}} z_k \right). \quad (20)
\end{equation}

Nevertheless, the maximum value of the log(\cdot) function in (20) remains hard to obtain. Thus, we can turn to find its maximum square root with all auxiliary variables $z_k (k \in \mathcal{K})$ multiplied, i.e., $\sqrt{\prod_{k \in \mathcal{K}} z_k}$, which is concave and also non-decreasing. Accordingly, (19) and (20) can be replaced by $Z \leq \sqrt{\prod_{k \in \mathcal{K}} z_k}$ as another constraint in the optimization problem. Using this conversion, the original problem \textbf{P0} can be transformed as

\textbf{P1} : \max_{w_1, w_2, \ldots, w_K, w_{jam}, \mathbf{v}} Z \quad \text{s.t.} \begin{align*}
Z^2 &\leq \prod_{k \in \mathcal{K}} z_k, \quad (21b) \\
z_k - 1 &\leq \min_l \gamma_l^k, l \in \mathcal{T}, \quad (21c) \\
r_k &\leq z_k - 1, \quad (21d) \\
\max_{k \in \mathcal{K}} \|w_k\|^2 &\leq \|w_{jam}\|^2, \quad (21e) \\
\sum_{k \in \mathcal{K}} \|w_k\|^2 + \|w_{jam}\|^2 &\leq P_S, \quad (21f) \\
|v_n| &\leq 1, n = 1, 2, \ldots, N, \quad (21g) \\
(10). &\quad (21h)
\end{align*}

According to [31], (21b) can be expressed as a system of second-order cone (SOC) constraints, which has no negative impact on the target function. Thus, we first define
\begin{equation}
z_{1,\xi}^2 \leq \prod_{k=1}^{\xi} z_k, \quad \xi \geq 2, \xi \in \mathcal{K}. \quad (22)
\end{equation}

Specifically, when $\xi = K$, we have $z_{1,K} = Z$. Furthermore, involving the intermediate variables $t_{1,\xi} \in \mathbb{R}_+, \xi =
In the next section.

\[\begin{align*}
& \text{P1} : \max_{\mathbf{w}_1, \mathbf{w}_{jam}, \mathbf{v}, \mathbf{z}} Z \\
& \text{s.t.} \quad \left\| [2z_{1,2} (z_1 - z_2)]^H \right\| \leq z_1 + z_2, \quad (25b) \\
& \quad \left\| [2z_{1,3} (t_{1,2} - z_3)]^H \right\| \leq t_{1,2} + z_3, \quad (25c) \\
& \quad \ldots \ldots \\
& \quad \left\| [2z_{1,\xi} (t_{1,\xi-1} - z_\xi)]^H \right\| \leq t_{1,\xi-1} + z_\xi. \quad (25d)
\end{align*} \]

Thus, we have

\[\begin{align*}
& \left\| \mathbf{v}^H \mathbf{H}_{\text{mrl}} \mathbf{w}_k \right\|^2 \geq z_k - 1, \\
& \sum_{i=1}^{K} \left\| \mathbf{v}^H \mathbf{H}_{\text{mrl}} \mathbf{w}_i \right\|^2 + \sigma^2 \geq z_k - 1, \quad (28)
\end{align*} \]

However, (25) is still non-convex and difficult to solve since the transmit beamforming vectors \(\mathbf{w}_k \), the artificial jamming vector \(\mathbf{w}_{jam} \) and the IRS reflecting vector \(\mathbf{v} \) are coupled. We decompose the original problem into two subproblems of transmit beamforming optimization and IRS reflecting optimization, which can be approximated as convex ones and solved alternately in the next section.

IV. Beamforming and Reflecting Optimization

In this section, the optimization problem is decomposed into two subproblems, which can be solved by alternately optimizing the transmit beamforming vectors and IRS reflecting vector. In addition, the convergence and computational complexity of the proposed algorithm are also analyzed.

A. Beamforming Optimization

For any given IRS reflecting vector \(\mathbf{v} \), (25) can be decomposed as

\[\begin{align*}
& \text{P2} : \max_{\mathbf{w}_1, \mathbf{w}_{2}, \ldots, \mathbf{w}_K, \mathbf{z}} Z \\
& \text{s.t.} \quad \left\| [2z_{1,\xi} (t_{1,\xi-1} - z_\xi)]^H \right\| \leq t_{1,\xi-1} + z_\xi, \quad (26b) \\
& \quad z_k - 1 \leq \min_l \gamma^k_l, l \in T, \quad (26c) \\
& \quad r_k \leq z_k - 1, \quad (26d) \\
& \quad \max_{k \in \mathcal{K}} \left\| \mathbf{w}_k \right\|^2 \leq \left\| \mathbf{w}_{jam} \right\|^2, \quad (26e) \\
& \quad \sum_{k \in \mathcal{K}} \left\| \mathbf{w}_k \right\|^2 + \left\| \mathbf{w}_{jam} \right\|^2 = P_S, \quad (26f) \\
& \quad |\mathbf{v}_n| = 1, n = 1, 2, \ldots, N, \quad (10). \quad (26g)
\end{align*} \]

