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Abstract: The increasing complexity of communication systems, following the advent of heteroge-
neous technologies, services and use cases with diverse technical requirements, provide a strong
case for the use of artificial intelligence (AI) and data-driven machine learning (ML) techniques in
studying, designing and operating emerging communication networks. At the same time, the access
and ability to process large volumes of network data can unleash the full potential of a network
orchestrated by AI/ML to optimise the usage of available resources while keeping both CapEx and
OpEx low. Driven by these new opportunities, the ongoing standardisation activities indicate strong
interest to reap the benefits of incorporating AI and ML techniques in communication networks. For
instance, 3GPP has introduced the network data analytics function (NWDAF) at the 5G core network
for the control and management of network slices, and for providing predictive analytics, or statistics,
about past events to other network functions, leveraging AI/ML and big data analytics. Likewise, at
the radio access network (RAN), the O-RAN Alliance has already defined an architecture to infuse
intelligence into the RAN, where closed-loop control models are classified based on their operational
timescale, i.e., real-time, near real-time, and non-real-time RAN intelligent control (RIC). Different
from the existing related surveys, in this review article, we group the major research studies in the
design of model-aided ML-based transceivers following the breakdown suggested by the O-RAN
Alliance. At the core and the edge networks, we review the ongoing standardisation activities in in-
telligent networking and the existing works cognisant of the architecture recommended by 3GPP and
ETSI. We also review the existing trends in ML algorithms running on low-power micro-controller
units, known as TinyML. We conclude with a summary of recent and currently funded projects
on intelligent communications and networking. This review reveals that the telecommunication
industry and standardisation bodies have been mostly focused on non-real-time RIC, data analytics
at the core and the edge, AI-based network slicing, and vendor inter-operability issues, whereas
most recent academic research has focused on real-time RIC. In addition, intelligent radio resource
management and aspects of intelligent control of the propagation channel using reflecting intelligent
surfaces have captured the attention of ongoing research projects.

Keywords: intelligent networking; network slicing; network data analytics function (NWDAF); radio
access network intelligent control (RIC)
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1. Introduction

The recent advent of heterogeneous services and use cases with diverse requirements
have made modern wireless communication networks highly complex systems, which need
to be carefully designed and operated to offer immersive experience to their customers,
while keeping both capital expenditure (CapEx) and operational expenditure (OpEx) low.
The increasing complexity of wireless ecosystems makes network planning, optimisation,
and orchestration arduous tasks. Communication system engineers have made remarkable
progress in modelling various digital and analogue transceivers and simple network
functions, e.g., at the MAC and link layers in wired/wireless local networks. However, in
the 5G/6G landscape, the traditional models for network optimisation often fall short, as
they mostly enhance the performance of network processes or signal processing blocks
one-by-one, with limited end-to-end (E2E) performance or cross-block considerations.
Simulations can be useful in some cases, but their efficacy and applicability are often
limited too.

New paradigms, ushered in by the recent developments in the field of artificial intel-
ligence (AI), and, most specifically, data-driven machine learning (ML) techniques, offer
new possibilities in operating complex systems, such as modern communication networks.
Unlike traditional approaches, the aspiration is that a massive amount of data, which is now
within our reach to collect and process within practical timeframes, can help alleviate the
need for tedious mathematical modelling and simulations for operating complex systems.
Deep neural networks (DNNs) and modern learning theories can enable computers to learn
models and apply optimisations that are beyond human comprehension and intellectual
capabilities. Not surprisingly, AI/ML is already accepted as an indispensable enabler for
the closed-loop control and optimisation of several network processes in emerging wireless
networks as recognised by several recent vision papers, such as [1–5].

Motivated by the aforementioned potentials, this article aims to provide the interested
readers with a comprehensive analysis of the most recent progress in the use of data-driven
and ML-based approaches in the study of modern communication systems and networks
with a focus not only on the key, most recent publications, but also on the developments in
the industry, major research projects and potential for new research presented by the gaps
in the literature.

1.1. Related Survey Papers and Contributions of This Survey

We begin with an appraisal and acknowledgement of the related existing contributions
in the literature related to AI/ML-empowered wireless communication networks. Our
study and analysis of the field over several months revealed that the existing reviews
usually do not investigate or contextualise research works through the lens of the ongoing
standardisation effort, industrial take-ups, and collaborative research project frameworks.
As a result, the taxonomy of various research contributions uses one of the following three
identified methodologies: application-oriented [6–9], the traditional layering approach
of the OSI protocol stack [10–17], or the learning method, i.e., supervised, unsupervised,
DNNs, and reinforcement learning (RL) [18].

In this survey, we review the existing large-scale research activities on AI-enabled
communications and networking from the perspective of standardisation activities to
identify significant research gaps and inform and orientate future research directions to
solve industrial needs. Even though this review may not be exhaustive, due to the fast
development in this field, we believe that the suggested framework in this paper can be
useful for future research initiatives, positioning articles, tutorial papers as well as future
research efforts. It shall help researchers explain and position the scope of their work as
part of a standardised intelligent networking architecture. The contributions of this survey
are also summarised below.

• The O-RAN Alliance and the 3GPP standardisation body have already made signifi-
cant progress in recommending how to perform data collection and intelligent control
at the RAN and the core network, respectively. In terms of our approach, at the RAN,
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we categorise ML-based technology components for transceiver design, according to
their operational timescales as suggested by the O-RAN Alliance: real-time (less than
10 ms), near real-time (between 10 ms and 1000 ms), and non-real-time (larger than
1 s) intelligent control. For ML models operating at the edge and core networks, we
summarize the main salient features of the network data analytics function (NWDAF)
developed and standardised by 3GPP. It is worth noting that only a few research
contributions are cognisant of the data collection and analytics architecture suggested
by 3GPP.

• We highlight the use cases for AI-enabled communication networks recommended
by ITU, the O-RAN Alliance and ongoing research projects to guide future research
activities with high and significant business potentials.

1.2. Summary of the Paper

The remainder of this paper is organised as follows. In Section 2, we give a short
review of intelligent functions at the RAN, and discuss purely data-driven and model-
aided ML techniques as suggested by Renzo et al. [19]. In Section 3, we review the
standardisation activities at the 5G core recommended by 3GPP and ETSI, and at the RAN
by the O-RAN Alliance. We also discuss research and standardisation gaps identified
by ITU FG-ML5G. Furthermore, we review the trends in ML algorithms running on low-
power micro-controller units, often referred to as TinyML, which was mostly omitted by
the previous survey papers. Section 4 provides a summary of recent and currently funded
projects in Europe, the U.K., and the U.S. on intelligent communications and networking.
Section 5 summarises the main research gaps identified during the combined review of
research papers, projects, and standards, and concludes this survey.

2. Background on ML-Based Optimisation of Wireless Networks

The traditional approach for optimising the performance of wireless transceivers
uses a divide-and-conquer concept. The transceiver is separated into signal processing
blocks performing, e.g., channel equalisation, demodulation and error correction, which
are optimised independently of each otherwith limited cross-block considerations [20]. For
the optimisation of a signal processing block, well-established mathematical models are
often used, derived from extensive research in information theory, signal processing, and
statistics for the past many years [21]. Unfortunately, some of the models, despite being
very accurate, can be mathematically intractable with a high complexity order for real-time
operational use. For instance, MIMO detectors and pre-coders can be optimally designed
based on a maximum a posteriori criterion, which, however, involves the solution of NP-
hard problems. Hence, only sub-optimal techniques, such as zero forcing equalisation,
can be pragmatically used [11]. Some tractable models may be overly simplistic and
inadequate to accurately capture all the intricacies in the wireless propagation medium and
the non-linearities and imperfections of hardware components [19]. Overall, the existing
block-based transceiver structure associated with mathematical optimisation per block
compromises the transceiver performance for simplicity and tractability, which AI/ML-
based techniques aspire to address.

ML can be used to directly optimise the end-to-end performance by treating the
entire system as a black box. This is usually referred to in the literature as the pure data-
driven technique [19]. The most intuitive way to apply ML to wireless communications
is to consider a transceiver as being an (unsupervised) auto-encoder constituted of an
encoder and decoder. Then, both the transmitter and receiver can be implemented as
feedforward neural networks (NNs) and can be jointly optimised as a single NN, while
the communication channel is modelled by inserting extra hidden layers between them,
e.g., a single layer adding white Gaussian noise is used in [22]. More complicated channel
transfer functions including the tap-delay-line for wideband transmissions, frequency and
phase offsets, and unknown time-of-arrival could be modelled by adding more layers [23].
The target in this approach is to train ML algorithms to learn the optimal system design,
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i.e., the mapping of source symbols to transmitted waveforms along with optimal decoding
at the receiver; see Figure 1.

Figure 1. Block diagram of a channel auto-encoder with the transmitter and receiver implemented
as fully-connected NNs and the channel incorporating linear effects, e.g., AWGN and inter-symbol
interference, and non-linear distortions, e.g., power amplifier and quantisation. The output layer at
the decoder applies a softmax activation function for soft symbol detection.

Implementing the transceiver as an end-to-end (E2E) auto-encoder is attractive, as it
essentially alleviates the need for conventional signal processing without compromising
performance; in [22,23], the block error rate in AWGN and multi-tap Rayleigh fading
channel using auto-encoders is on par with the baseline schemes. Nevertheless, there are
still significant unsolved challenges before adopting NN-based auto-encoders in practice,
which are summarised below.

1. Training the auto-encoder over all possible source messages is required, which be-
comes quickly impractical for long code words. Additionally, it was observed that
training at a low SNR does not necessarily generalise well at high SNRs [22], while
training at multiple SNRs will prohibitively increase the size of required labelled
datasets and time to train the NN.

2. The channel and all impairments between the transmitter and receiver must have
a known deterministic functional form and be differentiable, which is seldom the
case. For instance, the fading channel probabilistically varies over space and time.
Furthermore, some impairments may not be differentiable, such as quantisation, or its
mathematical representation may be inaccurate (e.g., the power amplifier response),
or poorly understood (e.g., channel models for molecular and underwater communi-
cations). In this case, it is unclear how to backpropagate gradients from the receiver
to the transmitter [24]. In addition, small discrepancies between the actual impair-
ment and its model used for training may significantly degrade the performance
during testing.

