Supplementary information for
Core Electron Binding Energies in Solids from Periodic
All-Electron Δ-Self-Consistent-Field Calculations

J. Matthias Kahk,†,§ Georg S. Michelitsch,‡ Reinhard J. Maurer,‡,‖ Karsten Reuter,‡
and Johannes Lischner*,¶ (2021)

† Department of Materials, Imperial College London, South Kensington, London SW7 2AZ,
United Kingdom

‡ Chair for Theoretical Chemistry, Technische Universität München, Lichtenbergstr. 4,
D-85747 Garching, Germany

¶ Department of Physics and Department of Materials, and the Thomas Young Centre for
Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United
Kingdom

§ Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia

‖ Department of Chemistry, University of Warwick, Gibbet Hill Rd, Coventry, CV4 7AL,
United Kingdom

E-mail: j.lischner@imperial.ac.uk
Table of Contents

Core hole localization in $2\times2\times1$ supercell of magnesium .. 3
Experimental core electron binding energies ... 4
High frequency (optical) dielectric constants .. 7
Extrapolation of calculated core electron binding energies ... 8
k-point grids, finite size corrections, and numerical results ... 15
Relaxed structures ... 20
Total energies of positively charged supercells: effect of spin .. 23
Basis sets ... 24
Sample control.in files ... 43
Core hole localization in $2 \times 2 \times 1$ supercell of magnesium

An isosurface plot of the vacant core eigenstate (Mg 1s core hole in a $2 \times 2 \times 1$ supercell of magnesium) is shown in Figure S1. The empty core orbital is found to be localized at one of the magnesium atoms and its wavefunction has almost perfect spherical symmetry.

Fig. S1. A localized core hole in a $2 \times 2 \times 1$ supercell of magnesium. An isosurface of the probability density of the empty core eigenstate (isovalue $= 1 \times 10^{-6}$) in the converged calculation of $E_{N-1,\alpha}$ is shown in blue. The positions of the Mg atoms are shown in gray.

We have also examined the electronic structure of the core hole final state using Mulliken analysis (Mulliken, R. S. *J. Chem. Phys.* **1955**, *23*, 1833-1840.) The results are given in Table S1. The per-atom charge analysis indicates that the magnesium atom with a core hole carries a positive charge that is somewhat less than unity, and the rest of the positive charge is distributed among the remaining Mg atoms. A closer look at the populations of the different angular momentum channels indicates that in fact, the occupancy of basis functions of p-symmetry is higher for the atom with a core hole. This is indicative of screening of the core hole by the sea of conduction electrons. The per-atom spin analysis indicates that almost the entire spin of the total system is carried by the atom with a core hole, and the spin polarization arises from s states. This is consistent with the removal of one electron from a localized s-orbital. We note that the precise values of the Mulliken populations are dependent on the chosen basis set: they provide a reasonable qualitative description of the electronic structure of the core hole state, but they cannot be interpreted as a quantitative measure of the extent of screening.
Table 1. Mulliken analysis of the electronic structure of a Mg $2\times2\times1$ supercell with a localized Mg 1s core hole

<table>
<thead>
<tr>
<th>Atom</th>
<th>Electrons</th>
<th>Per-atom charge analysis</th>
<th></th>
<th>Per-atom spin analysis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>$s (l = 0)$</td>
<td>$p (l = 1)$</td>
<td>$d (l = 2)$</td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>11.28</td>
<td>0.72</td>
<td>3.69</td>
<td>7.09</td>
<td>0.45</td>
</tr>
<tr>
<td>2</td>
<td>11.96</td>
<td>0.04</td>
<td>4.77</td>
<td>6.78</td>
<td>0.37</td>
</tr>
<tr>
<td>3</td>
<td>11.98</td>
<td>0.02</td>
<td>4.79</td>
<td>6.78</td>
<td>0.37</td>
</tr>
<tr>
<td>4</td>
<td>11.96</td>
<td>0.04</td>
<td>4.77</td>
<td>6.78</td>
<td>0.37</td>
</tr>
<tr>
<td>5</td>
<td>11.98</td>
<td>0.02</td>
<td>4.79</td>
<td>6.78</td>
<td>0.37</td>
</tr>
<tr>
<td>6</td>
<td>11.96</td>
<td>0.04</td>
<td>4.77</td>
<td>6.78</td>
<td>0.37</td>
</tr>
<tr>
<td>7</td>
<td>11.98</td>
<td>0.02</td>
<td>4.79</td>
<td>6.78</td>
<td>0.37</td>
</tr>
<tr>
<td>8</td>
<td>11.91</td>
<td>0.09</td>
<td>4.75</td>
<td>6.81</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Experimental core electron binding energies

For metals and graphite, the binding energies are given relative to the Fermi level. For insulators, values referenced to the valence band maximum are reported.

Li 1s in lithium metal

Average: 54.85 eV

Be 1s in beryllium metal

* recommended reference value based on three different measurements

Average: 111.85 eV

Na 1s in sodium metal

Citrin, P. H. *Phys. Rev. B* 1973, 8, 5545. 1071.76 eV

Average: 1071.75 eV
Na 2p in sodium metal

<table>
<thead>
<tr>
<th>Author</th>
<th>Journal</th>
<th>Year</th>
<th>Page</th>
<th>Value (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrin, P. H.</td>
<td>Phys. Rev. B</td>
<td>1973</td>
<td>8, 5545</td>
<td>30.52</td>
</tr>
</tbody>
</table>

Average: 30.51 eV

Mg 1s in magnesium metal

<table>
<thead>
<tr>
<th>Author</th>
<th>Journal</th>
<th>Year</th>
<th>Page</th>
<th>Value (eV)</th>
</tr>
</thead>
</table>

Average: 1303.24 eV

Mg 2p in magnesium metal

<table>
<thead>
<tr>
<th>Author</th>
<th>Journal</th>
<th>Year</th>
<th>Page</th>
<th>Value (eV)</th>
</tr>
</thead>
</table>

* recommended reference value based on three different measurements

Average: 49.79 eV

C 1s in graphite

<table>
<thead>
<tr>
<th>Author</th>
<th>Journal</th>
<th>Year</th>
<th>Page</th>
<th>Value (eV)</th>
</tr>
</thead>
</table>

Average: 284.41 eV

Be 1s in BeO

<table>
<thead>
<tr>
<th>Author</th>
<th>Journal</th>
<th>Year</th>
<th>Page</th>
<th>Value (eV)</th>
</tr>
</thead>
</table>

Average: 110.00 eV
<table>
<thead>
<tr>
<th>Element</th>
<th>Reference</th>
<th>Energy (eV)</th>
<th>Average (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 1s in hex-BN</td>
<td>Hamrin, K. et al. Phys. Scr. 1970, 1, 277-280.</td>
<td>188.4 eV</td>
<td>188.3 eV</td>
</tr>
<tr>
<td>C 1s in β-SiC</td>
<td>Bermudez, V. M. J. Appl. Phys. 1988, 63, 4951-4959.</td>
<td>281.9 eV</td>
<td>281.9 eV</td>
</tr>
</tbody>
</table>
Si 2p in silicon