\(\text{P2} \) is a non-convex problem mainly due to the non-convex constraints (26c) and (10). Then, for the constraint (26c), it can be changed into

\[\begin{align*}
& \text{SINR}_k^H \geq z_k - 1, \quad (27)
\end{align*} \]

Furthermore, it can be formulated as

\[\begin{align*}
& \sum_{i=k+1}^{K} \left\| \mathbf{v}^H \mathbf{H}_{\text{mrl}} \mathbf{w}_i \right\|^2 \leq \frac{\left\| \mathbf{v}^H \mathbf{H}_{\text{mrl}} \mathbf{w}_k \right\|^2}{z_k - 1} - \sigma^2. \quad (29)
\end{align*} \]

However, it is still non-convex and difficult to solve. To tackle this issue, we apply SCA to transform it and further introduce the Taylor series approximation. For a differentiable convex function \(f(x) \), it can be approximated by its tangential function as \(g(x, \bar{x}) \), where \(g(x, \bar{x}) \) is the first order Taylor expansion around \(\bar{x} \). Thus, we have

\[f(x) \geq g(x, \bar{x}) = f(\bar{x}) + \nabla_x f(\bar{x})(x - \bar{x}). \quad (30) \]

When \(x = \bar{x} \), the equality holds.

Based on the above Taylor series approximation, Proposition 1 is presented to approximate (29).

**Proposition 1: **Define a function as

\[Q(\mathbf{w}_k, z_k) = \frac{\left\| \mathbf{v}^H \mathbf{H}_{\text{mrl}} \mathbf{w}_k \right\|^2}{z_k - 1} - \sigma^2. \quad (31) \]

The first order Taylor approximation to \(Q(\mathbf{w}_k, z_k) \) around \((\mathbf{w}_k, \bar{z}_k) \) can be expressed as

\[Q(\mathbf{w}_k, z_k, \bar{z}_k) = \frac{2 \text{Re} (\mathbf{v}^H \mathbf{H}_{\text{mrl}} \mathbf{w}_k \bar{z}_k \mathbf{H}^H \mathbf{w}_k \mathbf{v})}{(\bar{z}_k - 1)^2} (z_k - 1) - \sigma^2. \quad (32) \]
In this way, \(Q(w_k, z_k) \) can be replaced by \(Q(w_k, z_k, \tilde{w}_k, \tilde{z}_k) \).

Proof: According to the Taylor series approximation in (30), we have

\[
Q(w_k, z_k) \geq Q(w_k, z_k) + \frac{\partial Q}{\partial w_k}(w_k - w_k) + \frac{\partial Q}{\partial z_k}(z_k - z_k) \equiv Q(w_k, z_k, \tilde{w}_k, \tilde{z}_k),
\]

(33)

where

\[
Q(w_k, z_k, \tilde{w}_k, \tilde{z}_k) = \frac{v^H H_{mrl} w_k w_k^H H_{mrl}^H}{\tilde{z}_k - 1} - \frac{2\tilde{w}_k^H H_{mrl} w_k w_k^H H_{mrl}^H}{\tilde{z}_k - 1} - \frac{v^H H_{mrl} w_k w_k^H H_{mrl}^H}{(\tilde{z}_k - 1)^2}.
\]

(34)

To match with the real characteristic of the function \(Q(w_k, z_k) \), (34) can be further approximated as

\[
Q(w_k, z_k, \tilde{w}_k, \tilde{z}_k) = \frac{2Re \left(v^H H_{mrl} w_k w_k^H H_{mrl}^H \right)}{z_k - 1} - \frac{Re \left(v^H H_{mrl} w_k w_k^H H_{mrl}^H \right)}{(z_k - 1)^2}.
\]

(35)

The approximation in (33) holds when the conditions \(v_k = \tilde{v}_k \) and \(z_k = \tilde{z}_k \) are satisfied.

From the above derivation, \(Q(v_k, z_k) \) can be approximated as \(Q(w_k, z_k, \tilde{w}_k, \tilde{z}_k) \), and (31) can be transformed into a convex one as (32).

Nevertheless, \(P2 \) is still non-convex due to (10), which can be regarded as a series of inequalities as

\[
| v^H H_{mrl} w_k |^2 \leq | v^H H_{mrl} w_j |^2, \forall i, j \in \mathcal{K}, i > j.
\]

(36)

Note that the right sides of these inequalities are quadratic functions of \(w_j \), which can be linearized using the following proposition.