3. It is usually difficult to understand the relation between the topology of the NN,
e.g., the number of layers, the activation and loss functions, and the performance
of the transceiver. The explainability is a common problem hindering the adoption
of AI/ML techniques in some application areas, though it may not be a significant
obstacle in transceiver optimisation. Thus, efforts are needed not only to design new
AI/ML models, but also to explain the working principle of the models. Fortunately,
such research works are slowly emerging, for example, that of [25], which develops a
parallel model to explain the behaviour of a recurrent neural network (RNN).

Due to the above limitations, many studies have already adopted a third approach for
optimising the design of wireless systems, where ML and mathematical modelling work
together and mutually benefit from each other. The main idea behind model-aided ML-
based design is to keep the modular structure of the transceiver and use ML to optimise only
some of the signal processing blocks, especially those involving complicated computations,
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or for which some simplifications are assumed to make them mathematically tractable.
See, for instance, in Figure 2, the model-assisted NN-based implementation of Viterbi
decoding, where a small-sized NN is used to estimate the log-likelihood ratios at the
receiver, given the channel output, while the rest of the detector follows the traditional
Viterbi algorithm [26]. In the same direction, we list in Tables 1 and 2 some key studies,
which are separated on the basis of operation timescales for RAN intelligent control (RIC),
following the breakdown suggested by the O-RAN Alliance. Every research study comes
along with a one-sentence summary of its main contribution.

Table 1. Example key studies utilising model-based ML techniques for improving the performance of wireless networks in
real time (less than 10 ms).

Network Functions Examples of Key Research Studies

Symbol detection

DNN-based receiver design for joint channel equalisation and symbol detection in OFDM
systems [27].

DNN-based MIMO detector combining deep unfolding with linear-MMSE for channel
equalisation [28].

LSTM-based learning of the log-likelihood ratios (LLRs) in Viterbi decoding [26].

Channel estimation

Estimating the channel state information (CSI) under combined time and frequency
selective fading channels using DNNs [Yang2019] and convolutional neural networks
(CNNs) [29].

Adaptive channel equalisation using recurrent neural networks (RNNs) [30].

Channel estimation using meta-learning [31].

Reducing the CSI feedback in FDD massive MIMO systems using autoencoders in the
feedback channel [32].

Channel prediction

DNN-based prediction of the downlink CSI based on the measured uplink CSI in FDD
MIMO systems [33,34].

RNN-based downlink channel prediction leveraging correlations in space and time to
alleviate the issue of outdated CSI [35].

Channel coding

DNN-based decoding of short polar codes of rate ½ and block length N = 16 [36].

DNN-based decoding of polar codes with length N = 128 leveraging the structure of
belief propagation decoding algorithm [37].

Integrating supervised learning for estimating the extrinsic LLRs into the max-log-map
turbo decoder [38].

Link adaptation

Deep reinforcement learning (DRL)-based selection of the modulation and coding scheme
(MCS) using the measured SNR as the environmental state and the experienced through-
put as the reward [39].

Supervised learning techniques for adaptive modulation and coding (AMC) including
k-nearest-neighbours and support vector machines (SVMs) [40].

Reflecting intelligent sur-
faces (RIS)

DNN-based design and control of phase shifters [41].

Using supervised learning to estimate the direct and the cascade (base station to RIS and
RIS to the user) channels in RIS-based communication [42].

Combining compressive sensing with deep learning (DL) to reduce the training overhead
(due to the large number of reflecting elements) in the design of phase-shifts in RIS [43].

Spectrum sensing

Unsupervised (k-means, Gaussian mixture models) and supervised (k-nearest-neighbours
and SVMs) learning methods for binary spectrum sensing [44].

CNN-based multi-band cooperative binary spectrum sensing leveraging spatial and
spectral correlations [45].

Image-based automatic modulation identification based on the received constellation
diagrams, signal distributions and spectrograms [46].
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Table 2. Example key studies utilising model-based ML techniques for improving the performance of wireless networks in
near real time (10 ms to 1000 ms), and non real time (longer than 1000 ms).

Operational
Timescales Network Functions Examples of Key Research Studies

Near-real-time RIC Resource allocation

DL for joint subcarrier allocation and power control in the down-
link of multi-cell networks [47].

Joint downlink power control and bandwidth allocation in multi-
cell networks using NNs and Q-learning [48].

DNNs for interference-limited power control that maximises the
sum-rate under a power budget constraint at the base station [49].

Predictive models on spectrum availability for distributed proac-
tive dynamic channel allocation and carrier aggregation for max-
imising the throughput of LTE small cells operating in unlicensed
spectrum bands [50].

A DRL agent learns to select the best scheduling policy, including
water-filling, round-robin, proportional-fair, or max-min, for each
base station and RAN slice [51].

Interference management Centralised joint beam management and inter-cell interference
coordination in dense mm-wave networks using DNNs [52].

Non-real-time RIC E2E network slicing

Predicting the capacity of RAN slices and the congestion of net-
work slices using NNs, and optimally combining them to sustain
the quality-of-experience (QoE) [53].

An AI/ML module predicts the states of network resources in
runtime and autonomously stitches together RAN and core slices
to satisfy all the user intents [54].

Network di-
mensioning and
planning

SINR-based coverage eval-
uation using stochastic ge-
ometry

Deep transfer learning for selecting the downlink transmit power
level that optimises the energy efficiency in cellular networks
given the density of base stations [55].

NN-based prediction of the coverage probability given the base
station density, the propagation pathloss and the shadowing cor-
relation model [56].

Network mainte-
nance

Fault detection and com-
pensation

Supervised learning method to detect performance degradation
and the corresponding root cause of the fault [57].



J. Sens. Actuator Netw. 2021, 10, 60 7 of 34

Figure 2. The Viterbi decoding algorithm has to estimate the log-likelihood ratio of the received
symbol y for all possible transmitted sequences of symbols s to propagate along the Trellis diagram.
Viterbinet uses a small-sized fully-connected NN with two hidden layers that is trained to estimate
the likelihood for each possible sequence of transmitted symbols, given the channel output p(s|y).
This is subsequently combined with the estimated marginal probability of the channel output p(y) to
calculate the desired log-likelihood ratios p(y|s). The NN applies a softmax activation function at
the output layer to calculate conditional probabilities. In the depicted NN, the output size is equal to
16 corresponding to BPSK modulated symbols transmitted over an intersymbol interference AWGN
channel with memory length equal to 4 [26].

The summary of research works included in the tables reveals that the majority
concentrate on real-time RIC, while, as we will shortly see in the next section, the industry
and standardisation efforts have been mostly focused on the non-real-time RIC, data
analytics at the core and the edge networks, AI-based E2E network slicing and vendor
inter-operability issues. In our view, the joint creation of RAN and network slices, and
the optimal proactive allocation of resources for E2E network slicing using AI/ML is a
promising research topic worth pursuing.

3. AI/ML in the Standards and Industry

The first public deployments of 5G were a natural extension of the services offered by
4G by boosting connectivity through the enhanced mobile broadband (eMBB) use case, but
the realisation of the full potential of 5G and beyond also stems from the support of new
requirements offering lower latency services and the support of higher numbers of user
equipment (UE) per unit surface area. Two new supported use cases, ultra-reliable and low-
latency communications (uRLLC) and massive machine-type communications (mMTC),
open new horizons to various industry verticals by providing new opportunities and
prospects. Some representative examples of such verticals are healthcare, manufacturing,
automotive, harbours, and retail.

The main technical enablers for providing customised services to verticals are mobile
(or multi-access) edge computing (MEC) and network slicing [58]. British Telecom has
calculated a 30% increase in revenue and a 40% decrease in OpEx by using only one physical
infrastructure with network slicing instead of developing different physical networks to
support various services. As we are gradually moving towards a standalone 5G network, a
fully-fledged network slicing functionality brings a more granular control of the network
resources. Capacity-based slices can be broken down into smaller pieces, offered to verticals
and individual customers only for a few minutes or so. Network slicing also has an impact
on the orchestration of the RAN, e.g., network and RAN slices may be jointly created for
better E2E performance. The optimal operation of such a highly complex system across
several geographical areas calls for an E2E automation with as little human intervention
as possible.
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Several standardisation bodies have already recognised that a fully automated network
operation is closely linked to the effective use of big data analytics and AI/ML. AI-driven
self-organised networking solutions by commercial vendors have also become increasingly
popular [59]. Data collection engines could gather an enormous volume of raw data from
several geographical areas and network locations (RAN/Edge/Core). The collected data
can be subsequently analysed and mapped onto key performance indicators (KPIs), which
are converted into appropriate actions at the RAN (e.g., radio resource allocation) and the
core (e.g., intelligent network slicing) for satisfying the service level agreements (SLAs).
Hidden patterns of the network behaviour can also be unveiled using AI/ML and provide
the foundation for predicting interesting events, such as sharp load variations, connectivity
outages, and faults. Additionally, industry verticals would require access to data analytics
for assessing the acquired benefits against the induced cost.

Next, we review the existing works and future trends in the standardisation bodies
and telecommunication industry related to the adoption of AI/ML and data analytics in
5G communication networks at the edge, the core and the RAN.

3.1. Data Analytics and AI/ML in 3GPP

Mobile network operators (MNOs) have traditionally relied on subscriber data col-
lection (location, data rate, call drops, etc.) for network dimensioning and planning. The
real-time monitoring of network failures has also been part of the operator’s investment
model, as it can improve anomaly detection and trigger (proactive) maintenance at reduced
costs. With the advent of smartphones, we witnessed, for the first time, truly diversified
services (data and voice), which created much more complicated data traffic patterns and
made it imperative to adopt data analytics for network management and optimisation.
Nevertheless, data analytics for enhancing the network performance have been so far
diagnostic and mostly descriptive or, simply measuring various KPIs at several locations,
which is suboptimal [60].

