References: |
Barndorff-Nielsen, O. E. (1997). Normal inverse Gaussian distributions and stochastic volatility modelling. Scand. J. Statist 24, 1{14. Barndorff-Nielsen, O. E. & Shephard, N. (2001). Non-gaussian ou based models and some of their uses in �nancial economics. J. R. Statist. Soc. B forthcoming. Bernardo, J. M. & Smith, A. F. M. (1994). Bayesian Theory. John Wiley, Chichester. Blattberg, R. C. & Gonedes, N. J. (1974). A comparison of the stable and student distributions as statistical models for stock prices. J. Business 47, 244{280. Bollerslev, T. (1986). Generalised autoregressive conditional heteroskedasticity. J. Econo- metrics 51, 307{327. Reprinted as pp. 42{60 in Engle, R.F.(1995), ARCH: Selected Readings, Oxford: Oxford University Press. 21 Bollerslev, T. (1987). A conditional heteroskedastic time series model for speculative prices and rates of return. Rev. Economics and Statistics 69, 542{47. Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (1997). The Econometrics of Financial Markets. Princeton University Press, Princeton, New Jersey. Chib, S. & Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistican 49, 327{35. Diaconis, P. & Ylvisaker, D. (1979). Conjugate prior for exponential families. Ann. Statist. 7, 269{281. Durbin, J. & Koopman, S. J. (1997). Monte Carlo maximum likelihood estimation of non- Gaussian state space model. Biometrika 84, 669{84. Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the vari- ance of the United Kingdom in ation. Econometrica 50, 987{1007. Reprinted as pp. 1{23 in Engle, R.F.(1995), ARCH: Selected Readings, Oxford: Oxford University Press. Engle, R. F. & Russell, J. R. (1998). Forecasting transaction rates: the autoregressive conditional duration model. Econometrica 66, 1127{1162. Gelfand, A. E. & Smith, A. F. M. (1990). Sampling-based approaches to calculating mar- ginal densities. J. Am. Statist. Assoc. 85, 398{409. Gilks, W. K., Richardson, S., & Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall, London. Gutierrez-Pena, E. & Smith, A. F. M. (1997). Exponential and Bayesian Conjugate Fam- ilies: Reviews and Extensions. Test 6, 1{90. Harvey, A. C. (1993). Time Series Models. Harvester Wheatsheaf, Hemel Hempstead, 2nd edition. He, C. & Tersvirta, T. (1999). Properties of moments of a family of garch processes. J. Econometrics 92, 173{192. Jacquier, E., Polson, N. G., & Rossi, P. E. (1994). Bayesian analysis of stochastic volatility models (with discussion). J. Business and Economic Statist. 12, 371{417. Joe, H. (1996). Time series models with univariate margins in the convolution-closed in�nitely divisible class. Journal of Applied Probability 33, 664{677. Jorgensen, B. & Song, P. (1998). Stationary time series models with exponential dispersion model margins. Journal of Applied Probability 35, 78{92. Lancaster, T. (1990). The Econometric Analysis of Transition Data. Cambridge University Press, Cambridge. Lawrence, A. J. & Lewis, P. A. W. (1985). Modelling and residual analysis of nonlinear 22 autoregressive time series in exponential variables. J. R. Statist. Soc. B 47, 165{202. McDonald, I. & Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-valued Time Series. Chapman & Hall, London. Nelson, D. B. (1990). Stationarity and persistence in the GARCH(1,1) model. Econometric Theory 6, 318{334. Reprinted as pp. 176{192 in Engle, R.F.(1995), ARCH: Selected Readings, Oxford: Oxford University Press. Pitt, M. & Shephard, N. (2000). Auxiliary variable based particle �lters. In Doucet, A., de Freitas, J. F. G., & Gordon, N., editors, Sequential Monte Carlo Methods in Practice. Cambridge University Press. Pitt, M. K. & Shephard, N. (1999). Filtering via simulation based on auxiliary particle �lters. J. American Statistical Association 94, 590{599. Praetz, P. (1972). The distribution of share price changes. J. Business 45, 49{55. Ripley, B. D. (1987). Stochastic Simulation. Wiley, New York. Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility. In Cox, D. R., Hinkley, D. V., & Barndor�-Nielson, O. E., editors, Time Series Models in Econometrics, Finance and Other Fields, pages 1{67. Chapman & Hall, London. Shephard, N. & Pitt, M. K. (1997). Likelihood analysis of non-Gaussian measurement time series. Biometrika 84, 653{67. Smith, A. F. M. & Roberts, G. (1993). Bayesian computations via the Gibbs sampler and related Markov Chain Monte Carlo methods. J. R. Statist. Soc. B 55, 3{23. Tierney, L. (1994). Markov Chains for exploring posterior distributions (with discussion). Ann. Statist. 21, 1701{62. Vidoni, P. (1998). Proper dispersion state space models for stochastic volatility. University of Udine, working paper. West, M. & Harrison, J. (1997). Bayesian Forecasting and Dynamic Models. Springer- Verlag, New York, 2 edition. |