Proposition 2: Define a function as

\[
F(w_j) = \left| v^H H_{mrl} w_j \right|^2, j \in \mathcal{K}.
\]

(37)

The first order Taylor approximation to \(F(w_j) \) at a tangent point \(\tilde{w}_j \) can be expressed as

\[
F(w_j, \tilde{w}_j) = 2Re \left(v^H H_{mrl} w_j w_j^H H_{mrl}^H \right) - \frac{2Re \left(w_j^H H_{mrl} w_j w_j^H H_{mrl}^H \right)}{z_k - 1} \leq 0.
\]

(38)

In this way, (37) can be replaced by (38), and the constraint (10) can be approximated as a convex one.

Proof: According to the Taylor series approximation, (37) is a differentiable convex function, which satisfies

\[
F(w_j) \geq F(\tilde{w}_j) + \nabla F(\tilde{w}_j)^H (w_j - \tilde{w}_j).
\]

(39)

Substituting (37) into this inequality (39) based on the law of derivation, we have

\[
F(w_j) \geq \frac{v^H H_{mrl} w_j w_j^H H_{mrl}^H}{z_k - 1} - 2Re \left(w_j^H H_{mrl} w_j w_j^H H_{mrl}^H \right).
\]

(40)

When \(w_j^H w_j \geq 0 \) and \(v^H H_{mrl} H_{mrl}^H \geq 0 \), we can obtain

\[
F(w_j) \geq F(\tilde{w}_j).
\]

(41)

From the above derivation, \(F(w_j) \) can be approximated as \(F(w_j, \tilde{w}_j) \).

Accordingly, we keep the real part of \(F(w_j, \tilde{w}_j) \), and all the similar inequalities in (10) can be approximated into convex ones as

\[
| v^H H_{mrl} w_k |^2 \leq 2Re \left(v^H H_{mrl} H_{mrl}^H \right) - \frac{2Re \left(w_j^H H_{mrl} w_j w_j^H H_{mrl}^H \right)}{z_k - 1} \leq 0.
\]

(42)

Thus, (10) can be replaced by (42) and (43), which are approximated as convex ones.

Similarly, the constraint (26c) can be expressed as

\[
\max_{k \in \mathcal{K}} | w_k |^2 \leq \| w_j \|^2 \leq 2Re \left(v^H H_{mrl} w_j w_j^H H_{mrl}^H \right) - Re \left(w_j^H H_{mrl} w_j w_j^H H_{mrl}^H \right).
\]

(43)

Using the above-mentioned approximations, \(P2 \) can be formulated as (45) at the top of this page, which is a convex problem and can be solved easily by the existing toolbox such as CVX.

B. IRS Reflecting Optimization

For any given beamforming vectors \(w_1, w_2, \ldots, w_K \) and \(w_{jam} \), the optimization problem (25) can be transformed as

\[
P^3 : \max_v Z
\]

s.t. \([v_1, \xi, (t_{1, \xi - 1} + \xi)] \leq 0, \forall i, j, k \in \mathcal{K}, i > j.
\]

(46a)

\[
\| v_1 \|_F \leq 1, n = 1, 2, \ldots, N, \quad \| v_2 \|_F \leq 1, n = 1, 2, \ldots, N.
\]

(46b)

\[
2 \leq 1, \quad \| v_{j, \xi} \|_F \leq 1, \quad \| v_2 \|_F \leq 1, \quad \| v_3 \|_F \leq 1, \quad \| v_4 \|_F \leq 1, \quad \| v_5 \|_F \leq 1, \quad \| v_6 \|_F \leq 1.
\]

(46c)

\[
\| v^H H_{mrl} w_k \| \geq z_k - 1, \quad \sum_{i=k+1}^{K} \| v^H H_{mrl} w_i \|^2 + \sigma^2 \geq 1 \leq K - 1, \quad l \in \mathcal{T}.
\]

(47)
\[\max_{w_i, w_j, \ldots, w_K} Z \]

subject to
\[
\begin{align*}
& r_k \leq z_k - 1, k \in K, \\
& \left\| [2z_1, \xi, (t_1, \xi-1, z_1, \xi)]^H \right\| \leq t_1, \xi-1 + z_1, \xi \geq 2, \xi \in K, \\
& \left\| [2v^H H_{mr, k} w_{k+1}, \ldots, 2v^H H_{mr, k} w_K, (Q_k - 1)]^H \right\| \leq Q_k + 1, k = 1, 2, \ldots, K - 1, \\
& 0 \leq Q_k, k = K, l \in T, \\
& \max_{k \in K} \|w_k\|^2 \leq \|w_{jam}\|^2 + 2Re \left(\langle w_{jam}^H \bar{w}_{jam} \rangle - \Re \langle \bar{w}_{jam}^H w_{jam} \rangle \right), \\
& |v^H H_{mr, k} w_i|^2 \leq 2Re \left(\langle v^H H_{mr, k} \bar{v} v^H H_{mr, k} \rangle - \Re \langle \bar{v} v^H H_{mr, k} \rangle \right), \forall i, j \in K, i \neq j, \\
& |v^H H_{mr, k} w_1|^2 \leq 2Re \left(\langle v^H H_{mr, k} \bar{v} v^H H_{mr, k} \rangle - \Re \langle \bar{v} v^H H_{mr, k} \rangle \right), \\
& \left\| [w_1^H, w_2^H, \ldots, w_K^H, w_{jam}^H]^H \right\| = \sqrt{P_S}.
\end{align*} \]