In 5G networks and beyond (B5G), not only are the offered services heterogeneous, but
so are the end-devices. For instance, low-power Internet-of-Things (IoT) have very different
communication requirements and hardware constraints than do autonomous vehicles. This
makes E2E optimisation and the optimal allocation of network slices an arduous task
with the added complexity that must be solved in real time and, thus, strengthening the
need for big data analytics. Proactivity over reactivity would greatly benefit MNOs over
various events, such as potential dynamic and sharp load changes (e.g., group mobility),
upcoming outage events because of high interference in certain areas, network faults and
maintenance. This amplifies the need to move from diagnostic and descriptive analytics to
predictive analytics with an associated confidence level [61] and prescriptive data analytics
with suggestions and antecedent countermeasures to maintain the required QoE levels [60].
5G networks are designed with extended network function virtualisation (NFV) and MEC
that allow the collection and processing of data across the network. 3GPP introduced in
Release 15 the network data analytics function (NWDAF) as part of the 5G service-based
architecture, a centralized entity for data collection and analytics at the core network [62].
The calculated analytics can either be predictive or provide statistics about past events.

3.1.1. Network Data Analytics Function (NWADF)

The NWDAF resides at the core network and utilises a bus architecture known as
the service-based interface to communicate with other network functions (NFs). In the
context of IMT-2020, a NF processes a certain network node functionality, e.g., session or
mobility management, and has well-defined interfaces. In the cloud-native architecture, the
virtualised NFs are broken down into smaller software units known as microservices, which
are easier to manage and upgrade via open application programming interfaces (APIs)
than large software components. Apart from NFs, the NWDAF can also provide analytics
to application functions and the operation administration and maintenance (OAM) system.
The interaction between the NWDAF and other NFs follows the consumer–producer model.
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The NFs may subscribe to the NWDAF and request specific analytics (known as use cases
or analytic events), which are given a unique identification number (ID) so that a NF can
request a service from the NWDAF via its ID. The requests can be either periodic through a
subscription to the NWDAF or ad hoc, i.e., one-off reporting request from the NWDAF.

NWDAF in Releases 15 and 16

In 3GPP Release 15, the consumers of the NWDAF are the policy control function
(PCF) and the network slice selection function (NSSF); see Figure 3. The NWDAF receives
load information from the NSSF and provides analytics that can be used to determine the
optimal way to create or select the network slice(s) serving a UE or a group of UEs. The
PCF uses NWDAF analytics to perform traffic steering to alleviate congestion at the core
network and optimise the assignment of network resources [62]. In a nutshell, the NWDAF
in Release 15 equips MNOs with data analytics to optimise and smartly manage several
network slices, potentially running on the same physical infrastructure and instructing
every few minutes or so the number of resources to allocate to each slice. This functionality
is crucial to meet SLAs in a landscape with several offered services having diverged and/or
conflicting latency, reliability, and data rate requirements. It is well understood that creating
fine-grained slices and automating the allocation of network resources through AI/ML is
imperative to ensure QoE per customer and service. Therefore, the NWDAF, where the
AI/ML models reside, is a key component to achieve this goal. The alternative approach
using large and relatively static slices will perform poorly as new services with diverse and
stringent requirements appear in the market.

Figure 3. The NWDAF in 3GPP Release 15 for closed-loop optimisation of network slices.

In 3GPP Release 16, the NWDAF is allocated and dedicated to study and work items; it
goes beyond closed-loop optimisation of network slices and interacts with many more NFs
at the core network, e.g., access and mobility management (AMF) and session management
(SMF) (see [63]). In principle, the NWDAF can exchange data with any NF in the core
network, and correlate data received from multiple NFs to expose hidden patterns. NFs
can also communicate with each other through the NWDAF. To give an example, the
AMF supports (un)subscription to the notification of analytics information for SMF load
information from NWDAF to improve SMF selection. Therefore, the NWDAF is both a
producer and consumer in the service-based architecture. Overall, in Release 16, the NFs
may provide local information to the NWDAF and request data analysis about various
standardised events (using the unique ID of the event), including customised mobility
management, mobility prediction, load balancing, QoS sustainability, service experience,
and network performance; see [61] for more details on standardised analytic events.

While the communication interfaces (i.e., the APIs) between the NWDAF and other
NFs are standardised by 3GPP, the implementation of specific AI/ML algorithms for big
data analytics and closed-loop optimisation and automation are open to the needs of
operators and vendors. Operators determine the location and the type of data and KPIs
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to collect from the network, and specify the type of analytics the NWDAF provides to
other NFs. In the B5G/6G landscape, it is envisioned that many vendors compete on the
design of data collection techniques, ML model design, training, and inference, while the
pipeline for communication and reporting back and forth to the NWDAF and other NFs
is standardised. MNOs may also subcontract analytic services to several vendors, which
increases market competition and innovation [64]. It should be noted that the NWDAF
concerns analytics only in the core network; however, the separation between centralised
and distributed units (CU/DU) in the RAN along with MEC have already set the stage for
data analytics in the RAN and the edge, as we will shortly discuss below [65]. Currently, the
NWDAF can access 3GPP RAN data only via the OAM entity. In this spirit, the study in [66]
proposes an architecture that integrates analytics at the core network with application-level
and RAN-centric analytics for E2E performance optimisation.

Another point worth mentioning is that similar NFs that need to communicate often
with each other might be better provided by the same vendor, at least in the early deploy-
ments of 5G core networks. Similarly, an MNO may wish to subcontract the same supplier
to build the core network at a specific geographical region. Although the service-based
architecture congenitally supports a multi-vendor 5G core ecosystem (known as the best-
of-breed model), the actual number of vendors providing the NFs might be limited in the
beginning to ensure a viable operation.

Apart from the NWDAF, there is also the management data analytics function (MDAF),
which is part of the operation and support system (OSS). It collects data from various
repositories, the OAM system, and NFs, and provides analytics about network management
and orchestration. The analytics calculated by the MDAF have a longer cycle than that
collected by the NWDAF. Note that long-cycle analytics are not actionable immediately,
but they can be used to identify new rules and expose hidden patterns that can eventually
become a part of the NWDAF.

Not surprisingly, the available studies optimising wireless networks using AI/ML
and that are compatible with the service-based architecture are limited. In [67], the authors
consider a system composed of five cells, three categories of subscribers, five types of
end-devices, and a realistic mobility model depending on the type of the device and the
time of the day. They compare three ML models residing at the NWDAF for network
load prediction and anomaly detection and demonstrate that RNNs and long-short-term-
memory (LSTM) outperform linear regression methods. In [66], predictive data analytics
are constructed by measuring the user mobility and the received signal strength in a
vehicle-to-vehicle (V2V) communication scenario. The predictions are used to perform
real-time radio resource management (RRM); it is shown that the session’s throughput is
increased in comparison to an uncoordinated allocation of resource blocks.

NWDAF in Release 17

According to the 3GPP specifications in Releases 15 and 16, multiple NWDAF in-
stances, within the same public land mobile network (PLMN), act independently of one
another. However, calculated analytics at nearby geographical areas and/or different ana-
lytics events may be related to each other, e.g., UE mobility and communication analytics
are correlated with network data analytics. In addition, the sheer amount of generated
data in future networks would rather impose a distributed architecture, where multiple
NWDAF instances, placed at the edge and core of networks, cooperate with each other.
Recall that the virtualised NFs are programmable and therefore, can be located almost
anywhere in the network. Different NWDAFs may be assigned different tasks or share
the computational load for the same analytic event. Furthermore, NWDAFs located at
the edge can monitor the network, obtain useful analytics, and maintain the QoE, even if
the connectivity to the central cloud is lost. Recall that communication to the cloud also
increases latency; time-critical services, e.g., autonomous driving, are likely to require an
NWDAF placed near the edge. For instance, an edge NWDAF might quickly perform
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real-time analytics, while a centralised NWDAF is suitable for carrying out data processing,
selection, and training of ML models.

In 3GPP Release 17, the functionality of NWDAF is also expanded towards specific use
cases, i.e., 7 use cases and 21 key issues along with suggested solutions are described in [68].
As compared to Release 16, there are both data analytics and architectural enhancements.
Firstly, the NWDAF is decomposed into two logical entities performing ML training and
ML inference, respectively. Secondly, a hierarchical architecture is recommended, where a
centralized NWDAF coordinates multiple localised NWDAFs [68] (p. 251). Unfortunately,
the communication between NWDAFs raises privacy and security concerns. For example,
consider the scenario where a NWDAF collects the trajectories of UEs and forwards them
to the central NWDAF for training ML models. In this scenario, attack surfaces are created
both at the NWDAFs and in their communication channel. To mitigate the risk of data
breaches and cyber security attacks, it might be beneficial to perform local training at the
point of data collection and transmit only the trained model parameters to the central
NWDAF, which can aggregate several received models and send the outcome back to the
learners. 3GPP Release 17 has suggested involving federated learning instead of sharing
raw training data between NWDAF instances; see [68] (p. 133) for the general procedure
of trained model registration, discovery, update, and consumption. See also an example
illustration in Figure 4. Federated learning is shortly discussed next.

Figure 4. Example illustration for distributed implementation of NWDAF in 3GPP Release 17,
using federated learning [68]. Three distributed NWDAF instances at the edge, occupying different
geographical areas, perform local learning and share their NN weights wl , l ∈ {1, 2, 3} with the
centralised NWDAF at the cloud, which averages the received models and sends back to the local
learners the global model wg for re-training.

Federated Learning

Federated learning is a distributed learning algorithm, where several learners are
locally trained using their own datasets and communicate only their model parameters to
a server. The server aggregates the received models to form the global model that is sent
back to the learners for retraining. This process iteratively continues until a convergence
constraint is satisfied. Federated learning was invented by Google for image classifica-
tion and language modelling tasks and showed remarkable performance in next word
prediction [69]. One should not confuse federated learning with other distributed learning
methods, e.g., split learning [70], where clients with low computational capabilities, such
as IoT, train only the first few layers of a DNN and send the extracted features to a gateway
or to the cloud, which completes the computationally demanding part of the training on
behalf of the clients.