Average: **99.03 eV**

High frequency (optical) dielectric constants

<table>
<thead>
<tr>
<th>Material</th>
<th>Reference</th>
<th>ε_r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* averaged over in-plane and out-of-plane directions.</td>
<td></td>
</tr>
</tbody>
</table>
Extrapolation of calculated core electron binding energies

Li 1s in lithium metal

Be 1s in beryllium metal
Na 1s in sodium metal

![Na 1s in sodium metal graph](image)

Na 2p in sodium metal

![Na 2p in sodium metal graph](image)
Mg 1s in magnesium metal

Mg 2p in magnesium metal
C 1s in graphite

Be 1s in BeO
O 1s in BeO

B 1s in hex-BN
N 1s in hex-BN

C 1s in diamond
Si 2p in β-SiC

C 1s in β-SiC
Si 2p in silicon

Finite size corrections are only given (and applied) for insulators. “MP corr. BE” stands for the calculated binding energy with the Makov-Payne correction using the experimental (optical) dielectric constant. “MP (fit ε) corr. BE” stands for the calculated binding energy with the Makov-Payne correction using a fitted dielectric constant that makes the binding energy independent of supercell size for the largest supercells.

Li 1s in lithium metal

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>ΔSCF (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1\times1\times1</td>
<td>1</td>
<td>30\times30\times30</td>
<td>55.08</td>
</tr>
<tr>
<td>2\times2\times2</td>
<td>8</td>
<td>15\times15\times15</td>
<td>54.57</td>
</tr>
<tr>
<td>3\times3\times3</td>
<td>27</td>
<td>10\times10\times10</td>
<td>54.88</td>
</tr>
<tr>
<td>4\times4\times4</td>
<td>64</td>
<td>8\times8\times8</td>
<td>54.88</td>
</tr>
<tr>
<td>5\times5\times5</td>
<td>125</td>
<td>6\times6\times6</td>
<td>54.87</td>
</tr>
</tbody>
</table>

Extrapolated value: 54.88
Be 1s in beryllium metal

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>ΔSCF (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1×1</td>
<td>2</td>
<td>48×48×32</td>
<td>110.24</td>
</tr>
<tr>
<td>2×2×1</td>
<td>8</td>
<td>24×24×32</td>
<td>111.07</td>
</tr>
<tr>
<td>3×3×2</td>
<td>36</td>
<td>16×16×16</td>
<td>111.66</td>
</tr>
<tr>
<td>4×4×3</td>
<td>96</td>
<td>12×12×11</td>
<td>111.80</td>
</tr>
<tr>
<td>5×5×3</td>
<td>150</td>
<td>10×10×11</td>
<td>111.89</td>
</tr>
<tr>
<td>6×6×4</td>
<td>288</td>
<td>8×8×8</td>
<td>111.87</td>
</tr>
</tbody>
</table>

Extrapolated value: 111.88

Na 1s in sodium metal

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>ΔSCF (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1×1</td>
<td>1</td>
<td>30×30×30</td>
<td>1071.37</td>
</tr>
<tr>
<td>2×2×2</td>
<td>8</td>
<td>15×15×15</td>
<td>1071.55</td>
</tr>
<tr>
<td>3×3×3</td>
<td>27</td>
<td>10×10×10</td>
<td>1071.56</td>
</tr>
<tr>
<td>4×4×4</td>
<td>64</td>
<td>8×8×8</td>
<td>1071.58</td>
</tr>
<tr>
<td>5×5×5</td>
<td>125</td>
<td>6×6×6</td>
<td>1071.57</td>
</tr>
</tbody>
</table>

Extrapolated value: 1071.56

Na 2p in sodium metal

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>ΔSCF (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1×1</td>
<td>1</td>
<td>30×30×30</td>
<td>31.48</td>
</tr>
<tr>
<td>2×2×2</td>
<td>8</td>
<td>15×15×15</td>
<td>30.63</td>
</tr>
<tr>
<td>3×3×3</td>
<td>27</td>
<td>10×10×10</td>
<td>30.64</td>
</tr>
<tr>
<td>4×4×4</td>
<td>64</td>
<td>8×8×8</td>
<td>30.65</td>
</tr>
<tr>
<td>5×5×5</td>
<td>125</td>
<td>6×6×6</td>
<td>30.65</td>
</tr>
</tbody>
</table>

Extrapolated value: 30.65
Mg 1s in magnesium metal

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>ΔSCF (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1×1</td>
<td>2</td>
<td>48×48×32</td>
<td>1302.85</td>
</tr>
<tr>
<td>2×2×1</td>
<td>8</td>
<td>24×24×32</td>
<td>1303.11</td>
</tr>
<tr>
<td>3×3×2</td>
<td>36</td>
<td>16×16×16</td>
<td>1303.22</td>
</tr>
<tr>
<td>4×4×3</td>
<td>96</td>
<td>12×12×11</td>
<td>1303.24</td>
</tr>
<tr>
<td>5×5×3</td>
<td>150</td>
<td>10×10×11</td>
<td>1303.25</td>
</tr>
<tr>
<td>6×6×4</td>
<td>288</td>
<td>8×8×8</td>
<td>1303.25</td>
</tr>
</tbody>
</table>

Extrapolated value: 1303.25

Mg 2p in magnesium metal

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>ΔSCF (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1×1</td>
<td>2</td>
<td>48×48×32</td>
<td>50.16</td>
</tr>
<tr>
<td>2×2×1</td>
<td>8</td>
<td>24×24×32</td>
<td>49.52</td>
</tr>
<tr>
<td>3×3×2</td>
<td>36</td>
<td>16×16×16</td>
<td>49.63</td>
</tr>
<tr>
<td>4×4×3</td>
<td>96</td>
<td>12×12×11</td>
<td>49.69</td>
</tr>
<tr>
<td>5×5×3</td>
<td>150</td>
<td>10×10×11</td>
<td>49.68</td>
</tr>
<tr>
<td>6×6×4</td>
<td>288</td>
<td>8×8×8</td>
<td>49.70</td>
</tr>
</tbody>
</table>

Extrapolated value: 49.69

C 1s in graphite

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>ΔSCF (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1×1</td>
<td>4</td>
<td>36×36×12</td>
<td>283.26</td>
</tr>
<tr>
<td>2×2×2</td>
<td>32</td>
<td>18×18×6</td>
<td>283.92</td>
</tr>
<tr>
<td>3×3×3</td>
<td>108</td>
<td>12×12×4</td>
<td>284.09</td>
</tr>
<tr>
<td>4×4×4</td>
<td>256</td>
<td>9×9×3</td>
<td>284.18</td>
</tr>
<tr>
<td>2×2×1</td>
<td>16</td>
<td>18×18×12</td>
<td>283.24</td>
</tr>
<tr>
<td>4×4×2</td>
<td>128</td>
<td>9×9×6</td>
<td>283.95</td>
</tr>
<tr>
<td>6×6×3</td>
<td>432</td>
<td>6×6×4</td>
<td>284.11</td>
</tr>
</tbody>
</table>