Under the given beamforming vectors \(w_k \) and \(w_{jam} \), we can conclude that
\[|v^H H_{mr, k} w_k|^2 = \left\| (H_{mr, k} w_k)^v \right\|^2 = \left\| w_k^H H_{mr, k} w_k \right\|^2. \] (48)

Thus, (47) can be converted into
\[\frac{\left\| w_k^H H_{mr, k} w_k \right\|^2}{K} \geq z_k - 1, \]

for \(1 \leq k \leq K - 1, l \in T. \) (49)

Furthermore, it can be formulated as
\[\sum_{i=k+1}^K \left| w_i^H H_{mr, k} w_k \right|^2 \leq \left| w_k^H H_{mr, k} w_k \right|^2 \frac{z_k - 1}{\zeta_k - 1} - \sigma^2. \] (50)

Similarly, due to the non-convexity of (50), we apply SCA via Proposition 3 to transform it.

Proposition 3: Define a function as
\[G(v, z_k) = \frac{\left\| w_k^H H_{mr, k} w_k \right\|^2}{z_k - 1} - \sigma^2. \] (51)

Then, according to the Taylor series approximation, it can be approximated as
\[G(v, z_k, \bar{v}, \bar{z}_k) = \frac{2Re \left(v^H H_{mr, k} w_k w_k^H H_{mr, k} v \right)}{z_k - 1} \]

\[- \left(\frac{Re \left(w_k^H H_{mr, k} \bar{v} w_k \right) (z_k - 1)}{(\bar{z}_k - 1)^2} \right) \] (52)

In this way, \(G(v, z_k) \) can be replaced by \(G(v, z_k, \bar{v}, \bar{z}_k) \).

Proof: According to the Taylor series approximation in (30), we have
\[G(v, z_k) = G(v, z_k) + \frac{\partial G}{\partial v} (v - \bar{v}) \]

\[+ \frac{\partial G}{\partial z_k} (z_k - \bar{z}_k) \] (53)

where
\[G(v, z_k, \bar{v}, \bar{z}_k) = \frac{w_k^H H_{mr, k} \bar{v} w_k w_k^H H_{mr, k} v}{z_k - 1} \]

\[+ \frac{2v^H H_{mr, k} w_k w_k^H H_{mr, k} v}{(\bar{z}_k - 1)^2} \] (54)

\[- \left(\frac{Re \left(w_k^H H_{mr, k} \bar{v} w_k \right) (z_k - 1)}{(\bar{z}_k - 1)^2} \right) \] (55)

Then, it can be further expressed as
\[G(v, z_k, \bar{v}, \bar{z}_k) = \frac{2Re \left(v^H H_{mr, k} w_k w_k^H H_{mr, k} v \right)}{z_k - 1} \]

\[- \left(\frac{Re \left(w_k^H H_{mr, k} \bar{v} w_k \right) (z_k - 1)}{(\bar{z}_k - 1)^2} \right) \] (52)

The approximation in (53) holds with the conditions \(v = \bar{v} \) and \(z_k = \bar{z}_k \) satisfied.

From the above derivation, \(G(v, z_k) \) can be approximated into \(G(v, z_k, \bar{v}, \bar{z}_k) \), and (51) can be transformed into a convex one as (52).
However, P3 is still non-convex due to (10). Following the conversion in (48), the decoding conditions in (10) can be formulated as

\[
\max_l \left| w_l^H H_{mkv}^r \right|^2 \leq \left| w_{\pi(l)}^H H_{mkv}^r \right|^2 \\
\leq \left| w_{\pi(l)}^H H_{rkv}^b \right|^2 \leq \left| w_{jam}^H H_{rkv}^b \right|^2,
\]

\forall l, i, j \in \mathcal{K}, i > j, \ i \in \mathcal{T}, \ l \in \mathcal{T}.