Federated learning can become a bandwidth-efficient and privacy-preserving dis-
tributed learning technique for communication networks. The datasets collected by the
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learners can vary in size and do not need to be independent of each other, which is often
the case in communication networks with the learners being either distributed NFs at the
core or UEs at the RAN. In [71], federated learning is used for predicting popular video
content for edge caching and is performed closely to the centralised baseline scheme. The
5G core network has an inherent built-in support for distributed learning. Specifically,
the various NFs can be viewed as learners that collect data and locally train ML models
about specific analytic events, e.g., UE mobility, communication, and session management,
while the NWDAF can be viewed as the server that supports global analytics, e.g., learning
to optimise the allocation of network slices. Furthermore, in 3GPP Release 17, multiple
NWDAF clients can form a federation and train ML models in a distributed and hierarchical
manner [68]; see Figure 4.

Federated learning significantly reduces the communication signalling overhead as
compared to the case where raw data are exchanged between the server and the learners.
However, the number of model parameters, i.e., the number of NN weights, can also
become large in the case of DNNs, not to mention the possibly many iterations required
until convergence in federated learning. To further improve learning efficiency, federated
distillation shares only the model output, i.e., the last layer of the DNN instead of the
complete model, yielding, for example, 26 times less communication overhead at the cost
of negligible performance loss in [72]. Other methods to reduce the signalling overhead
involve model compression or model updates at longer intervals.

The study in [73] considers federated learning at the RAN, where the clients are
UEs and the server is a gNB. To reduce the number of errors in the received model
parameters, the gNB optimises the allocation of RBs to a selected subset of UEs that
experiences favourable channel conditions. For federated learning at the RAN, analogue
transmissions of the model parameters from the learners to the server can also be helpful. In
the analogue domain, every learner can participate in the model updates, utilising the full
available bandwidth to communicate with the server, and thus, the model convergence time
decreases. Recall that, in federated learning, the server is not interested in the individual
parameters calculated from each learner, but only in their summation, which is equal to
the superposition of the received analogue signals at the server [74]. An extensive review
of federated learning for MEC can be found in [75], while the study in [76] presents open
research topics and future directions for federated learning in 6G communication networks.

3.1.2. European Telecommunications Standards Institute (ETSI)

Within 3GPP, the ETSI has already established several committees working on AI/ML-
based operation for 5G/B5G wireless networks to enhance their automation and autonomy
levels [77]. We discuss below the activities for two of these committees; the former is
working towards the experiential networking intelligence (ENI) system, and the latter is
producing the zero-touch network and service management (ZSM) architecture.

ETSI ENI

In traditional communication networks, network operation, optimisation and man-
agement are costly and time-consuming tasks exacerbated by vendor inter-operability
issues and the recent advent of personalised services. The ENI initiative, founded in 2017,
designs an AI-based cognitive network management system that provides feedback, rec-
ommendations, or commands to another system, e.g., to an MNO, an orchestrator, a user,
or an application, aiming at improving the other system’s performance and increasing its
autonomy level in a cost effective manner [78]. The so-called assisted system may or may
not have AI/ML functional modules, and most importantly, it does not need to change its
functionality to receive help from the ENI system, as illustrated in Figure 5. To accelerate its
adoption, the ENI system comes with an API broker that acts as a gateway and translates
between the APIs of the two systems (assisted and ENI). The ENI system comprises six
functional blocks, including situation-awareness and context-awareness functions (which
enable it to dynamically adapt to changes in the environment), the assisted system’s man-
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agement objectives, business goals, and user needs. Essentially, the ENI and the assisted
systems together create a closed loop so that the ENI system always receives updated
data from the assisted system, and in turn, provides AI/ML-driven recommendations for
network management, orchestration, etc.

Figure 5. High-level functional architecture of the ENI system with an API broker and three assisted
systems with different levels of AI adoption, ranging from no AI capability to AI functional blocks
with closed-loop controls [79].

The ENI committee has identified several use cases where AI seems to have a high
potential in improving network operation and management, and grouped them under
five main categories, specifically, infrastructure management, network assurance, network
operations, service orchestration and management, and network security [80]. Example
representative use cases for each category are energy optimisation, network fault prediction,
radio coverage and capacity optimisation, intelligent caching based on content popularity
predictions, and policy-based network slicing for IoT security, respectively. For instance, the
ENI system can interact through standardised interfaces (reference points) with an MNO,
collect data and learn about the MNO’s operation and performance, and finally, suggest
methods to optimise the MNO orchestration of network slices. The recommendations can
be dynamically updated as the ENI system collects more data, the environment changes
or the goals of the MNO vary in time. Subsequently, the selected use cases by the ENI
committee are associated with the requirements that the ENI system must fulfil [81]. To
give an example, a functional requirement shall specify how to perform data collection,
analysis, and learning, or how to inter-work with other systems, including the assisted
system, while a network requirement shall determine how to allocate network resources to
the virtual NFs of the assisted system.

In a nutshell, the ENI system is a versatile, AI/ML-based system with generic archi-
tecture that can support various decision-making processes and systems to achieve their
goals, as specified in the ENI use cases. There are ongoing ENI system demonstrations
(proofs-of-concept) [82], while the latest positioning white paper produced by the ENI
committee is available in [83].

ETSI ZSM

The ZSM committee is another cross-industry initiative, launched by ETSI in 2017,
whose aim is to design a reference architecture for future communication networks, that
are solely managed by AI/ML without any human intervention [84]. The overarching goal
of the ZSM committee is to design a reference architecture that supports self-monitoring,
self-optimisation, and self-healing of future networks, with higher levels of autonomy
attained as more data is collected [85]. The main drivers for this are the high complexity
of future networks, the service-based architecture along with the adopted principles of
SDN/NFV, the multi-vendor ecosystems, and the unprecedented business opportunities
created by network slicing. The ZSM committee recognises that data collection and closed-



J. Sens. Actuator Netw. 2021, 10, 60 14 of 34

loop operations throughout the network are the lifeblood of network automation, see
Figure 6.

Network automation and agility would allow MNOs to provide new services and
business opportunities, which ultimately is beneficial to their customers, rather than
managing the operation of their networks themselves.

To accelerate the adoption of E2E automation in multi-vendor environments, a single,
harmonised, and interoperable service and network management framework is needed,
where different solutions provided by vendors, standardisation bodies, and open-source
projects can consistently fit together and inter-operate [86]. To achieve this target, the
ZSM committee does not intend to generate a new standard but rather integrate existing
standards and solutions to a consistent architectural framework. The system architecture
suggested by the ZSM committee is modular, scalable, and service based with open, intent-
based interfaces to facilitate the adoption of various existing solutions and standards [87].

Figure 6. High-level reference architecture for a network management domain with closed-loop
control and five domain functions as suggested by the ZSM committee. Domain-data analytics,
e.g., for fault identification, are stored, and analytics about relevant past events are retrieved and
enhance the performance of AI/ML tools residing under domain intelligence. Finally, the integration
fabric is used as an interface for the exchange of information between different network management
domains. Note that there are E2E services that consist of several domains, e.g., a service for E2E
network slicing comprises core, transport, and RAN slice subnets spanning different management
domains [87].

There are several other committees under the ETSI auspices with a focus on AI/ML-
based networking solutions. For example, the Securing AI (SAI) group, formed in 2019,
studies threats arising from the deployment of AI systems and aspires to provide mitigation
schemes against cyber security attacks targeting AI systems. Another example is the Core
Network and Inter-operability (INT) committee, which considers AI-aided actions to
configure network parameters, e.g., routing policies. All these committees are likely to
collaborate, develop synergies with standard developing organisations (SDOs) outside
ETSI, and liaise with open-source projects, such as the Linux Acumos and the Open
Network Automation Platform (ONAP) to avoid duplications and jointly realise the vision
of digital industry transformation.

3.2. International Telecommunication Union (ITU)

The ITU-T study group (SG) 13 established the focus group (FG) on ML for future
networks including 5G (FG-ML5G) in 2017, which was active between January 2018 and
July 2020, and produced 10 technical specifications for the integration of ML into future
networks [88]. The FG identified standardisation and research gaps but also specified
data formats to be collected and processed for a variety of use cases. The use cases were
grouped under five main categories, and for each of them, the requirements related to data
collection, storage, and processing were determined. The identified use cases are relevant
topics for further research work and are listed in Table 3.
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Table 3. Identified use cases for ML in future networks by FG-ML5G [89].

Categories Use Cases

Network slice and other network
service-related use cases.

• Cognitive heterogeneous networks and ML-based self-optimised networks.
• Radio resource management (RRM) for network slicing.
• E2E network operation automation.
• Service design
• Network resource adaptation
• Logical network design and deployment
• Fault detection and recovery
• Application-specific network slicing through in-network ML.
• Smart traffic mirror—an ML-assisted network service.
• ML-based E2E network slicing for 5G.
• ML-based utility maximisation of sliced backhauls.
• Energy efficient trusted multi-tenancy in IMT-2020 cross-haul.
• Network slice SLA assurance based on ML.
• Service management for smart cities.
• Automated testing of services.

User-plane related use cases.
• Traffic classification.
• Long-term traffic forecasting.
• Emergency services based on ML.

Application related use cases.
• Access network assisted transmission control protocol window optimisation.
• Retention and storage intelligence function.
• Data-driven architecture for ML at the edge.

Signalling or management re-
lated use cases.

• ML mobility pattern prediction.
• Load balance and cell splitting/merging.
• ML-based QoE optimisation.
• ML-based network management for Industry 4.0.
• ML-based correlations between transport KPIs and radio KPIs.
• ML-based E2E network management.
• ML-aided channel modelling and channel prediction.
• ML-based link adaptation optimisation.

Security-related use cases • Combatting use of counterfeit ICT devices—ML-assisted network service.
• ML-based identification of illegal exchanges using SIM boxes.

Another core contribution of the FG-ML5G is the recommendation for a high-level
and interoperable architectural framework, which incorporates ML into future wireless
networks [90]. In this architecture, a telecommunication network, e.g., 5G or IEEE 802.11,
can become an underlay that provides data to the ML pipeline (or ML overlay). The latter
collects the data through a standardised interface (the SRC) and passes them through a
well-defined configuration, including data pre-processing and NNs associated with the
subject use case. Finally, the ML overlay distributes the ML output to the corresponding
SINK (another standardised interface), through which the output is applied to the underlay
network. Apart from the SRC and SINK interfaces that interact with the NFs of the underlay
network, the ML functionalities in the overlay are technology agnostic. Therefore, AI/ML
algorithms and telecommunication technologies can evolve in parallel. The study in [91]
utilises this architecture for ML-based association and handover in a WLAN.