Extrapolated value: 284.44
Be 1s in BeO

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>$q^2\alpha/2L$ (eV)</th>
<th>ΔSCF (eV)</th>
<th>MP corr. BE (eV)</th>
<th>MP (fit ϵ) corr. BE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1×1</td>
<td>4</td>
<td>30×30×18</td>
<td>4.85</td>
<td>108.07</td>
<td>109.74</td>
<td>109.92</td>
</tr>
<tr>
<td>2×2×1</td>
<td>16</td>
<td>15×15×18</td>
<td>3.99</td>
<td>109.06</td>
<td>110.43</td>
<td>110.58</td>
</tr>
<tr>
<td>3×3×2</td>
<td>72</td>
<td>10×10×9</td>
<td>2.62</td>
<td>109.77</td>
<td>110.67</td>
<td>110.77</td>
</tr>
<tr>
<td>4×4×3</td>
<td>196</td>
<td>8×8×6</td>
<td>1.81</td>
<td>110.07</td>
<td>110.69</td>
<td>110.76</td>
</tr>
<tr>
<td>5×5×3</td>
<td>300</td>
<td>6×6×6</td>
<td>1.61</td>
<td>110.16</td>
<td>110.71</td>
<td>110.77</td>
</tr>
<tr>
<td>6×6×3</td>
<td>432</td>
<td>5×5×6</td>
<td>1.42</td>
<td>110.23</td>
<td>110.72</td>
<td>110.77</td>
</tr>
</tbody>
</table>

Extrapolated values: 110.79 110.77 110.77

Experimental dielectric constant = 2.9, fitted dielectric constant = 2.62

O 1s in BeO

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>$q^2\alpha/2L$ (eV)</th>
<th>ΔSCF (eV)</th>
<th>MP corr. BE (eV)</th>
<th>MP (fit ϵ) corr. BE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1×1</td>
<td>4</td>
<td>30×30×18</td>
<td>4.85</td>
<td>526.34</td>
<td>528.02</td>
<td>528.16</td>
</tr>
<tr>
<td>2×2×1</td>
<td>16</td>
<td>15×15×18</td>
<td>3.99</td>
<td>527.16</td>
<td>528.53</td>
<td>528.65</td>
</tr>
<tr>
<td>3×3×2</td>
<td>72</td>
<td>10×10×9</td>
<td>2.62</td>
<td>527.85</td>
<td>528.76</td>
<td>528.83</td>
</tr>
<tr>
<td>4×4×3</td>
<td>196</td>
<td>8×8×6</td>
<td>1.81</td>
<td>528.15</td>
<td>528.77</td>
<td>528.82</td>
</tr>
<tr>
<td>5×5×3</td>
<td>300</td>
<td>6×6×6</td>
<td>1.61</td>
<td>528.23</td>
<td>528.78</td>
<td>528.83</td>
</tr>
<tr>
<td>6×6×3</td>
<td>432</td>
<td>5×5×6</td>
<td>1.42</td>
<td>528.31</td>
<td>528.79</td>
<td>528.84</td>
</tr>
</tbody>
</table>

Extrapolated values: 528.86 528.83 528.83

Experimental dielectric constant = 2.9, fitted dielectric constant = 2.67

B 1s in hex-BN

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>$q^2\alpha/2L$ (eV)</th>
<th>ΔSCF (eV)</th>
<th>MP corr. BE (eV)</th>
<th>MP (fit ϵ) corr. BE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2×2×1</td>
<td>16</td>
<td>15×15×12</td>
<td>3.50</td>
<td>187.81</td>
<td>188.56</td>
<td>188.44</td>
</tr>
<tr>
<td>4×4×2</td>
<td>128</td>
<td>8×8×6</td>
<td>1.83</td>
<td>188.10</td>
<td>188.49</td>
<td>188.43</td>
</tr>
<tr>
<td>6×6×3</td>
<td>432</td>
<td>5×5×4</td>
<td>1.23</td>
<td>188.22</td>
<td>188.49</td>
<td>188.45</td>
</tr>
</tbody>
</table>

Extrapolated values: 188.42 188.44 188.44

Experimental dielectric constant = 4.67, fitted dielectric constant = 5.49
N 1s in hex-BN

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>$q^2\alpha/2L$ (eV)</th>
<th>ΔSCF (eV)</th>
<th>MP corr. BE (eV)</th>
<th>MP (fit ε) corr. BE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2×2×1</td>
<td>16</td>
<td>15×15×12</td>
<td>3.50</td>
<td>395.54</td>
<td>396.28</td>
<td>396.42</td>
</tr>
<tr>
<td>4×4×2</td>
<td>128</td>
<td>8×8×6</td>
<td>1.83</td>
<td>395.96</td>
<td>396.35</td>
<td>396.42</td>
</tr>
<tr>
<td>6×6×3</td>
<td>432</td>
<td>5×5×4</td>
<td>1.23</td>
<td>396.11</td>
<td>396.37</td>
<td>396.42</td>
</tr>
</tbody>
</table>

Extrapolated values: 396.39, 396.42, 396.42

Experimental dielectric constant = 4.67, fitted dielectric constant = 3.95

C 1s in diamond

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>$q^2\alpha/2L$ (eV)</th>
<th>ΔSCF (eV)</th>
<th>MP corr. BE (eV)</th>
<th>MP (fit ε) corr. BE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1×1</td>
<td>2</td>
<td>12×12×12</td>
<td>6.44</td>
<td>280.93</td>
<td>282.06</td>
<td>282.66</td>
</tr>
<tr>
<td>2×2×2</td>
<td>16</td>
<td>6×6×6</td>
<td>4.29</td>
<td>283.11</td>
<td>283.86</td>
<td>284.27</td>
</tr>
<tr>
<td>3×3×3</td>
<td>54</td>
<td>4×4×4</td>
<td>3.00</td>
<td>283.66</td>
<td>284.19</td>
<td>284.47</td>
</tr>
<tr>
<td>4×4×4</td>
<td>128</td>
<td>3×3×3</td>
<td>2.29</td>
<td>283.81</td>
<td>284.21</td>
<td>284.43</td>
</tr>
<tr>
<td>5×5×5</td>
<td>250</td>
<td>6×6×6</td>
<td>1.86</td>
<td>283.97</td>
<td>284.30</td>
<td>284.47</td>
</tr>
<tr>
<td>6×6×6</td>
<td>432</td>
<td>6×6×6</td>
<td>1.54</td>
<td>284.05</td>
<td>284.32</td>
<td>284.46</td>
</tr>
</tbody>
</table>

Extrapolated values: 284.43, 284.45, 284.46

Experimental dielectric constant = 5.7, fitted dielectric constant = 3.7

Si 2p in β-SiC

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>$q^2\alpha/2L$ (eV)</th>
<th>ΔSCF (eV)</th>
<th>MP corr. BE (eV)</th>
<th>MP (fit ε) corr. BE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1×1</td>
<td>2</td>
<td>48×48×48</td>
<td>6.03</td>
<td>98.42</td>
<td>99.35</td>
<td>99.71</td>
</tr>
<tr>
<td>2×2×2</td>
<td>16</td>
<td>24×24×24</td>
<td>3.60</td>
<td>98.50</td>
<td>99.06</td>
<td>99.27</td>
</tr>
<tr>
<td>3×3×3</td>
<td>54</td>
<td>16×16×16</td>
<td>2.49</td>
<td>98.76</td>
<td>99.14</td>
<td>99.29</td>
</tr>
<tr>
<td>4×4×4</td>
<td>128</td>
<td>12×12×12</td>
<td>1.91</td>
<td>98.88</td>
<td>99.17</td>
<td>99.28</td>
</tr>
<tr>
<td>5×5×5</td>
<td>250</td>
<td>10×10×10</td>
<td>1.51</td>
<td>98.95</td>
<td>99.18</td>
<td>99.27</td>
</tr>
</tbody>
</table>