(56)

For convenience, we consider (56) as a series of inequalities as

\[
\left| w_i^H H_{mkv}^r \right|^2 \leq \left| w_{i}^H H_{mkv}^r \right|^2, \ i,j \in \mathcal{K}, i > j.
\]

(57)

Accordingly, the inequalities in (57) can be transformed into convex ones via the same approximation as Proposition 2.

\[
\left| w_i^H H_{mkv}^r \right|^2 \leq 2 Re(\langle w_i^H H_{mkv}^r w_j w_j^H H_{mkv}^r \rangle) - Re(\langle w_i^H H_{mkv}^r w_j w_j^H H_{mkv}^r \rangle).
\]

(58)

Specifically, when \(w_j = w_{jam} \), the right-hand side of (56) can be converted as

\[
\left| w_i^H H_{mkv}^r \right|^2 \leq 2 Re(\langle w_i^H H_{mkv}^r w_{jam} \rangle) - Re(\langle w_i^H H_{mkv}^r w_{jam} \rangle).
\]

(59)

As a result, all the non-convex constraints has been transformed into convex ones, and P3 can be transformed into a convex one as (60) at the top of next page and efficiently solved via CVX.

C. Alternating Algorithm

In Section IV-A and Section IV-B, the original problem (21) has been transformed and approximated into two convex subproblems, i.e., (45) and (60). Next, we propose an iterative algorithm based on alternating optimization to solve them, which can be summarized in Algorithm 1.

Algorithm 1 Alternating Algorithm for (21)

1: Randomly initialize the reflecting vector \(\mathbf{v}^{(0)} \) and the transmit beamforming vectors \(\mathbf{w}_k^{(0)}, k = 1, 2, \ldots, K \), and \(\mathbf{w}_{jam}^{(0)} \). Set the index of iteration \(t = 1 \).

2: Repeat

3: For \(\mathbf{v}^r \), solve (45) via CVX and obtain the optimal values \(\mathbf{w}_k^{(t+1)} \) and \(\mathbf{w}_{jam}^{(t+1)} \).

4: Using \(\mathbf{w}_k^{(t+1)} \) and \(\mathbf{w}_{jam}^{(t+1)} \), solve (60) via CVX and obtain the optimal value \(\mathbf{v}^{(t+1)} \).

5: \(t = t + 1 \).

6: Until \(|Z^{(t)} - Z^{(t-1)}| \) converges.

For given \(\{\mathbf{v}^r, \mathbf{w}_k^{(t)}, \mathbf{w}_{jam}^{(t)}\} \), the solution \(\{\mathbf{v}^r, \mathbf{w}_k^{(t+1)}, \mathbf{w}_{jam}^{(t+1)}\} \) obtained in the \((t+1) \)th iteration by solving (45) is locally optimal and the objective function is non-decreasing with iterations. In the scheme, the objective function in (45) obtained by Step 3 in Algorithm 1 is a lower bound to that of its original problem (26). Similarly, the objective function in (60) is also a lower bound to that of its original problem (46). Due to the convexity of (45) and (60), each subproblem can be solved to obtain a unique solution in each iteration. Furthermore, the objective value of (60) is upper bounded by a finite value. Therefore, Algorithm 1 can be guaranteed to converge to at least a local optimal solution.

The initial reflecting vector \(\mathbf{v}^{(0)} \), the transmit beamforming vectors \(\mathbf{w}_k^{(0)}, k = 1, 2, \ldots, K \), and \(\mathbf{w}_{jam}^{(0)} \) in Algorithm 1 can be generated as follows.

- **IRS Reflecting Initialization**: In the first step of Algorithm 1, the phase shift of each element is arbitrarily distributed between \([0, 2\pi]\), while the reflecting amplitude is always equal to 1.

- **Transmit Beamforming Initialization**: In order to guarantee that the artificial jamming can be eliminated in the first step of SIC, the initial power allocation weight of jamming vector \(\mathbf{w}_{jam}^{(0)} \) can be set to \(\frac{1}{2} \), and the weights of beamforming vectors \(\mathbf{w}_k^{(0)}, k = 1, 2, \ldots, K \), are generated with \(\frac{1}{2M_{k+1}} \), which is helpful to satisfy the constraints in (21).

After Algorithm 1, the phase shift on the combined incident signal by its \(n \)-th element of IRS can be calculated by

\[
\theta_n = \arctan \frac{\text{Im}(v_n)}{\text{Re}(v_n)}, \theta_n \in [0, 2\pi),
\]

(61)

where \(\text{Im}(\cdot) \) and \(\text{Re}(\cdot) \) are the imaginary operator and the real operator, respectively.