Another critical architectural component suggested by the FG-ML5G is the ML sand-
box, where ML models are trained and tested before their live deployment in the underlay
network [90]. In the sandbox, MNOs can compare the performance of various ML models
and mitigate the risks associated with the adoption of ML techniques. Training ML models
in the sandbox may use either real-network or simulation data, leveraging digital twins of
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the underlay network [92]. Therefore, the sandbox enables the ML pipeline to dynamically
adapt to changes in the underlay network or the environment. The selected ML models
are finally stored in a repository known as the ML marketplace, which is managed by an
orchestrator and is responsible for selecting the best ML model according to the needs of
the subject use case. For a high-level overview of the interactions among the architectural
components recommended by the FG-ML5G, see Figure 7.

Figure 7. The ML intent is provided to the Machine Learning Function Orchestrator (MLFO), which
specifies the associated SRC and SINK interfaces. In this illustration, the SRC is located at the core
network and collects measurements, e.g., for access and mobility management (AMF) for a UE, which
are subsequently provided to the ML sandbox. The sandbox retrieves suitable ML models from the
marketplace, e.g., for mobility prediction, and assess their performance using a digital twin of the
underlay network. AFs-t, NFs-t and RAN-t stand for the digital twin application functions, network
functions and RAN implementation. Finally, the SINK which, in this illustration, is located at the
RAN may for instance request the gNB to allocate more resource blocks to the UE as the latter is
about to travel across an area with poor line-of-sight wireless propagation conditions.

During its lifetime, the FG-ML5G had a strong interaction with MNOs, with the ETSI
ENI committee for creating a framework for the evaluation of intelligence levels [93], with
the ETSI ZSM committee for designing the ML pipeline architecture, etc. Additionally, the
FG encouraged the use of open-source frameworks and AI platforms, such as the Linux
foundation for AI Acumos [94]. To engage the research community, the FG organised a
global AI challenge between March and December 2020, where research teams competed to
solve real telecommunication industry problems using AI/ML, e.g., network topology opti-
misation, and PHY channel estimation [95]. The
ITU-T SG13 focus group on autonomous networks (FG-AN) was established in December
2020 and is the natural continuation of FG-ML5G [96].

3.3. Open RAN

We have seen in the previous section that the disaggregation between hardware and
software along with programmability using the principles of SDN/NFV are crucial for
adopting a service-based architecture (SBA) in the 5G core network, and subsequently inte-
grating big data analytics and intelligent control. Open RAN aims at bringing intelligence
also into the RAN and is mainly driven by the combined efforts of two organizations: the
O-RAN Alliance, founded in 2018, focuses on the development of open and standardised
interfaces in the RAN [97], while a project group inside the Telecom Infra Group (TIP)
focuses on the design of a software-based RAN using commercial off-the-shelf (COTS)
hardware and disaggregated software [98].

Using the principles of SDN/NFV, commodity hardware is used in the Open RAN
(the O-RAN Alliance uses the term white box hardware), and the various functions are
implemented in software, possibly by different vendors, due to openness. For instance, a
remote radio unit (RRU) by vendor A can communicate via an open interface to a virtual
PHY or MAC layer function developed by vendor B running on an Intel x86-based COTS
server. Avoiding vendor lock-in can reduce the cost of deploying and upgrading the
network, and can also lower the entry barriers for small vendors, bringing more innovation
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into the market. Currently, MNOs are in different stages of adopting O-RAN, with more
than 30 MNOs participating in the Open RAN project group in TIP. Open RAN is an
evolution of virtualized RAN, as illustrated in Figure 8.

Figure 8. The two main changes in the evolution from virtual RAN to Open RAN are the commodity
remote radio unit (RRU) and the open fronthaul (FH) interface. Note that 3GPP TR 38.801 has
divided the baseband unit (BBU) into the centralised unit (CU) and the distributed unit (DU), where
a single DU usually manages multiple RRUs. The common public radio fronthaul interface (CPRI) is
a vendor-specific interface.

3.3.1. RAN Intelligent Controllers

The RAN Intelligent Controllers (RICs), including non-real-time (>1 s) and near-real-
time (>10 ms and <1 s) operations, lie at the heart of the O-RAN architecture and introduce
intelligent management of radio resources, self-organisation, and self-optimisation in
the RAN by applying closed-control loops between the RICs and the RAN functions.
Traditionally, the optimisation of the RAN is a vendor-specific problem, but introducing
RICs clearly disaggregates the RAN from its optimisation process. Through open interfaces
and RICs, the RAN functionality becomes available to operators, service providers and
other parties, who can also contribute to RAN optimisation, using AI/ML.

The non-real-time RIC resides outside the RAN at the service management and
orchestration (SMO) layer and is responsible for optimising in non-real-time the operation
of the RAN, e.g., the orchestration of RAN slices, as well as enhancing network policies
and boosting the E2E network performance. To do that, the controller receives real-time
RAN data over the A1 interface (see Figure 9); data from other sources, such as the SMO
framework, e.g., topology and configuration data; data from external repositories, e.g.,
contextual information; and historical data from the management data analytics function
(MDAF). By applying big data analytics and AI/ML tools, the non-real-time RIC can
optimise not only the performance at the RAN, but can also suggest joint network and
RAN policies, e.g., coupling together the orchestration of network slices with radio resource
scheduling techniques, making a step towards cross-layer network optimisation.

To give some representative examples of network optimisation using the non-real-time
RIC, let us consider an emergency response scenario, where public safety personnel is
deployed in the affected area. Using data collected from various sources, such as the
map of the area received from an external database, the non-real-time RIC can prioritise
the personnel operating at critical locations. Given the location of an UE, the non-real-
time RIC may also apply traffic steering so that an emergency voice call is served by a
macro cell, while eMBB video transmission from the scene to the command-and-control
centre is let through a small cell in the area that operates at mm-wave frequencies. These
sorts of functionalities are not supported by existing wireless networks; therefore, it is the
non-real-time RIC that has mostly attracted the interest of the telecommunication industry.

In addition, the non-real-time RIC is responsible for ML model selection and training,
while the near-real-time RIC carries out the ML inference once it receives the selected and
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trained models. Recall from Section 3.2 that in the architectural framework proposed by
ITU, an MNO can look at the ML marketplace for available models and use the ML sandbox
to train and test them before deployment. At the specified timescales, the non-real-time
RIC handles, for instance, with interference and spectrum management, traffic steering,
handover, and resource allocation for specific users or slices. The ML models implementing
these functions are embedded into the non-real-time RIC, in the form of programmable
applications (xApps), which might belong to different vendors. The near- and non-real-
time RIC are connected through the A1 interface but can also communicate via the O1
interface as illustrated in Figure 9. The non-real-time RIC controls through the E2 interface
the centralised and distributed unit (CU/DU) functions. The radio unit (RU), DU, and CU
are connected via the O1 interface to the RICs, periodically providing measurements and
feedback. Additionally, the RU/DU/CU and the non-real-time RIC are managed by the
SMO layer over the O1 interface.

Finally, the real-time closed-control loop (<10 ms) operates at the timescales less than
the duration of the 5G new radio (NR) frame and can be used, for example, for adaptive
modulation and coding, channel estimation, and channel prediction; see also Table 1. The
real-time RIC is yet to be considered by the O-RAN Alliance. Clearly, different timescales
are associated with different orders in the number of affected users [51].

Figure 9. The open interfaces in the architecture proposed by the O-RAN Alliance and the three
closed-control loops. Note that some of the functionality of the DU, e.g., low PHY layer operation,
might move into the RU depending on the use case and deployment constraints and is known as
split 7.2. Traditional 4G deployments use split 8. Moving functions from the DU to RU reduces
latency and decreases the fronthaul bandwidth requirements at the cost of added complexity in the
RU. See [99] for an overview of functional splits. The RU is deployed at the cell site, the CU/DU are
usually located at the edge, while the RICs might be placed at the edge or cloud depending on the
use case. One near-real-time RIC can control thousands of CUs, DUs, gNBs or eNBs.

3.3.2. Use cases and challenges in Open RANs

The O-RAN Alliance has already specified several use cases leveraging the O-RAN
architecture and AI/ML. These use cases, along with their key benefits, are listed in Table 4
as potential research topics [100]. Of them, traffic steering was studied in [101], using
a network architecture compliant to that proposed by O-RAN. Specifically, an LSTM is
trained in the non-real-time RIC based on data collected from a real-world ultra-dense
data traffic scenario. The trained NN is sent to the non-real-time RIC to predict the
traffic in the considered area and proactively apply cell splitting by activating small cells
inside the congested cells. Another use case, namely, scheduling control in sliced 5G
networks through the non-real-time RIC, is investigated in [51]. A DRL agent selects the
best scheduling policy, among water-filling, round-robin, proportional-fair, or max–min,
for each base station and RAN slice. Both studies in [51,101] report promising results by
adopting closed-control optimisation loops based on AI/ML in Open RANs.

The adoption of Open RAN architecture does not come without challenges. Firstly,
there might be conflicts between xApps developed by different vendors. Consider, for
instance, ML models produced independently for load balancing and handover that run
in parallel. The former might allocate a UE to a neighbouring cell that is less congested,
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and the latter might handover the UE back, creating ping-pong effects. As a result, it is
incumbent to resolve inter-operability issues and xApps conflicts.

Secondly, Open RAN needs to work together with the existing wireless technologies
that will still occupy a significant market share in 2025. In this direction, the Open RAN
project group inside TIP focuses not only on 5G, but also on implementing software-defined
2G/3G/4G RANs with general-purpose hardware. Actually, most of today’s Open RAN
deployments are 4G. Thirdly, customised Open RAN solutions are needed for private 5G
deployments with specialised use cases. Finally, since the network elements can belong
to different vendors, suboptimal performance should be expected in early developments.
Therefore, it will not be possible to tell whether Open RAN is the leading choice until we
witness deployments in dense urban scenarios, with integrated massive MIMO and not
just Open RAN in rural environments.

Table 4. Use cases considered by the O-RAN alliance [100].

Use Cases Key Benefits and Enablers

Low-cost RAN White-box Hardware COTS hardware reduces CapEx. It is easier to upgrade and inter-
operable with network functions developed by different vendors.