Extrapolated values: 99.24, 99.27, 99.28

Experimental dielectric constant = 6.52, fitted dielectric constant = 4.7
C 1s in β-SiC

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>$q^2\alpha/2L$ (eV)</th>
<th>ΔSCF (eV)</th>
<th>MP corr. BE (eV)</th>
<th>MP (fit ε) corr. BE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1×1</td>
<td>2</td>
<td>48×48×48</td>
<td>6.03</td>
<td>279.68</td>
<td>280.61</td>
<td>280.81</td>
</tr>
<tr>
<td>2×2×2</td>
<td>16</td>
<td>24×24×24</td>
<td>3.60</td>
<td>280.82</td>
<td>281.38</td>
<td>281.50</td>
</tr>
<tr>
<td>3×3×3</td>
<td>54</td>
<td>16×16×16</td>
<td>2.49</td>
<td>281.04</td>
<td>281.42</td>
<td>281.51</td>
</tr>
<tr>
<td>4×4×4</td>
<td>128</td>
<td>12×12×12</td>
<td>1.91</td>
<td>281.15</td>
<td>281.44</td>
<td>281.51</td>
</tr>
<tr>
<td>5×5×5</td>
<td>250</td>
<td>10×10×10</td>
<td>1.51</td>
<td>281.22</td>
<td>281.45</td>
<td>281.50</td>
</tr>
</tbody>
</table>

Extrapolated values: 281.48 281.50 281.51

Experimental dielectric constant = 6.52, fitted dielectric constant = 5.33

Si 2p in silicon

<table>
<thead>
<tr>
<th>Supercell</th>
<th>Atoms</th>
<th>k-grid</th>
<th>$q^2\alpha/2L$ (eV)</th>
<th>ΔSCF (eV)</th>
<th>MP corr. BE (eV)</th>
<th>MP (fit ε) corr. BE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×1×1</td>
<td>2</td>
<td>36×36×36</td>
<td>5.28</td>
<td>97.45</td>
<td>97.90</td>
<td>98.46</td>
</tr>
<tr>
<td>2×2×2</td>
<td>16</td>
<td>18×18×18</td>
<td>2.94</td>
<td>98.63</td>
<td>98.88</td>
<td>99.19</td>
</tr>
<tr>
<td>3×3×3</td>
<td>54</td>
<td>12×12×12</td>
<td>2.00</td>
<td>98.80</td>
<td>98.97</td>
<td>99.19</td>
</tr>
<tr>
<td>4×4×4</td>
<td>128</td>
<td>9×9×9</td>
<td>1.51</td>
<td>98.89</td>
<td>99.02</td>
<td>99.18</td>
</tr>
<tr>
<td>5×5×5</td>
<td>250</td>
<td>7×7×7</td>
<td>1.21</td>
<td>98.96</td>
<td>99.07</td>
<td>99.20</td>
</tr>
</tbody>
</table>

Extrapolated values: 99.17 99.18 99.19

Experimental dielectric constant = 11.7, fitted dielectric constant = 5.22

Relaxed structures

All structures were relaxed in FHI-aims using the DFT with the exchange-correlation functional SCAN and the default “tight” basis sets and integration grids. Variable-cell relaxation with fixed angles between the unit cell vectors were performed, until all forces were below 0.005 eV/Å. In some cases, numerical stability issues were observed during structural relaxation (mismatch of real and predicted energy gain between successive relaxation steps). Numerical stability issues with the SCAN functional have been previously noted, e.g. Bartok et al. *J. Chem. Phys.* 2019, 150, 161101. To overcome this issue, the numerical grids were tightened as follows: the “radial multiplier” was increased by a factor of two, one additional localized angular grid division was uncommented, and the outermost angular grid was increased to match the uncommented value. The relaxed structures are given below, in the FHI-aims geometry.in format. All quantities are given in units of Ångström.
k-point grids used in geometry relaxation

Lithium metal: 12×12×12

Beryllium metal: 18×18×12

Sodium metal: 12×12×12

Magnesium metal: 18×18×12

Graphite: 18×18×9

BeO: 18×18×12

hex-BN: 18×18×8

Diamond: 18×18×18

β-SiC: 18×18×18

Silicon: 18×18×18

Lithium metal

<table>
<thead>
<tr>
<th>lattice_vector</th>
<th>3.48166314</th>
<th>-0.00000000</th>
<th>0.00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice_vector</td>
<td>0.00000000</td>
<td>3.48166513</td>
<td>0.00000000</td>
</tr>
<tr>
<td>lattice_vector</td>
<td>-0.00000000</td>
<td>0.00000000</td>
<td>3.48166512</td>
</tr>
<tr>
<td>atom</td>
<td>-0.00000000</td>
<td>0.00000000</td>
<td>0.00000000</td>
</tr>
<tr>
<td>atom</td>
<td>1.74083158</td>
<td>1.74083256</td>
<td>1.74083256</td>
</tr>
</tbody>
</table>

Beryllium metal

<table>
<thead>
<tr>
<th>lattice_vector</th>
<th>2.26150031</th>
<th>0.00827131</th>
<th>0.00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice_vector</td>
<td>-1.12335037</td>
<td>1.96244733</td>
<td>0.00000000</td>
</tr>
<tr>
<td>lattice_vector</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>3.57104216</td>
</tr>
<tr>
<td>atom</td>
<td>0.00188679</td>
<td>1.31275315</td>
<td>2.67828164</td>
</tr>
<tr>
<td>atom</td>
<td>1.13626315</td>
<td>0.65796560</td>
<td>0.89276052</td>
</tr>
</tbody>
</table>

Sodium metal

<table>
<thead>
<tr>
<th>lattice_vector</th>
<th>4.19260705</th>
<th>-0.00000000</th>
<th>0.00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice_vector</td>
<td>-0.00000000</td>
<td>4.19260951</td>
<td>0.00000000</td>
</tr>
<tr>
<td>lattice_vector</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>4.19260949</td>
</tr>
<tr>
<td>atom</td>
<td>0.00000002</td>
<td>0.00000002</td>
<td>0.00000002</td>
</tr>
<tr>
<td>atom</td>
<td>2.09630350</td>
<td>2.09630473</td>
<td>2.09630472</td>
</tr>
</tbody>
</table>
Magnesium metal

<table>
<thead>
<tr>
<th>lattice_vector</th>
<th>3.16084026</th>
<th>0.01677186</th>
<th>0.00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice_vector</td>
<td>-1.56577757</td>
<td>2.74565180</td>
<td>0.00000000</td>
</tr>
<tr>
<td>lattice_vector</td>
<td>0.00000000</td>
<td>0.00000000</td>
<td>5.16338856</td>
</tr>
<tr>
<td>atom</td>
<td>0.00607990</td>
<td>1.83830438</td>
<td>1.29063688</td>
</tr>
<tr>
<td>atom</td>
<td>1.58898278</td>
<td>0.92411917</td>
<td>3.87275156</td>
</tr>
</tbody>
</table>