D. Computational Complexity Analysis

The main computational complexity of Algorithm 1 lies in solving P2 and P3. According to [31], we can know that the computational complexity for the second-order cone programming (SOCP) is normally determined by the number of variables, constraints, and its dimensions. To solve P2, the number of constraints in (45) can be expressed as \((1.5K^2 + 3.5K) \). Thus, the total number of iterations to reduce the duality gap to a threshold can be upper bounded by \(\mathcal{O}(\sqrt{1.5K^2 + 3.5K}) \). The number of variables and dimensions for all constraints in (45) are calculated as \((K^2 + 2K + 1 + 2(K + 1)M) \) and \((4K^2 + 5K + (K + 1)M) \), respectively. Therefore, the computational complexity of solving P2 for (45) can be obtained as

\[
\mathcal{O} \left(T_{P2} \sqrt{1.5K^2 + 3.5K} (K^2 + 2K + 1 + 2(K + 1)M)^2 \times (4K^2 + 6K + 1 + (K + 1)M) \right),
\]

(62)

where \(T_{P2} \) denotes the number of iterations. Similarly, denoting the number of iterations required for solving P3 by \(T_{P3} \), the corresponding complexity can be given by

\[
\mathcal{O} \left(T_{P3} \sqrt{1.5K^2 + 2.5K} (K^2 + K + 1 + 2N)^2 (4K^2 + 6K) \right). \]

(63)

Therefore, the overall complexity of solving (21) can be expressed as (64) at the top of next page, where \(T_{AO} \) is the number of iterations required for Algorithm 1 to converge.

V. Simulation Results and Discussion

In this section, simulation results are presented to show the performance of the proposed artificial jamming assisted IRS-NOMA scheme. Set \(\alpha_{BI} = \alpha_{r,k} = 2.2, \beta = -30 \text{ dB} \).
\[O\left(T_{AO} \left(T_{P2} \sqrt{1.5K^2 + 3.5K \left(K^2 + 2K + 1 + 2(K+1)M\right)^2 \left(4K^2 + 6K + 1 + (K+1)M\right)} + T_{P3} \sqrt{1.5K^2 + 2.5K \left(K^2 + K + 1 + 2N\right)^2 \left(4K^2 + 6K\right)} \right) \right). \]

\[\frac{r_k}{1} = \frac{1}{\sigma^2} = -110 \text{ dBm} \text{ and } M = 4. \text{ The Rician factors are } K_{BI} = K_{IU} = 3 \text{ dB} [23]. \text{ The BS and the IRS are set at } (5,0,0) \text{ and } (0,50,20) \text{ in meters, respectively. The legitimate users are arbitrarily distributed on the ground near the IRS, i.e., in a circle region centered at } (5,50,0) \text{ with the radius of } 5 \text{ meters, and the eavesdropper is located at } (2,50,0). \text{ In practical NOMA systems, the number of users to be served should not be large to mitigate the imperfect SIC and reduce the computational complexity. Thus, we set } K = 2 \text{ or } K = 3. \text{ Furthermore, the scheme with random phase shift } \theta \text{ and the scheme without jamming are presented as benchmarks.}

As shown in Fig. 2, we first present the convergence of Algorithm 1 for } K = 3, N = 30, r_k = 1 \text{ and } P_S = 30 \text{ dBm. From Fig. 2, we can observe that the proposed iterative algorithm converges quickly, i.e., within 5 to 10 iterations, which proves the stability and feasibility of Algorithm 1. To discuss the relationship between the optimized transmit power of users and the jamming power with different QoS thresholds and different number of elements on the IRS, a two-user case in the proposed IRS-NOMA scheme is first presented in Fig. 3 and Fig. 4. Fig. 3 shows the comparison on the optimized } P_{jam} \text{ and the allocated power of } U_2 \text{ with different values of } P_S \text{ and } r_k. \text{ Set } M = 4 \text{ and } N = 30. \text{ From the results, we can see that the } \text{optimized } P_{jam} \text{ increases with } P_S. \text{ Especially, when } r_k \text{ increases, the optimized jamming power also increases, i.e., } P_{jam} \text{ with } r_k = 8 \text{ is higher than } P_{jam} \text{ with } r_k = 1, \text{ while the allocated power } P_2 \text{ with } r_k = 8 \text{ is much lower. This indicates that when } P_S \text{ is fixed, the far user } U_1 \text{ should be allocated more power to satisfy the higher } r_k. \text{ According to (18c), the jamming power should be higher than the transmit power for users to be successfully eliminated via SIC, which also results in higher } P_{jam}. \text{ Thus, } P_1 \text{ and } P_{jam} \text{ increase while } P_2 \text{ decreases, giving a lower } P_2 \text{ when } r_k = 8 \text{ than when } r_k = 1. \text{ In Fig. 4, we present the optimized jamming power } P_{jam} \text{ versus different values of } N \text{ and } r_k \text{ for the two-user case with } P_S = 25 \text{ dBm and } P_S = 30 \text{ dBm, respectively. From the results, we can observe that } P_{jam} \text{ increases slightly with the growth of } N, \text{ and the optimized } P_{jam} \text{ with larger } r_k \text{ is always higher than the } P_{jam} \text{ with smaller } r_k, \text{ which is consistent with the results in Fig. 3. It indicates that a larger number of IRS elements provide a more configurable link, which can reduce power consumption to satisfy the QoS requirement. Thus, more power can be allocated to generate the jamming signal. For performance comparison, we consider a benchmark scheme, i.e., the scheme with random phase shift } \theta, \text{ which}
shows the performance of the proposed IRS-NOMA scheme by setting random phase shift \(\theta \) at the IRS. From the results in Fig. 5, we can observe that the sum rate in the two schemes both increases with \(N \), since more configurable links and a higher array gain can be achieved with a larger number of IRS elements. In addition, it is worth noticing that the performance of the proposed scheme clearly outperforms the scheme with random \(\theta \). Especially, when the number of \(N \) increases, the gap between the proposed scheme and the random \(\theta \) scheme is gradually widening, which demonstrates the significant array gain achieved by the transmit beamforming and IRS reflecting optimization.

