Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Towards the use of mini-applications in performance prediction and optimisation of production codes

Tools
- Tools
+ Tools

Owenson, A. M. B (2020) Towards the use of mini-applications in performance prediction and optimisation of production codes. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Owenson_2020.pdf - Submitted Version - Requires a PDF viewer.

Download (1324Kb) | Preview

Request Changes to record.

Abstract

Maintaining the performance of large scientific codes is a difficult task. To aid in this task a number of mini-applications have been developed that are more tract able to analyse than large-scale production codes, while retaining the performance characteristics of them. These “mini-apps” also enable faster hardware evaluation, and for sensitive commercial codes allow evaluation of code and system changes outside of access approval processes.

Techniques for validating the representativeness of a mini-application to a target code are ultimately qualitative, requiring the researcher to decide whether the similarity is strong enough for the mini-application to be trusted to provide accurate predictions of the target performance. Little consideration is given to the sensitivity of those predictions to the few differences between the mini-application and its target, how those potentially-minor static differences may lead to each code responding very differently to a change in the computing environment.

An existing mini-application, ‘Mini-HYDRA’, of a production CFD simulation code is reviewed. Arithmetic differences lead to divergence in intra-node performance scaling, so the developers had removed some arithmetic from Mini-HYDRA, but this breaks the simulation so limits numerical research. This work restores the arithmetic, repeating validation for similar performance scaling, achieving similar intra-node scaling performance whilst neither are memory-bound. MPI strong scaling functionality is also added, achieving very similar multi-node scaling performance.

The arithmetic restoration inevitably leads to different memory-bounds, and also different and varied responses to changes in processor architecture or instruction set. A performance model is developed that predicts this difference in response, in terms of the arithmetic differences. It is supplemented by a new benchmark that measures the memory-bound of CFD loops. Together, they predict the strong scaling performance of a production ‘target’ code, with a mean error of 8.8% (s = 5.2%). Finally, the model is used to investigate limited speedup from vectorisation despite not being memory-bound. It identifies that instruction throughput is significantly reduced relative to serial counterparts, independent of data ordering in memory, indicating a bottleneck within the processor core.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QA Mathematics > QA76 Electronic computers. Computer science. Computer software
Library of Congress Subject Headings (LCSH): Application software, Computer simulation, Computer programming
Official Date: March 2020
Dates:
DateEvent
March 2020UNSPECIFIED
Institution: University of Warwick
Theses Department: Department of Computer Science
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Jarvis, Stephen A., 1970-
Sponsors: Rolls-Royce plc ; Horizon 2020 (Programme) ; Engineering and Physical Sciences Research Council ; Intel Corporation
Format of File: pdf
Extent: xiv, 78 leaves : illustrations (some colour)
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us