Graphite

<table>
<thead>
<tr>
<th>lattice_vector</th>
<th>1.22503480</th>
<th>2.12182291</th>
<th>0.00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice_vector</td>
<td>1.22503516</td>
<td>-2.12182275</td>
<td>0.00000000</td>
</tr>
<tr>
<td>lattice_vector</td>
<td>-0.00000000</td>
<td>-0.00000000</td>
<td>-6.90943766</td>
</tr>
<tr>
<td>atom</td>
<td>0.00000051</td>
<td>0.00228806</td>
<td>-5.18207532</td>
</tr>
<tr>
<td>atom</td>
<td>-0.00000058</td>
<td>-0.00228823</td>
<td>-1.72736234</td>
</tr>
<tr>
<td>atom</td>
<td>1.22503564</td>
<td>-0.70503486</td>
<td>-5.18207532</td>
</tr>
<tr>
<td>atom</td>
<td>1.22503436</td>
<td>0.70503513</td>
<td>-1.72736233</td>
</tr>
</tbody>
</table>

BeO

<table>
<thead>
<tr>
<th>lattice_vector</th>
<th>1.34620893</th>
<th>2.32221793</th>
<th>-0.00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice_vector</td>
<td>1.34620938</td>
<td>-2.32221782</td>
<td>0.00000000</td>
</tr>
<tr>
<td>lattice_vector</td>
<td>-0.00000000</td>
<td>-0.00000000</td>
<td>-4.36284836</td>
</tr>
<tr>
<td>atom</td>
<td>1.34620922</td>
<td>-0.77673125</td>
<td>0.00114554</td>
</tr>
<tr>
<td>atom</td>
<td>1.34620905</td>
<td>0.77673129</td>
<td>-2.18027864</td>
</tr>
<tr>
<td>atom</td>
<td>1.34620923</td>
<td>-0.77302324</td>
<td>-2.71221950</td>
</tr>
<tr>
<td>atom</td>
<td>1.34620904</td>
<td>0.77302328</td>
<td>-0.53079533</td>
</tr>
</tbody>
</table>

hex-BN

<table>
<thead>
<tr>
<th>lattice_vector</th>
<th>2.49434294</th>
<th>0.00322099</th>
<th>0.00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice_vector</td>
<td>-1.24441379</td>
<td>2.16179992</td>
<td>-0.00000000</td>
</tr>
<tr>
<td>lattice_vector</td>
<td>-0.00000000</td>
<td>0.00000000</td>
<td>6.75674636</td>
</tr>
<tr>
<td>atom</td>
<td>0.03056985</td>
<td>-0.01400160</td>
<td>3.37837068</td>
</tr>
<tr>
<td>atom</td>
<td>-0.02873139</td>
<td>1.45627531</td>
<td>0.00000250</td>
</tr>
<tr>
<td>atom</td>
<td>-0.03128564</td>
<td>0.01468785</td>
<td>0.00000250</td>
</tr>
<tr>
<td>atom</td>
<td>0.03312410</td>
<td>1.42758586</td>
<td>3.37837068</td>
</tr>
</tbody>
</table>
Diamond

\[
\begin{array}{cccc}
\text{lattice_vector} & 2.50282191 & -0.00738214 & -0.00521996 \\
\text{lattice_vector} & 1.24494967 & 2.17114328 & -0.00524220 \\
\text{lattice_vector} & 1.24565517 & 0.71917935 & 2.04918084 \\
\text{atom} & 0.62435420 & 0.36039068 & 0.25500547 C \\
\text{atom} & 4.36907272 & 2.52254984 & 1.78371314 C
\end{array}
\]

\(\beta\)-SiC

\[
\begin{array}{cccc}
\text{lattice_vector} & 2.17088417 & 2.17088417 & -0.00607491 \\
\text{lattice_vector} & -0.00607102 & 2.17089000 & 2.17089000 \\
\text{lattice_vector} & 2.17088420 & -0.00607489 & 2.17088420 \\
\text{atom} & -0.00056996 & -0.00057059 & -0.00057060 Si \\
\text{atom} & 1.08449429 & 1.08449541 & 1.08449543 C
\end{array}
\]

Silicon

\[
\begin{array}{cccc}
\text{lattice_vector} & -0.00000000 & 2.71693088 & 2.71693088 \\
\text{lattice_vector} & 2.71693342 & -0.00000000 & 2.71693342 \\
\text{lattice_vector} & 2.71693596 & 2.71693596 & 0.00000000 \\
\text{atom} & -0.00000007 & -0.00000012 & 0.00000019 Si \\
\text{atom} & 1.35846741 & 1.35846684 & 1.35846588 Si
\end{array}
\]

Total energies of positively charged supercells: effect of spin

<table>
<thead>
<tr>
<th>Supercell</th>
<th>(E_{\text{tot}}) (no spin)</th>
<th>(E_{\text{tot}}) ((N_{\text{up}}-N_{\text{down}}=1))</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1\times1\times1</td>
<td>-4331.66</td>
<td>-4331.86</td>
<td>-0.20</td>
</tr>
<tr>
<td>2\times2\times1</td>
<td>-17356.00</td>
<td>-17356.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3\times3\times1</td>
<td>-39062.17</td>
<td>-39062.16</td>
<td>0.01</td>
</tr>
<tr>
<td>4\times4\times2</td>
<td>-138904.32</td>
<td>-138904.33</td>
<td>-0.01</td>
</tr>
<tr>
<td>5\times5\times2</td>
<td>-217041.96</td>
<td>-217041.96</td>
<td>0.00</td>
</tr>
<tr>
<td>6\times6\times2</td>
<td>-312543.51</td>
<td>-312543.51</td>
<td>0.00</td>
</tr>
<tr>
<td>6\times6\times3</td>
<td>-468818.76</td>
<td>-468818.76</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supercell</th>
<th>(E_{\text{tot}}) (no spin)</th>
<th>(E_{\text{tot}}) ((N_{\text{up}}-N_{\text{down}}=1))</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2\times2\times2</td>
<td>-3275.81</td>
<td>-3275.78</td>
<td>0.03</td>
</tr>
<tr>
<td>3\times3\times3</td>
<td>-11068.96</td>
<td>-11068.95</td>
<td>0.01</td>
</tr>
<tr>
<td>4\times4\times4</td>
<td>-26244.79</td>
<td>-26244.79</td>
<td>0.00</td>
</tr>
<tr>
<td>5\times5\times5</td>
<td>-51264.33</td>
<td>-51264.33</td>
<td>0.00</td>
</tr>
<tr>
<td>6\times6\times6</td>
<td>-51264.33</td>
<td>-51264.33</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* all energies are given in eV. For lithium, the spin-polarized calculation for the 1\times1\times1 supercell did not converge, so this datapoint is omitted.
Basis sets

In FHI-aims, both the integration grid and the basis functions need to be defined for each type of atom in each calculation. In this work, four types of settings were used for different atoms, as described below.

- For the atom with a core hole, the “special” basis sets given below were used. This are based on the “tight” default settings, with additional core basis functions to allow the remaining core electrons to relax in the presence of the core hole.

