
The Library
Adiabatic versus non-adiabatic electron transfer at 2D electrode materials
Tools
Liu, Danqing, Kang, Minkyung, Perry, David, Chen, Chang-Hui, West, Geoffrey D., Xia, Xue, Chaudhuri, Shayantan, Laker, Zachary P. L., Wilson, Neil R., Meloni, Gabriel N., Melander, Marko M., Maurer, Reinhard J. and Unwin, Patrick R. (2021) Adiabatic versus non-adiabatic electron transfer at 2D electrode materials. Nature Communications, 12 (1). 7110. doi:10.1038/s41467-021-27339-9 ISSN 2041-1723.
|
PDF
WRAP-adiabatic-versus-non-adiabatic-electron-transfer-2D-electrode-materials-2021.pdf - Published Version - Requires a PDF viewer. Available under License Creative Commons Attribution 4.0. Download (2178Kb) | Preview |
Official URL: https://doi.org/10.1038/s41467-021-27339-9
Abstract
2D electrode materials are often deployed on conductive supports for electrochemistry and there is a great need to understand fundamental electrochemical processes in this electrode configuration. Here, an integrated experimental-theoretical approach is used to resolve the key electronic interactions in outer-sphere electron transfer (OS-ET), a cornerstone elementary electrochemical reaction, at graphene as-grown on a copper electrode. Using scanning electrochemical cell microscopy, and co-located structural microscopy, the classical hexaamineruthenium (III/II) couple shows the ET kinetics trend: monolayer > bilayer > multilayer graphene. This trend is rationalized quantitatively through the development of rate theory, using the Schmickler-Newns-Anderson model Hamiltonian for ET, with the explicit incorporation of electrostatic interactions in the double layer, and parameterized using constant potential density functional theory calculations. The ET mechanism is predominantly adiabatic; the addition of subsequent graphene layers increases the contact potential, producing an increase in the effective barrier to ET at the electrode/electrolyte interface.
Item Type: | Journal Article | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QC Physics Q Science > QD Chemistry T Technology > TK Electrical engineering. Electronics Nuclear engineering |
||||||||||||||||||||||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Chemistry Faculty of Science, Engineering and Medicine > Science > Physics Faculty of Science, Engineering and Medicine > Engineering > WMG (Formerly the Warwick Manufacturing Group) Faculty of Science, Engineering and Medicine > Science > Chemistry > Computational and Theoretical Chemistry Centre |
||||||||||||||||||||||||||||||
SWORD Depositor: | Library Publications Router | ||||||||||||||||||||||||||||||
Library of Congress Subject Headings (LCSH): | Electrodes -- Materials, Electrochemistry , Charge exchange, Scanning electrochemical microscopy | ||||||||||||||||||||||||||||||
Journal or Publication Title: | Nature Communications | ||||||||||||||||||||||||||||||
Publisher: | Nature Publishing Group UK | ||||||||||||||||||||||||||||||
ISSN: | 2041-1723 | ||||||||||||||||||||||||||||||
Official Date: | 7 December 2021 | ||||||||||||||||||||||||||||||
Dates: |
|
||||||||||||||||||||||||||||||
Volume: | 12 | ||||||||||||||||||||||||||||||
Number: | 1 | ||||||||||||||||||||||||||||||
Article Number: | 7110 | ||||||||||||||||||||||||||||||
DOI: | 10.1038/s41467-021-27339-9 | ||||||||||||||||||||||||||||||
Status: | Peer Reviewed | ||||||||||||||||||||||||||||||
Publication Status: | Published | ||||||||||||||||||||||||||||||
Access rights to Published version: | Open Access (Creative Commons) | ||||||||||||||||||||||||||||||
Date of first compliant deposit: | 21 January 2022 | ||||||||||||||||||||||||||||||
Date of first compliant Open Access: | 24 January 2022 | ||||||||||||||||||||||||||||||
RIOXX Funder/Project Grant: |
|
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year