Traffic Steering
Faster response to data traffic variations using AI/ML-based
proactive load-balancing yielding reduced OpEx, better network
efficiency and user experience.

QoE Optimisation Prediction of degraded QoE for a UE using AI/ML and proactive
allocation of radio resources to the UE.

QoS-based Resource Optimisation
AI/ML-based allocation of radio resources to ensure that at least
certain prioritised users maintain their QoS under data traffic
congestion.

Massive MIMO Optimisation Adapting beam configuration and related policies, e.g., packet
scheduling, for enhancing the network capacity.

RAN slice SLA assurance Maximise revenue with AI/ML-based management of network
slices.

Context-based dynamic handover management
for vehicle-to-everything (V2X)

AI/ML-based handovers using historical road traffic and naviga-
tion data resulting to better user-experience.

Dynamic resource allocation based on the flight-
path for unmanned aerial vehicles (UAV)

AI/ML-based resource allocation using historical flight data and
UAV measurement reports.

Radio resource allocation for UAV applications AI/ML-based resource allocation under asymmetric up-
link/downlink data traffic.

RAN sharing Reduced CapEx due to multi-vendor deployments.

The O-RAN Alliance created the O-RAN software community inside the Linux foun-
dation to professionally manage its open-source software. Since November 2019, there
have been three software releases, with the fourth planned for July 2021. Rakuten was
the first to implement a multi-vendor RAN in 2019. In 2020, NTT Docomo successfully
connected a 5G baseband unit developed by NEC and Samsung with RRUs from other
vendors complying with O-RAN specifications. In the U.K., Vodafone has already deployed
rural Open RAN sites; see [102] for more case studies. Nevertheless, O-RAN deployments
have so far concentrated on vendor interoperability; implementing intelligent controls (the
RICs), which are key pieces in the O-RAN architecture, is not expected to run commercially
until the end of 2021.



J. Sens. Actuator Netw. 2021, 10, 60 20 of 34

3.4. TinyML

TinyML lies in the intersection of ML and embedded systems, and enables ML capabil-
ities on lightweight IoT devices, including cheap Micro-controller units (MCUs) or digital
signal processors, which operate at an average power of 1 mW or less [103]. These devices
(without the ML functionality yet) have become an integral part of our everyday lives, be-
ing massively deployed at home appliances and buildings, mobile phones, and automotive,
to name a few. During 2019, more than 30 billion MCUs were shipped worldwide.

MCU-based IoT lies at the very edge of the communication network, collecting enor-
mous amounts of raw data, most of which is typically discarded, as the energy cost to
transfer it to the cloud is prohibitively high. Note that for devices falling under the category
of TinyML, the energy consumption required for communication is much higher than
that needed for computation. Keeping the total energy consumption at very low levels is
actually a prerequisite for the massive deployment of MCU-based devices, as these devices
can be left unattended for months or years after their deployment, operating on battery,
solar energy, or perhaps energy harvesting. Therefore, empowering MCUs with AI/ML
and doing locally ML inference while the overall power consumption remains low can be
beneficial. For instance, a motion sensor often calculates and transmits to a gateway just
its peak and average acceleration values every duty cycle. Now, consider that the sensor
runs a lightweight version of an ML model, which constantly monitors the device and
can predict a failure. The sensor will communicate to the cloud just a few extra bits of
information if a potential failure is predicted. Environmental and agricultural monitoring,
anomaly detection, and predictive maintenance are relevant use cases for TinyML.

The main limitation of TinyML is the hardware constraints of embedded systems in
terms of processing power, memory, and clock speed. Typically, TinyML runs on 32 bit
MCUs with fewer than 500 kB of RAM, a few MB of flash memory, and a clock frequency
lower than 200 MHz [104]. Representative examples are the Sparkfun edge Arduino
board, the ARM Cortex-M7 MCU with 320 kB of RAM and 1 MB of storage, and the
QCC112 Chipset by Qualcomm for ultra-low power always-on computer vision [105].
Notably, TinyML does not include end-devices carrying micro-computers, such as Rasberry
Pi, which can run Linux, support high-level programming languages, such as Python,
and typically has 2–3 orders of magnitude more memory than MCUs. Due to the limited
available resources, TinyML shall be used only for ML inference while training is executed
off-board and offline. Additionally, the ML task should be specific, which usually translates
to a binary output layer, e.g., whether a time series is abnormal or not, and keyword
spotting. The authors of [106] have designed a NN on off-the-shelf MCUs and accelerated
the inference of wake word applications by three times.

Recent advances in ML algorithms running at the edge and cloud do not apply to
tinyML, where the size of the NNs has to be limited. Even though the training and valida-
tion are executed at the cloud, using traditional libraries, such as Pytorch and Tensorflow
(TF), the ML model would be probably too large to store in embedded systems. DNNs
running on MCUs should be optimised to adapt to the power, memory, and processing
constraints of the targeted hardware. In this direction, the TF Lite Micro is an open-source
interpreter developed by Google that figures out how to compress pre-trained ML models
generated in traditional frameworks, such as TF, to a size suitable for TinyML [107]. The
STM32Cube.AI is another tool that automatically converts pre-trained artificial neural
network (ANN) models to pieces of code that can run on MCUs, providing also feedback
about the performance on the selected hardware. While customised codes can perform bet-
ter than ML interpreters by optimally reducing the data dimensionality, or quantising and
pruning the trained model, the price paid is the reduced portability to other devices [108].

To conclude, TinyML is a fast-growing field but more advances in hardware, software,
benchmarking, ML algorithms, and applications are required to see omnipresent TinyML
devices [109].
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4. Overview of Research Projects on AI/ML for Communications and Networking

In this section, we review the major outcomes of collaborative research projects re-
garding intelligent wireless networks. Most of the consortia comprise a mix of research
institutions and telecommunication industry, involving vendors, MNOs, small and medium
enterprises (SMEs), and communication service providers (CSPs). We emphasise on the
selected use cases and associated research problems that can be derived from each project,
and highlight how AI/ML tools help satisfy the respective technical requirements. We start
our review with European research grants, where more reports and presentation slide sets
are publicly available, followed by a summary of the activities of research frameworks in
the U.K. and the U.S.

4.1. Europe—H2020 Research Framework

The recently published European vision for the 6G ecosystem suggests an “AI ev-
erywhere” principle, where AI is infused throughout the network, can be traded as a
service, and is ultimately the key enabler to intertwine the human, physical and digital
worlds. AI shall eventually enable a self-contained wireless ecosystem with zero-touch
and automated decision-making processes, where massive data collection, distributed
computation, and ML inference inter-work to meet stringent network performance targets
and offer an immersive experience to subscribers [110].

The EU Horizon 2020 program has already put a strong emphasis on the research of
AI/ML-empowered wireless networks [111]. In the latest call 5G-PPP Phase-3, there are in
total nine topics, with most of the funded projects scrutinising AI/ML-based solutions for
communications and networking in their objectives [112]. The nine project themes are as
follows: coordination and support actions, infrastructure projects (5GENESIS), advanced
5G validation trials across multiple vertical industries (5GROWTH), long-term evolution
(ARIADNE), automotive (5G-CARMEN), 5G core technologies innovation projects, 5G for
connected and automated mobility, innovation for verticals with third-party services, and
smart connectivity beyond 5G (the flagship Hexa-X project). Inside the parentheses, we
include representative projects from each theme that are elaborated shortly below.

In a nutshell, most of the grants under the 5G-PPP Phase-3 call apply AI/ML for
dynamic network slicing and closed-loop automation at the edge and core networks.
Furthermore, the near-real-time RIC and the software-based control of reflective intelligent
surfaces (RIS) constitute the lion’s share of research activities in the RAN. More research
outputs regarding the real-time RIC are available under the Windmill project within the
EU H2020 Marie Skłodowska-Curie framework innovative training networks (ITN) [113].

4.1.1. ARIADNE

Artificial intelligence aided D-band network for 5G long-term evolution (ARIADNE)
is a three-year research and innovation project that started in November 2019 and is funded
with EUR 6 million under the EU framework, Horizon 2020 (H2020). The overarching
goal of the project is to investigate techniques and technologies that can efficiently support
high-bandwidth communications in the D-band (130–174.8 GHz). This band is a promising
spectrum candidate for implementing the fronthaul and backhaul of small cell networks
operating in mm-wave frequencies and for enabling very high data rates over short-range
connections in the RAN [114]. Three use cases and six corresponding scenarios are selected
by the consortium and are summarised in Table 5 below [115]. Concerning the selected
scenarios, the project sets the following KPI targets: an aggregate throughput (or an E2E
throughput where applicable) of 100 Gbps, nearly 100% connectivity reliability, and 10 times
energy efficiency improvement in the RAN, as compared to public 5G RAN deployments.
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Table 5. Use cases and corresponding scenarios considered by ARIADNE.

Use Cases Scenarios Mobility

Outdoor backhaul and fron-
thaul networks of fixed topol-
ogy.

Long-range line-of-sight (LoS) rooftop point-to-point backhaul-
ing without RIS. Stationary

Street-level point-to-point and point-to-multipoint backhaul-
ing and fronthauling with RIS for non-LoS (NLoS). Stationary

Advanced NLoS connectivity
based on meta-surfaces.

Indoor advanced NLoS connectivity based on meta-surfaces. Stationary or low.

Data-kiosk communication for downloading large amounts of
data in a short time.

Stationary or low or
moderate.

Ad hoc connectivity in mov-
ing network topology.

Dynamic fronthaul and backhaul connectivity for mobile 5G
access nodes and repeaters, e.g., using drones. Low or moderate.

LoS vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X)
connectivity. Low or moderate.

