
The Library
Magnetic resonance image-based brain tumour segmentation methods : a systematic review
Tools
Bhalodiya, Jayendra M., Lim Choi Keung, Sarah Niukyun and Arvanitis, Theodoros N. (2022) Magnetic resonance image-based brain tumour segmentation methods : a systematic review. Digital Health, 8 . doi:10.1177/20552076221074122 ISSN 2055-2076.
|
PDF
WRAP-magnetic-resonance-image-based-brain-tumour-segmentation-methods-a-systematic-review-2022.pdf - Published Version - Requires a PDF viewer. Available under License Creative Commons Attribution 4.0. Download (1390Kb) | Preview |
Official URL: https://doi.org/10.1177/20552076221074122
Abstract
Background:
Image segmentation is an essential step in the analysis and subsequent characterisation of brain tumours through magnetic resonance imaging. In the literature, segmentation methods are empowered by open-access magnetic resonance imaging datasets, such as the brain tumour segmentation dataset. Moreover, with the increased use of artificial intelligence methods in medical imaging, access to larger data repositories has become vital in method development.
Purpose:
To determine what automated brain tumour segmentation techniques can medical imaging specialists and clinicians use to identify tumour components, compared to manual segmentation.
Methods:
We conducted a systematic review of 572 brain tumour segmentation studies during 2015–2020. We reviewed segmentation techniques using T1-weighted, T2-weighted, gadolinium-enhanced T1-weighted, fluid-attenuated inversion recovery, diffusion-weighted and perfusion-weighted magnetic resonance imaging sequences. Moreover, we assessed physics or mathematics-based methods, deep learning methods, and software-based or semi-automatic methods, as applied to magnetic resonance imaging techniques. Particularly, we synthesised each method as per the utilised magnetic resonance imaging sequences, study population, technical approach (such as deep learning) and performance score measures (such as Dice score).
Statistical tests:
We compared median Dice score in segmenting the whole tumour, tumour core and enhanced tumour.
Results:
We found that T1-weighted, gadolinium-enhanced T1-weighted, T2-weighted and fluid-attenuated inversion recovery magnetic resonance imaging are used the most in various segmentation algorithms. However, there is limited use of perfusion-weighted and diffusion-weighted magnetic resonance imaging. Moreover, we found that the U-Net deep learning technology is cited the most, and has high accuracy (Dice score 0.9) for magnetic resonance imaging-based brain tumour segmentation.
Conclusion:
U-Net is a promising deep learning technology for magnetic resonance imaging-based brain tumour segmentation. The community should be encouraged to contribute open-access datasets so training, testing and validation of deep learning algorithms can be improved, particularly for diffusion- and perfusion-weighted magnetic resonance imaging, where there are limited datasets available.
Item Type: | Journal Article | ||||||||
---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics > QA76 Electronic computers. Computer science. Computer software R Medicine > RC Internal medicine |
||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Engineering > WMG (Formerly the Warwick Manufacturing Group) | ||||||||
Library of Congress Subject Headings (LCSH): | Brain -- Tumors , Brain -- Tumors -- Treatment, Brain -- Tumors -- Magnetic resonance imaging | ||||||||
Journal or Publication Title: | Digital Health | ||||||||
Publisher: | SAGE Publications Ltd. | ||||||||
ISSN: | 2055-2076 | ||||||||
Official Date: | 1 January 2022 | ||||||||
Dates: |
|
||||||||
Volume: | 8 | ||||||||
DOI: | 10.1177/20552076221074122 | ||||||||
Status: | Peer Reviewed | ||||||||
Publication Status: | Published | ||||||||
Access rights to Published version: | Open Access (Creative Commons) | ||||||||
Date of first compliant deposit: | 21 March 2022 | ||||||||
Date of first compliant Open Access: | 21 March 2022 | ||||||||
RIOXX Funder/Project Grant: |
|
||||||||
Open Access Version: |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year