- For the nearest neighbours of the atom with a core hole, the “tight” default settings were used.

- For the second nearest neighbours of the atom with a core hole, the “intermediate” default settings were used.

- For all other atoms, the “light” default settings were used.

- The same basis sets were always used for evaluating $E_{N-1,\text{ch}}$ and $E_{N-1,\text{ground}}$.
Lithium

"Core" basis functions and numerical settings for Li atom.
Based on "tight" defaults (V. Blum, 2009).

species Li_core
global species definitions
nucleus 3
mass 6.941
#
l_hartree 6
#
cut_pot 4.5 1.8 1.0
basis_dep_cutoff 1e-4
#
radial_base 29 7.0
radial_multiplier 2
angular_grids specified
 division 0.4484 110
 division 0.5659 194
 division 0.6315 302
 division 0.6662 434
 division 0.8186 590
 division 0.9037 770
 division 6.2760 974
 outer_grid 974
 outer_grid 434

Definition of "minimal" basis
#
valence basis states
 valence 2 s 1.
ion occupancy
 ion_occ 1 s 2.

Suggested additional basis functions. For production calculations,
uncomment them one after another (the most important basis functions are
listed first).
#
Constructed for dimers: 1.80 A, 2.25 A, 2.75 A, 3.50 A, 4.50 A
"First tier" - improvements: -189.23 meV to -6.35 meV
hydro 2 p 1.6
hydro 2 s 2
hydro 3 d 2.6

"Second tier" - improvements: -4.69 meV to -0.41 meV
hydro 3 p 4.6
hydro 2 p 1.8
hydro 3 s 6.2
hydro 4 d 4.7
hydro 4 f 4.1

"Third tier" - improvements: -0.20 meV to -0.15 meV
hydro 4 d 0.95
hydro 3 p 6.2
hydro 3 s 1.7

Additional basis functions for atom with a core hole
hydro 1 s 4.0
hydro 1 s 6.0
hydro 2 s 5.0
Beryllium

"Core" basis functions and numerical settings for Be atom.
Based on "tight" defaults (V. Blum, 2009).
#
Definition of "minimal" basis
#
valence basis states
valence 2 s 1.999
valence 2 p 0.001
ion occupancy
ion_occ 2 s 1.

Suggested additional basis functions. For production calculations,
uncomment them one after another (the most important basis functions are
listed first).
#
Constructed for dimers: 1.75 A, 2.0 A, 2.375 A, 3.00 A, 4.00 A
#
"First tier" - improvements: -677.26 meV to -34.75 meV
 ionic 2 p auto
 hydro 3 s 2.9
 hydro 3 d 3.5

"Second tier" - improvements: -16.34 meV to -1.26 meV
 hydro 3 p 3.1
 hydro 4 d 4.7
 hydro 3 p 2.4
 hydro 4 f 7.6
 hydro 2 s 2.9

"Third tier" - improvements: -0.27 meV to -0.05 meV
hydro 2 p 8.2
hydro 5 g 10.8
hydro 4 f 7
hydro 3 s 2.3
hydro 4 d 3.8

Additional basis functions for atom with a core hole
 hydro 1 s 5.0
 hydro 1 s 7.0
 hydro 2 s 6.0
Boron

"Core" basis functions and numerical settings for B atom.
Based on "tight" defaults (V. Blum, 2009).

species B_core
global species definitions
nucleus 5.0
mass 10.811
#
l_hartree 6
#
cut_pot 4.0 2.0 1.0
basis_dep_cutoff 1e-4
#
radial_base 32 7.0
radial_multiplier 2
angular_grids specified
 division 0.3742 110
 division 0.5197 194
 division 0.5753 302
 division 0.7664 434
#
 division 0.8392 770
#
 division 1.6522 974
outer_grid 974
outer_grid 434

Definition of "minimal" basis
#
valence basis states
valence 2 s 2.
valence 2 p 1.0
ion occupancy
ion_occ 2 s 1.

Suggested additional basis functions. For production calculations,
uncomment them one after another (the most important basis functions are
listed first).
#
Constructed for dimers: 1.25 A, 1.625 A, 2.5 A, 3.5 A
#
"First tier" - improvements: -710.52 meV to -92.39 meV
 hydro 2 p 1.4
 hydro 3 d 4.8
 hydro 2 s 4
"Second tier" - improvements: -33.88 meV to -2.20 meV
 hydro 4 f 7.8
 hydro 3 p 4.2
 hydro 3 s 3.3
 hydro 5 g 11.2
 hydro 3 d 5.4
"Third tier" - improvements: -1.28 meV to -0.36 meV
 hydro 2 p 4.7
 hydro 2 s 8.4
 hydro 4 d 5.8
"Fourth tier" - improvements: -0.25 meV to -0.12 meV
 hydro 3 p 2.2
 hydro 3 s 3
 hydro 4 f 9.8
 hydro 5 g 12.8
 hydro 4 d 10
Further functions
 hydro 4 f 14
 hydro 3 p 12.4

Additional basis functions for atom with a core hole
 hydro 1 s 9.0
 hydro 1 s 7.0
 hydro 1 s 3.0
 hydro 2 s 5.0
 hydro 2 p 6.0
Carbon

"Core" basis functions and numerical settings for C atom.
Based on "tight" defaults (V. Blum, 2009).

species C_core

global species definitions
nucleus 6.0
mass 12.0107
#

l_hartree 6
#

cut_pot 4.0 2.0 1.0
basis_dep_cutoff 1e-4
#
radial_base 34 7.0
radial_multiplier 2
angular_grids specified
 division 0.2187 50
 division 0.4416 110
 division 0.6335 194
 division 0.7727 302
 division 0.8772 434
 division 0.9334 590
 division 0.9924 770
 division 1.0230 974
 division 1.5020 1202
 outer_grid 974
 outer_grid 434

valence basis states
valence 2 s 2.
valence 2 p 2.0
ion occupancy
ion_occ 2 s 1.
ion_occ 2 p 1.

Definition of "minimal" basis
#

Suggested additional basis functions. For production calculations,
uncomment them one after another (the most important basis functions are
listed first).
Constructed for dimers: 1.0 Å, 1.25 Å, 1.5 Å, 2.0 Å, 3.0 Å
#
##
"First tier" - improvements: -1214.57 meV to -155.61 meV
 # hydro 2 p 1.7
 # hydro 3 d 6
 # hydro 2 s 4.9
"Second tier" - improvements: -67.75 meV to -5.23 meV
 # hydro 4 f 9.8
 # hydro 3 p 5.2
 # hydro 3 s 4.3
 # hydro 5 g 14.4
 # hydro 3 d 6.2
"Third tier" - improvements: -2.43 meV to -0.60 meV
 # hydro 2 p 5.6
 # hydro 2 s 1.4
 # hydro 3 d 4.9
 # hydro 4 f 11.2
"Fourth tier" - improvements: -0.39 meV to -0.18 meV
hydro 2 p 2.1
hydro 5 g 16.4
hydro 4 d 13.2
hydro 3 s 13.6
hydro 4 f 17.6
Further basis functions - improvements: -0.08 meV and below
hydro 3 s 2
hydro 3 p 6
hydro 4 d 20
#
Additional basis functions for atom with a core hole
 # hydro 1 s 10.0
 # hydro 1 s 8.0
 # hydro 1 s 4.0
 # hydro 2 s 6.0
Nitrogen

"Core" basis functions and numerical settings for N atom.
Based on "tight" defaults (V. Blum, 2009).
#
#species N_core
global species definitions
nucleus 7
mass 14.0067
#
l_hartree 6
#
cut_pot 4.0 2.0 1.0
basis_dep_cutoff 1e-4
#
radiial_base 35 7.0
radial_multiplier 2
angular_grids specified
 division 0.1841 50
 division 0.3514 110
 division 0.5126 194
 division 0.6292 302
 division 0.6939 434
division 0.7396 590
division 0.7632 770
division 0.8122 974
division 1.1604 1202
outer_grid 974
outer_grid 434

Definition of "minimal" basis
#
#valence basis states
valence 2 s 2.
valence 2 p 3.
ion occupancy
ion_occ 2 s 1.
ion_occ 2 p 2.