The opportunities brought forward by AI/ML to achieve the objectives of ARIADNE
are vast. For instance, in the D-band, highly directional antennas should be used to over-
come the adverse signal propagation conditions. However, with very narrow beams, the
capacity of a long-range (<500 m) backhaul link becomes sensitive, even to small beam
misalignments (due to winds or other physical phenomena), calling for continuous channel
estimation to correct the beam steering. In short-range scenarios (10–30 m) involving
mobility, accurate user localization for beam tracking is required. Therefore, ML techniques
for real-time channel estimation and prediction (see Table 1), and ML-based mobility and
beamforming prediction become relevant [116]. For NLoS environments, implementing
highly reliable and high data rate backhaul and fronthaul with RIS imposes many chal-
lenges, especially on the optimal design of phase shifts (see Table 1). While the focus
of ARIADNE is the real-time RIC (timescales of less than 10 ms), several near-real-time
closed-control functions, such as load prediction at the backhaul, power control, and user
scheduling based on AI/ML are also investigated. Finally, channel modelling in the largely
unexplored D-band, including, for example, models for the link gain and the channel
impulse response under various weather conditions and user mobility, is another potential
area for applying AI/ML techniques.

4.1.2. 5GENESIS

The 5th generation E2E network, experimentation, system integration, and show-
casing (5GENESIS) is a 30-month 5G PPP project that started in July 2018 and received
approximately EUR 16 million in contributions from the EU. The experimental facilities of
5GENESIS include five testbeds that are used to implement several 5G-enabled use cases;
see Table 6. To associate the measured KPIs with the network status, monitoring techniques
and probes are implemented at several locations, network components and layers. In
particular, data are collected at the end devices to measure the radio conditions and the
device power consumption, at the RAN to evaluate resource availability and track the
traffic load at the backhaul and fronthaul, at the core network to compute the processing
load of various NFs, and at the edge/cloud to measure the CPU consumption and the
utilisation of available computational resources. Then, ML is employed to process the large
volumes of extracted data and identify hidden associations and correlations between the
measured KPIs and the monitored network parameters and conditions. The measured
correlations and causalities could be used at the real-time RIC, e.g., to design intelligent
adaptive modulation and coding schemes, or may also lead to prescriptive analytics, e.g.,
making suggestions about how much additional computing power and storage should be
deployed at the edge to meet a target KPI.
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Table 6. Use cases associated with KPIs and 5G service types considered by 5GENESIS [117].

Use Cases Latency Coverage Service Creation Time Capacity Availability Reliability User Density Service Types

Big event 3 3 3 eMBB

Eye in the sky 3 3 3 eMBB, uRLLC

Security as a service at the edge 3 3 All

Wireless video in large scale event 3 3 3 eMMB

Multimedia mission critical services 3 3 3 3 eMBB, uRLLC

MEC-based mission critical services 3 3 3 3 eMMB

Maritime communications 3 3 3 3 eMMB

Capacity on demand and rural IoT 3 3 3 eMMB, mMTC

Massive IoT for large-scale public
events 3 3 3 3 mMTC

Dense urban 360 degrees virtual reality 3 3 3 3 eMBB
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Let us consider the use case "eye in the sky" of 5GENESIS where an UAV is controlled
over 5G, where both the vehicle and the pilot are being served bydifferent cells. In that case,
an uRLLC slice is required to route the joystick signals controlling the drone manoeuvres
through the 5G core, and prioritise them over other applications with less stringent latency
requirements. At the same time, an eMBB-with-controlled-latency slice must be also
prioritised to route the real-time 4K video footage collected from the drone to the ground
near the pilot through the 5G core [117]. In such a complex scenario, AI/ML could
uncover how slices at the RAN and the core network could be stitched together, given
the radio propagation conditions and the traffic congestion at the core network under an
E2E latency constraint. The This use case demonstrates the use of ML for E2E network
multi-slice operations.

4.1.3. 5GROWTH

5G-enabled growth in vertical industries (5GROWTH) is a 33-month EU-funded
project (approximately EUR 14 million) that started in June 2019 with the vision to design
an AI-based 5G E2E solution for vertical industries to meet their respective performance
targets, simultaneously. The verticals involved in the project, including Industry 4.0 and
transportation, have specified use cases that have very diverse technical requirements. For
instance, Industry 4.0 COMAU, a world leader in industrial automation, opts for digital
twins, smart factory telemetry and monitoring apps, digital tutorials, and remote support,
while in the transportation industry, EFACEC is likely to focus on safety communica-
tions [118]. On the one hand, the technical requirements of telemetry applications are high
availability 99.999%, low latency 15–100 ms, low-mobility support 3–50 km/h, and high
connection density ≈5000 devices/km2. On the other hand, a use case in railway trans-
portation, such as real-time, high-definition image transmission from a surveillance camera
at the level crossing to the train approaching the intersection, requires sufficient macro-
cellular coverage and eMBB support at high speeds ≈160 km/h [118]. To accommodate
such diversity of technical requirements over the same physical infrastructure, a sophisti-
cated management of network slices is needed, which opens new research problems, where
AI/ML can play a central role.

For an efficient use of the created network slices, the concept of slice-sharing among
multiple (vertical) services can be applied. Furthermore, a single service can be decom-
posed into sub-services with different functionalities, such as the Services C and D in
Figure 10, which are served from different slices, leveraging the idea of network slice sub-
net instance (NSSI) [119]. Given the complexity of the selected use cases, it is not surprising
that the consortium has contrived four innovative technology components for efficient
network slicing using AI/ML [120]. These components implement dynamic and intelligent
management of network slices and integrate AI/ML throughout the network for optimal
orchestration and resource control, anomaly detection, QoS forecasting, and inference.

Figure 10. Service A exclusively uses Slice 1. Leveraging the principle of NSSI, Slices 2, 3 and 4 are broken down into two
subnets. Slice 2 and Slice 3 share a subnet. Services C and D are decomposed into two sub-services and one of them is served
by the Subnet Slice 3a. For instance, Subnet 2a and Subnet 4a might be core network slices, while Subnet 3a might be a RAN
slice. In this illustration, the Services C and D need similar functionalities at the RAN, but not at the core network; hence,
they can share a RAN NSSI but use different core network NSSI. In this way, the created slices are used more efficiently as
compared to the exclusive allocations of network slice instances to network services.
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4.1.4. 5G-CARMEN

5G for connected and automated road mobility in the European Union (5G-CARMEN)
(approximately EUR 19 million EU contribution between November 2018 and October
2021) focuses on four automotive use-case families, namely, cooperative manoeuvring,
situation awareness, video streaming, and green driving. Big data analytics and AI/ML
tools become essential in addressing the KPIs associated with the selected use cases [121].

Firstly, the cooperative manoeuvring and situation awareness use cases comprise
several subcases such as cooperative lane merging, back-situation awareness of an emer-
gency vehicle arrival, and motorbike awareness. To improve safety and enhance the ride
quality at complex merges, vehicles share their current position, speed, and trajectory
with a roadside unit (RSU). A MEC server at the RSU processes the received data, using
AI/ML, and recommends optimal actions for the drivers, e.g., speed profiles creating
sufficient gaps between successive vehicles. As a result, accurate position information,
in the order of a meter or less, also becomes essential [122]. In this regard, cooperative
perception algorithms at the vehicles that optimally fuse the location data received over
the global navigation satellite system and inertial monitoring unit (GNSS/IMU) with that
obtained from on-board sensors, such as lidar and cameras, can be employed to meet
the required constraints on localisation accuracy before the vehicles share their locations
with the RSU. Furthermore, in the considered use cases, the exchange of communication
messages between the vehicles and the RSU is likely to involve short packets to satisfy the
low-latency communication constraints, and thus, ML-based decoding of channel codes
also becomes relevant; see Table 1.

Secondly, the video streaming use case concerns the continuous reception of high-
definition on-demand video while onboard and in challenging situations, where the video
quality is likely to deteriorate, due to handovers in cross-border areas. In this scenario,
given the trajectory of the subject vehicle, AI/ML models running at the edge/cloud can
assist in predicting the quality of the received video stream, while driving through the
cross-border area. To do that, the 5G-Carmen platform should account for the historical
data about the propagation channel conditions in the area, the current demand at the
RAN, and the traffic congestion at the core network. Besides predictive analytics, the
AI/ML algorithms shall also prescribe in advance appropriate courses of action to avoid
streaming disruptions, e.g., prompt the downloading of more video chunks when the
network conditions are strong to compensate while travelling across the problematic
areas [122].

Thirdly, the objective of green driving is to improve the environmental quality in
sensitive regions by regulating the density of road traffic and the emissions of hybrid
vehicles with an electric powertrain. This use case involves extensive data collection from
smart sensors on the vehicles and RSUs for monitoring the air quality, which is then sent to
the edge/cloud for analysis and inference. Using AI/ML, the collected data are associated
with historical measurements, the current weather conditions, and the types of vehicles
on the move to showcase the air quality status and its predicted future quality to the
responsible stakeholders. Apart from showcasing, the 5G-CARMEN system ultimately
supports prescriptive analytics suggesting environment-friendly actions, e.g., speed profiles
for individual vehicles depending on their type (motorcycles, cars, or lorries), alternative
routes for non-electric vehicles, and definition of electric zones to relieve air pollution in
critical areas [122].

4.1.5. Smart Connectivity beyond 5G

Under this topic, there are nine funded projects, all started in January 2021 with a
duration between 24 and 42 months that have received an aggregate EU contribution of
approximately EUR 60 million. All projects make extensive use of AI/ML tools in their
respective target areas as summarised in Table 7. The AI/ML aspects of the Hexa-X project,
a flagship for B5G/6G vision and intelligent fabric of technology enablers connecting
human, physical, and digital worlds are discussed next.
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Table 7. Funded projects under the call ICT-52-2020—5G PPP—Smart Connectivity beyond 5G, along with their main
application areas of AI/ML and target use cases.

Project Name Target Areas Using AI/ML

6G Brains Implements a self-learning agent based on deep reinforcement learning which performs intelligent
and dynamic resource allocation for future industrial IoT at massive scales.

AI@Edge Designs reusable, trustworthy and secure AI solutions at the network edge for autonomous
decision making and E2E quality assurance. The targeted use cases are AI-based smart content
pre-selection for in-flight infotainment, AI-assisted edge computing for infrastructure monitoring
using drones, and AI for intrusion detection in industrial IoT.

Daemon Implements AI/ML algorithms for real-time network control and intelligent orchestration and man-
agement. Specifically, the project investigates the use of real time RIC for embedding intelligence
in RIS, radio resource allocation, distribution of computational resources at the edge/fog, and
backhaul traffic control. At longer timescales, energy-aware network slicing, capacity forecasting,
anomaly detection and self-learning network orchestration are examined.