To further evaluate the performance of the proposed IRS-NOMA scheme, we compare the secrecy rate, the sum secrecy rate, and the eavesdropping rate for three users with different number of elements on the IRS \(N \) in Fig. 6. From the results, it can be observed that the sum secrecy rate of all users increases with \(N \), which is consistent with the results from Fig. 5. In addition, the nearest user \(U_3 \) has the highest secrecy rate due to its best channel gain and lowest eavesdropping rate. Accordingly, Fig. 7 presents the achievable rate versus the number of antennas at the BS \(M \) for \(K = 3, N = 30, r_k = 1 \) and \(P_S = 30 \) dBm. From Fig. 7, we can conclude that the sum secrecy rate of all users increases with \(M \) as larger beamforming gain can be achieved. In Fig. 8, we compare the optimized secrecy rate, sum secrecy rate and eavesdropping rate with different \(P_S \), \(K = 3, M = 4, N = 30 \) and \(r_k = 1 \). From Fig. 8, we can see that the sum secrecy rate increases with \(P_S \). Specifically, the secrecy rate of \(U_3 \) is the highest, while the secrecy rate of \(U_1 \) is the lowest, which is reasonable given the predefined relationship of channel gains. Nevertheless, the eavesdropping rate of \(U_1 \) is still a little higher, which can be further reduced by increasing the proportion of artificial jamming in beamforming vectors.

In order to present the improvement of secrecy performance with artificial jamming, we further compare the eavesdropping rate, the transmission rate and the sum rate with \(P_S = 20 \) dBm (i.e., Fig. 9(A)-(B)) and \(P_S = 30 \) dBm (i.e., Fig. 9(C)-(D)), respectively. Furthermore, the scheme without jamming is used as a benchmark. \(K = 3, M = 4, N = 30 \) and \(r_k = 1 \). From Fig. 9, we can see that the eavesdropping rate of all users in the proposed scheme can be reduced by artificial jamming.
Fig. 9. Comparison on eavesdropping rate, secrecy rate and sum secrecy rate of the proposed IRS-NOMA scheme and the scheme without jamming with different P_S, $K = 3$, $M = 4$, $N = 30$ and $r_k = 1$.

Fig. 10. The optimized sum rate and sum secrecy rate of the proposed IRS-NOMA scheme and the IRS-OMA scheme with different values of N and P_S. $K = 3$, $M = 4$ and $r_k = 1$.

compared to that of the scheme without jamming. Particularly, the eavesdropping rate towards U_1 is disrupted effectively. It is worth noticing that U_1 has the worst channel quality and is most threatened by the potential eavesdropper, due to its highest transmit power according to NOMA. On the other hand, there is a little difference in the achievable transmission rate between the proposed scheme and the scheme without jamming. Especially when P_S is lower, i.e., $P_S = 20 \text{ dBm}$ in Fig. 9(B), we can see that the achievable transmission rate in the proposed scheme is decreased compared to that of the scheme without jamming. However, this influence can be prevented by increasing P_S, as shown in Fig. 9(D), i.e., when $P_S = 30 \text{ dBm}$, the achievable R_{sum} is only a little lower compared with the benchmark scheme.