Suggested additional basis functions. For production calculations,
uncomment them one after another (the most important basis functions are
listed first).
Constructed for dimers: 1.0 A, 1.1 A, 1.5 A, 2.0 A, 3.0 A
#
##
"First tier" - improvements: -1193.42 meV to -220.60 meV
hydro 2 p 1.8
hydro 3 d 6.8
hydro 3 s 5.8
"Second tier" - improvements: -80.21 meV to -6.86 meV
hydro 4 f 10.8
hydro 3 p 5.8
hydro 1 s 0.8
hydro 5 g 16
hydro 3 d 4.9
"Third tier" - improvements: -4.29 meV to -0.53 meV
hydro 3 s 16
ionic 2 p auto
hydro 3 d 6.6
hydro 4 f 11.6
"Fourth tier" - improvements: -0.75 meV to -0.25 meV
hydro 2 p 4.5
hydro 2 s 2.4
hydro 5 g 14.4
hydro 4 d 14.4
hydro 4 f 16.8
Further basis functions - -0.21 meV and below
hydro 3 p 14.8
hydro 3 s 4.4
hydro 3 d 19.6
hydro 5 g 12.8
#
Additional basis functions for atom with a core hole
hydro 1 s 11.0
hydro 1 s 9.0
hydro 1 s 5.0
hydro 2 s 8.0
hydro 2 s 10.0
hydro 2 p 6.5
hydro 3 s 6.2
hydro 3 p 6.2
Oxygen

"Core" basis functions and numerical settings for O atom.
Based on "tight" defaults (V. Blum, 2009).
#
>>

species O_core

global species definitions
nucleus 8
mass 15.9994
#
1_hartree 6
#
cut_pot 4.0 2.0 1.0
basis_dep_cutoff 1e-4
#
radial_base 36 7.0
radial_multiplier 2
angular_grids specified
division 0.1817 50
division 0.3417 110
division 0.4949 194
division 0.6251 302
division 0.8014 434
division 0.8507 590
division 0.8762 770
division 0.9023 974
division 1.2339 1202
outer_grid 974
outer_grid 434

Definition of "minimal" basis
#
>>

valence basis states
valence 2 s 2.
valence 2 p 4.
#
ion occupancy
ion_occ 2 s 1.
ion_occ 2 p 3.

Suggested additional basis functions. For production calculations,
uncomment them one after another (the most important basis functions are
listed first).
Constructed for dimers: 1.0 Å, 1.208 Å, 1.5 Å, 2.0 Å, 3.0 Å
#
"First tier" - improvements: -699.05 meV to -159.38 meV
hydro 2 p 1.8
hydro 3 d 7.6
hydro 3 s 6.4
#
"Second tier" - improvements: -49.91 meV to -5.39 meV
hydro 4 f 11.6
hydro 3 p 6.2
hydro 3 d 5.6
hydro 5 g 17.6
hydro 1 s 0.75
#
"Third tier" - improvements: -2.83 meV to -0.50 meV
ionic 2 p auto
hydro 4 f 10.8
hydro 4 d 4.7
hydro 2 s 6.8
#
"Fourth tier" - improvements: -0.40 meV to -0.12 meV
hydro 3 p 5
hydro 3 s 3.3
hydro 5 g 15.6
hydro 4 f 17.6
hydro 4 d 14
#
Further basis functions - -0.08 meV and below
hydro 3 s 2.1
hydro 4 d 11.6
hydro 3 p 16
hydro 2 s 17.2
#
#
Additional basis functions for atom with a core hole
hydro 1 s 12.0
hydro 1 s 10.0
hydro 1 s 6.0
hydro 2 s 10.0
hydro 2 p 8.0
hydro 2 p 6.0
hydro 3 d 8.0
Sodium

species Na_core
global species definitions
nucleus 11
mass 22.98976928
#
1_hartree 6
#
cut_pot 4.5 2.0 1.0
basis_dep_cutoff 1e-4
#
radial_base 40 7.0
radial_multiplier 2
angular_grids specified
division 0.5925 110
division 0.7843 194
division 1.0201 302
division 1.1879 434
division 1.3799 590
division 1.4503 770
division 7.0005 974
outer_grid 974
outer_grid 434

Definition of "minimal" basis
#
valence basis states
valence 3 s 1.
valence 2 p 6.
ion occupancy
ion_occ 2 s 2.
ion_occ 2 p 6.

Suggested additional basis functions. For production calculations,
uncomment them one after another (the most important basis functions are
listed first).
#
Constructed for dimers: 2.0 A, 2.5 A, 3.0 A, 3.75 A, 4.5 A
First tier - improvements: -60.09 meV to -10.02 meV
 hydro 2 p 1.2
 hydro 3 s 1.8
 hydro 3 d 3.8

Second tier - improvements: -2.94 meV to -1.27 meV
 hydro 4 p 3.1
 hydro 3 s 10
 hydro 4 f 6.2
 hydro 4 d 1.3

Third tier - improvements: -0.83 meV to -0.07 meV
 hydro 3 d 7.8
 hydro 3 p 2.3
 hydro 5 g 9.6
 hydro 4 p 0.85
 hydro 5 f 1.8
 hydro 2 s 0.6

Further basis functions that fell out of the optimization - noise level...
 hydro 5 g 0.1
 hydro 4 d 3.4
 hydro 4 s 0.1

Additional basis functions for atom with a core hole

 hydro 1 s 15.0
 hydro 1 s 13.0
 hydro 1 s 9.0
 hydro 2 s 13.5
 hydro 2 s 11.5
 hydro 2 p 10.5
 hydro 2 p 8.5
 hydro 3 d 7.0
 hydro 3 p 8.0
Magnesium

"Core" basis functions and numerical settings for Mg atom.
Based on "tight" defaults (V. Blum, 2009).

species Mg_core
global species definitions
nucleus 12
mass 24.3050
#
 l_hartree 6
#
 cut_pot 5.0 2.0 1.0
 basis_dep_cutoff 1e-4
#
 radial_base 40 7.0
 radial_multiplier 2
 angular_grids specified
 division 0.5421 50
 division 0.8500 110
 division 1.0736 194
 division 1.1879 302
 division 1.2806 434
 division 1.4147 590
 division 1.4867 770
 division 1.6422 974
 division 2.6134 1202
 outer_grid 974
 outer_grid 434

Definition of "minimal" basis
#
valence basis states
ion occupancy

valence 3 p 0.001
valence 3 s 1.999

ion_occ 2 s 2.
ion_occ 2 p 6.