Dedicat 6G Aspires to demonstrate distributed network intelligence for dynamic coverage extension, indoor
positioning, data caching, and energy-efficient distribution of computation loads across the net-
work. Representative use cases demonstrate the developed solutions include smart warehousing,
augmented and virtual reality applications, public safety and disaster relief using automated
guided vehicles and drones, and connected autonomous mobility.

Hexa-X Applies AI for network orchestration from the end-devices through the edge to the cloud and
the core network. This includes inter-connecting intelligent agents based on federated learning,
proactive network slice management, instantiation of network functions, zero-touch automation,
explainable AI, intelligent spectrum usage and intelligent air interface design, to name a few.

Marsal Integrates blockchain technology with ML-based mechanisms to foster privacy and security in
multi-tenant network slicing scenarios. Furthermore, ML-based orchestration and management of
radio and computational resources is studied.

Reindeer Develops an experimental testbed for the RadioWeaves technology. RadioWeaves leverages the
ideas of RIS and cell free wireless access for offering zero-latency and high-capacity connectivity
in short-range indoor applications such as immersive entertainment, health care, and smart
factories. Intelligence is distributed near the end devices for an efficient use of spectral, energy and
computational resources.

Rise-6G Designs and prototypes intelligent radio-wave propagation using RIS.

Teraflow Implements a novel SDN controller with cloud-native architecture, AI-based security, and zero-
touch automation features. The demonstrated use cases are autonomous networks beyond 5G,
cybersecurity and automotive.

The vision of Hexa-X is to intertwine the human, physical and digital worlds for
sustainable, trustworthy, and inclusive use of communication technologies. In this direc-
tion, the project has, so far, identified five use-case families and associated them with six
research challenges. On the one hand, the use cases are sustainable development, massive
twinning, immersive telepresence for enhanced interaction, from robots to cobots (robots
developing relations among each other), and local trust zones for humans and machines.
On the other hand, the research challenges are connecting intelligence, extreme experi-
ences, a network of networks, sustainability, trustworthiness, and global service coverage.
According to [123] (Figure 4.1), connecting intelligence is required to address the first four
of the above-mentioned use-case families.

In addition to the identified use cases, scenarios and challenges, the project has
also specified seven services harnessing new capabilities, including AI-as-a-service and
AI-assisted V2X. The former applies the producer–consumer model between the end-
devices and third-party AI agents that offer trained ML models for inferencing tasks. The
latter generates digital twins of urban cities and adopts AI techniques to regulate the
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road traffic by recommending actions that are communicated over V2X links back to the
vehicles. Finally, Hexa-X considers aspects of spectrum evolution and studies intelligent
spectrum management and interference mitigation techniques. For instance, in industrial
IoT environments, radio usage often experiences periodic cycles, and thus, AI-based
interference prediction schemes could be used to avoid interference in certain times and
areas and, subsequently, enhance the spectrum utilisation efficiency.

4.2. U.K.-EPSRC and U.S.-NSF

The Engineering and Physical Sciences Research Council (EPSRC) in the U.K. has
already funded 250 projects on AI technologies with an aggregate budget of around GBP
178 million, which roughly covers 3.2% of EPSRC’s total investment portfolio [124]. Out of
these grants, 100 projects fall under information and communication technologies (ICT), 24
grants are engineering focused, and 18 grants are used to train doctoral students. However,
only a limited number of projects concern the integration of AI/ML into the B5G/6G
wireless ecosystem.

The LEANCOM project (GBP 0.9 million, November 2019 to November 2022) com-
bines existing mathematical models for the performance evaluation at the PHY layer with
deep learning, with an emphasis onlow-cost devices with hardware imperfections,which
are overlooked by existing mathematical models [125]; recall from Section 2 the discus-
sion on the model-aided ML. The 6GRADIO project (GBP 0.5 million, December 2020 to
November 2023) equips the Mitola radio [126] with the power of collective intelligence,
using an intelligence gathering mechanism leveraging both game-theoretic approaches and
DRL. Next, the overarching goal of the SWAN project (GBP 2.3 million, February 2020 to
January 2025) is network security against cyber-attacks and resilience to network faults and
failures. In this direction, SWAN applies AI/ML under four main pillars, namely, threat
synthesis and assessment to proactively identify vulnerable interfaces, radio-frequency
detection of cyber-attacks for risk mitigation, cyber-secure and agile design of waveforms
using software-defined radios, and secure dynamic spectrum access [127]. Finally, the
CONNECT project, funded by EPSRC through the European CHIST-ERA framework, is
about collaborative and intelligent decision making at the edge through novel data caching,
distributed computing, and federated learning [128], see Section 3.1.1 for a discussion on
federated learning.

Besides standard research projects, EPSRC has also created program grants, which
bring together world-leading researchers to address significant challenges. One example in
the fields of AI and networking is the TRANSNET grant (GBP 6.1 million, August 2018
to July 2024), intending to create an intelligent optical network, i.e., the backbone of the
future digital infrastructure, which can dynamically allocate resources for maximising the
network performance, where and when needed [129]. Under the same framework, EPSRC
also funds theoretically oriented consortia, e.g., the MATHDL project (GBP 3.4 million,
September 2021 to August 2026) aspires to develop a mathematically rigorous foundation
for the training, inference, and performance of deep learning to enhance its explainability
and trustworthiness [130]. Similarly, the GRAPHNEX project, funded through CHIST-ERA,
focuses on explainable AI by decomposing highly connected DNNs into smaller units,
which perform specific tasks with interpretable outcomes [131].

In the U.S., a partnership between Intel and the National Science Foundation (NSF)
on ML for wireless networking systems was formed in 2019 [132]. The initiative has two
main pillars, i.e., ML for spectrum management and distributed ML over wireless edge
networks [133]. In a nutshell, under the first pillar, the funded projects cover model-
based ML at the PHY layer to address poorly understood non-linear distortions and relax
simplified assumptions on impairment models, construct robust channel codes under
interference and enhance the network performance through intelligent power control,
beamforming, scheduling, distributed spectrum sensing and spectrum access. Under the
second pillar, most projects investigate how to realise collective intelligence at the edge,
using enhanced and multi-hop federated learning.
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In April 2021, NSF announced a new partnership with private industries on intelligent and
resilient next-generation systems with an anticipated funding of approximately USD 40 million,
which seeks to accelerate the adoption of intelligent decision making in future networking
systems as a means to enhance their resilience under extreme operating conditions [134]. At
least two of the primary considerations of this call are relevant to the use of AI/ML techniques in
next-generation networks [135]. Firstly, AI can be used to predict disruptions in the availability
of resources and prescribe solutions to sustain an acceptable quality of the offered service, e.g.,
in V2X scenarios, historical data and radio environmental maps can be used to predict the
degradation in signal reception quality while travelling through some problematic areas. Then,
AI algorithms may trigger beforehand, when the channel quality is good, the downloading of
more data packets for graceful service performance degradation. Secondly, investigating the
required resilience in computational capabilities for sustaining a good-enough performance in
distributed learning schemes under faults and failures is another important topic to pursue. For
example, let us consider federated learning, where some local learners fail to send their model
updates to the server, i.e., a UE runs out of battery. Developing an AI-based component that
can predict these failures and advise appropriate countermeasures to mitigate the performance
loss is a rather unexplored topic.

5. Conclusions

The ongoing deployments of 5G wireless networks mainly support eMBB services, but
it is envisaged that 5G/6G networks would penetrate across various vertical industries and
offer many more customised services and applications. On the one hand, verticals have already
identified several profitable use cases that make use of the unprecedented high data rates
low latencies and high numberof connected devices offered by emerging networks. On the
other hand, communication service providers have identified that AI/ML-based network
orchestration is the only way to efficiently and dynamically support stringent and diversified
technical requirements of various use cases over the same unified physical infrastructure. Note
that deploying dedicated networks to each vertical is a wasteful usage of scarce and limited
resources such as frequency spectrum and core network hardware components. Also, reactive
hand-engineered policies and static thresholding rules for network slicing, resource allocation
and RAN management are not tailored to heterogeneous networks and diversified use cases
resulting in sub-optimal operation and inefficient use of the available resources.

Our literature review reveals that network monitoring, extensive data collection,
and AI/ML will become the main tools to optimise, manage and orchestrate current and
future networks. Ongoing work in 5G standardisation includes the network data analytics
function (NWDAF) and the management data analytics function (MDAF) developed
by 3GPP, and the RAN intelligent control (RIC) recommended by the O-RAN Alliance
for coordinating the data collection, training, and inference of ML models at the core
and the RAN, respectively. We have found in the existing literature several studies on
real-time RIC and federated learning at the core network. These studies are important
preliminary steps towards RAN control at longer time scales and distributed connected
intelligence at the edge and the core network, which can enhance the performance in
a multitude of use cases. Innovations in data science and communication technologies
could evolve independentlyand be disentangled from one another, as suggested by ITU-T
FG-ML5G, using digital twins and the concept of ML sandbox to compareML models
before deployment. This will ease the integration of newly developed AI/ML models into
future networks. Finally, closed-loop controls , developed by the ETSI ZSM committee,
will go beyond local network processes, e.g., congestion control at the transport layer, and
we think they will become the prevailing solution for zero-touch network automation.

In this survey, we have also reviewed the major and most impactful large-scale re-
search projects towards intelligent communications & networking. Intelligent real-time RIC,
e.g., intelligent channel coding, can bring significant benefits to network operators [136],
and help address significant challenges such as urban V2X communication using software-
controlled reflecting surfaces. Nevertheless, the focus of the telecommunication industry
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has been so far data to collect data at the RAN and the core network for intelligent control
at timescales larger than 1000 ms. Apart from network management and orchestration,
other representative examples at this timescale include AI/ML-based E2E network slicing,
dynamic content selection for edge caching, and distributed learning such as forming feder-
ations between several NWDAF entities. To conclude, , we believe that, ultimately, AI/ML
would become the lifeblood of future networksand be vital in shaping the orchestration
of available technologies, bandwidth, and computational resources to meet the customer
intents, given energy and cost constraints.
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eMBB Enhanced Mobile Broadband
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