The comparison on the proposed IRS-assisted NOMA scheme and the IRS-assisted OMA scheme is presented in Fig. 10. In the IRS-assisted OMA scheme, the BS serves three users through the frequency division multiple access, with the unit bandwidth equally divided. Similar to the NOMA scheme, the sum rate for the OMA users is maximized by optimizing the transmit beamforming together with the artificial jamming vector and the IRS reflecting vector, subject to the QoS requirement and the transmit power constraint at the BS. The artificial jamming can be zero-forced by the BS at each legitimate receiver via beamforming without affecting the legitimate transmission. As shown in Fig. 10, we can observe that the IRS-assisted NOMA scheme significantly outperforms the IRS-assisted OMA scheme, because the resource block (e.g., bandwidth) in NOMA can be used to serve multiple users simultaneously compared with the OMA scheme.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an IRS-assisted NOMA scheme to achieve secrecy transmission via artificial jamming, in the presence of a passive eavesdropper whose CSI is unavailable in the legitimate network. The sum rate is maximized by optimizing the transmit beamforming together with the artificial jamming vector and the IRS reflecting vector. Through the optimization, the jamming signal can be completely eliminated by SIC without affecting the legitimate transmission, and the eavesdropping can be efficiently disrupted. Due to the non-convexity, the optimization problem is first decomposed into two subproblems of the beamforming optimization and the IRS reflecting optimization. Then, each subproblem can be converted into a convex one by applying the SCA. An efficient algorithm based on alternating optimization is proposed to solve them iteratively. Simulation results are presented to show that significant secrecy performance gain can be achieved by the proposed scheme compared with the scheme without jamming and the IRS-assisted OMA scheme. In the future work, we will continue to focus on the imperfect SIC and active IRS for the proposed scheme.

REFERENCES

Yunfei Chen (Senior Member, IEEE) received his B.E. and M.E. degrees in electronics engineering from Shanghai Jiaotong University, Shanghai, P.R.China, in 1998 and 2001, respectively. He received his Ph.D. degree from the University of Alberta in 2006. He is currently working as an Associate Professor at the University of Warwick, U.K. His research interests include wireless communications, cognitive radios, wireless relaying and energy harvesting.

Zhiguo Ding (Fellow, IEEE) received his B.Eng in Electrical Engineering from the Beijing University of Posts and Telecommunications in 2000, and the Ph.D degree in Electrical Engineering from Imperial College London in 2005. From Jul. 2005 to Apr. 2018, he was working in Queen’s University Belfast, Imperial College, Newcastle University and Lancaster University. Since Apr. 2018, he has been with the University of Manchester as a Professor in Communications. From Oct. 2012 to Sept. 2021, he has also been an academic visitor in Princeton University.

Dr Ding’s research interests are 5G networks, game theory, cooperative and energy harvesting networks and statistical signal processing. He is serving as an Area Editor for the IEEE Open Journal of the Communications Society, an Editor for IEEE Transactions on Vehicular Technology, and Journal of Wireless Communications and Mobile Computing, and was an Editor for IEEE Wireless Communication Letters, IEEE Transactions on Communications, IEEE Communication Letters from 2013 to 2016. He recently received the EU Marie Curie Fellowship 2012-2014, the Top IEEE TVT Editor 2017, IEEE Heinrich Hertz Award 2018, IEEE Jack Neubauer Memorial Award 2018, IEEE Best Signal Processing Letter Award 2018, and Friedrich Wilhelm Bessel Research Award 2020. He is a Fellow of the IEEE, a Distinguished Lecturer of IEEE ComSoc, and a Web of Science Highly Cited Researcher in two categories 2020.

Xianbin Wang (Fellow, IEEE) is a Professor and Tier-1 Canada Research Chair at Western University, Canada. He received his Ph.D. degree in electrical and computer engineering from the National University of Singapore in 2001.

Prior to joining Western, he was with Communications Research Centre Canada (CRC) as a Research Scientist/Senior Research Scientist between July 2002 and Dec. 2007. From Jan. 2001 to July 2002, he was a system designer at STMicroelectronics. His current research interests include 5G/6G technologies, Internet-of-Things, communications security, machine learning and intelligent communications. Dr. Wang has over 450 highly cited journal and conference papers, in addition to 30 granted and pending patents and several standard contributions.

Dr. Wang is a Fellow of Canadian Academy of Engineering, a Fellow of Engineering Institute of Canada, a Fellow of IEEE and an IEEE Distinguished Lecturer. He has received many awards and recognitions, including Canada Research Chair, CRC President’s Excellence Award, Canadian Federal Government Public Service Award, Ontario Early Researcher Award and six IEEE Best Paper Awards. He currently serves/has served as an Editor-in-Chief, Associate Editor-in-Chief, Editor/Associate Editor for over 10 journals. He was involved in many IEEE conferences including GLOBECOM, ICC, VTC, PIMRC, WCNC, CCECE and CWIT, in different roles such as general chair, symposium chair, tutorial instructor, track chair, session chair, TPC co-chair and keynote speaker. He has been nominated as an IEEE Distinguished Lecturer several times during the last ten years. Dr. Wang is currently serving as the Chair of IEEE London Section and the Chair of ComSoc Signal Processing and Computing for Communications (SPCC) Technical Committee.