Suggested additional basis functions. For production calculations,
uncomment them one after another (the most important basis functions are
listed first).
Constructed for dimers: 2.125 Å, 2.375 Å, 2.875 Å, 3.375 Å, 4.5 Å
#
"First tier" - improvements: -230.76 meV to -21.94 meV
 hydro 2 p 1.5
 ionic 3 d auto
 hydro 3 s 2.4
#
"Second tier" - improvements: -5.43 meV to -1.64 meV
 hydro 4 f 4.3
 hydro 2 p 3.4
 hydro 4 s 11.2
 hydro 3 d 6.2
#
"Third tier" - improvements: -0.92 meV to -0.22 meV
hydro 2 s 0.6
hydro 3 p 4.8
hydro 4 f 7.4
hydro 5 g 6.6
hydro 2 p 1.6
hydro 3 d 1.8
#
"Fourth tier" - improvements: -0.09 meV to -0.05 meV
hydro 4 p 0.45
hydro 5 g 10.4
hydro 2 s 12.4
hydro 4 d 1.7
#
Additional basis functions for atom with a core hole
hydro 1 s 16.0
hydro 1 s 14.0
hydro 1 s 10.0
hydro 2 s 14.5
hydro 2 s 12.5
hydro 2 p 11.5
hydro 2 p 9.5
hydro 3 d 8.0
hydro 3 p 9.0
Silicon

"Core" basis functions and numerical settings for Si atom.
Based on "tight" defaults (V. Blum, 2009).
#
species Si_core
global species definitions
nucleus 14.
mass 28.0855
#
 l_hartree 6
#
 cut_pot 4.0 2.0 1.0
 basis_dep_cutoff 1e-4
#
 radial_base 42 7.0
 radial_multiplier 2
 angular_grids specified
 division 0.4121 50
 division 0.7665 110
 division 1.0603 194
 division 1.2846 302
 division 1.4125 434
 division 1.4810 590
 division 1.5529 770
 division 1.6284 974
 division 2.6016 1202
 outer_grid 974
 outer_grid 434

Definition of "minimal" basis
#
valence basis states
valence 3 s 2.
valence 3 p 2.
ion occupancy
ion_occ 3 s 1.
ion_occ 3 p 1.
Constructed for dimers: 1.75 Å, 2.0 Å, 2.25 Å, 2.75 Å, 3.75 Å

"First tier" - improvements: -571.96 meV to -37.03 meV
hydro 3 d 4.2
hydro 2 p 1.4
hydro 4 f 6.2
ionic 3 s auto

"Second tier" - improvements: -16.76 meV to -3.03 meV
hydro 3 d 9
hydro 5 g 9.4
hydro 4 p 4
hydro 1 s 0.65

"Third tier" - improvements: -3.89 meV to -0.60 meV
ionic 3 d auto
hydro 3 s 2.6
hydro 4 f 8.4
hydro 3 d 3.4
hydro 3 p 7.8

"Fourth tier" - improvements: -0.33 meV to -0.11 meV
hydro 2 p 1.6
hydro 5 g 10.8
hydro 5 f 11.2
hydro 3 d 1
hydro 4 s 4.5

Further basis functions that fell out of the optimization - noise
level... < -0.08 meV
hydro 4 d 6.6
hydro 5 g 16.4
hydro 4 d 9

Additional basis functions for atom with a core hole
hydro 2 p 15.0
hydro 2 p 12.0
hydro 2 p 5.0
hydro 2 s 14.0
hydro 1 s 16.0
hydro 1 s 9.0
Sample control.in files

Below, the contents of the control.in files, excluding the species definitions, for the calculation of the C 1s core electron binding energy in a 3×3×3 supercell of β-SiC are given. In particular:

- The charge_1 control.in file is used to calculate the total energy of the ground state of the N-1 electron system

- The init_part_1 and init_part_2 control.in files are used in successive runs to localize a core orbital onto a particular atom, and next, to create a localized core hole. In these runs, the nuclear charge of the “target” atom for localizing a core hole is increased by 0.1 e. In init_part_1, restart files are written. In init_part_2, restart files are read in and written out.

- The hole_run control.in file is used to calculate the total energy of the core hole state. In hole_run, restart files are read in.

- The point_charge_in_a_box control.in file is used to calculate the total energy of a system with just a point charge in a periodic box, with a uniform compensating background. This value is used for applying the Makov-Payne correction. In practice, the point charge is artificially created by inserting a hydrogen atom with the electron removed (except for a tiny fraction of an electron as the present version of FHI-aims does not permit calculations with an electron count of exactly zero.)

charge_1 control.in

xc dfauto scan
spin collinear
default_initial_moment 0.0
relativistic zora scalar 1e-12

k_grid 16 16 16
preconditioner kerker off
override_illconditioning .true.

charge 1.0
init_part_1 control.in

xc dfauto scan
spin collinear
default_initial_moment 0.0
relativistic zora scalar 1e-12

k_grid 16 16 16
restart_write_only restart_file
restart_save_iterations 20
KS_method serial

preconditioner kerker off

override_illconditioning .true.

charge 0.1

init_part_2 control.in

xc dfauto scan
spin collinear
default_initial_moment 0.0
relativistic zora scalar 1e-12

k_grid 16 16 16
restart restart_file
KS_method serial

preconditioner kerker off

override_illconditioning .true.

charge 1.1
force_occupation_projector 28 1 0.0 28 54
sc_iter_limit 1
hole_run control.in

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>xc</td>
<td>dfauto scan</td>
</tr>
<tr>
<td>spin</td>
<td>collinear</td>
</tr>
<tr>
<td>default_initial_moment</td>
<td>0.0</td>
</tr>
<tr>
<td>relativistic</td>
<td>zora scalar 1e-12</td>
</tr>
<tr>
<td>k_grid</td>
<td>16 16 16</td>
</tr>
<tr>
<td>restart_read_only</td>
<td>restart_file</td>
</tr>
<tr>
<td>KS_method</td>
<td>serial</td>
</tr>
<tr>
<td>preconditioner</td>
<td>kerker off</td>
</tr>
<tr>
<td>override_illconditioning</td>
<td>.true.</td>
</tr>
<tr>
<td>charge</td>
<td>1.0</td>
</tr>
<tr>
<td>force_occupation_projector</td>
<td>28 1 0.0 28 54</td>
</tr>
<tr>
<td>output</td>
<td>mulliken</td>
</tr>
</tbody>
</table>

point_charge_in_a_box control.in

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>xc</td>
<td>dfauto scan</td>
</tr>
<tr>
<td>spin</td>
<td>none</td>
</tr>
<tr>
<td>relativistic</td>
<td>none</td>
</tr>
<tr>
<td>KS_method</td>
<td>serial</td>
</tr>
<tr>
<td>charge</td>
<td>0.9999999999</td>
</tr>
<tr>
<td>k_grid</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>