
The Library
Long-term stability and optoelectronic performance enhancement of InAsP nanowires with an ultrathin InP passivation layer
Tools
Chen, LuLu, Adeyemo, Stephanie O., Fonseka, H. Aruni, Liu, Huiyun, Kar, Srabani, Yang, Hui, Velichko, Anton, Mowbray, David J., Cheng, Zhiyuan, Sánchez, Ana M., Joyce, Hannah J. and Zhang, Yunyan (2022) Long-term stability and optoelectronic performance enhancement of InAsP nanowires with an ultrathin InP passivation layer. Nano Letters, 22 (8). pp. 3433-3439. doi:10.1021/acs.nanolett.2c00805 ISSN 1530-6984.
|
PDF
WRAP-Long-term-stability-optoelectronic-performance-enhancement-InAsP-nanowires-ultrathin-InP-passivation-layer-Sánchez-2022.pdf - Accepted Version - Requires a PDF viewer. Download (748Kb) | Preview |
|
|
PDF
WRAP-supplementary-information-2022.pdf - Supplemental Material - Requires a PDF viewer. Download (121Kb) | Preview |
Official URL: http://dx.doi.org/10.1021/acs.nanolett.2c00805
Abstract
The influence of nanowire (NW) surface states increases rapidly with the reduction of diameter and hence severely degrades the optoelectronic performance of narrow-diameter NWs. Surface passivation is therefore critical, but it is challenging to achieve long-term effective passivation without significantly affecting other qualities. Here, we demonstrate that an ultrathin InP passivation layer of 2–3 nm can effectively solve these challenges. For InAsP nanowires with small diameters of 30–40 nm, the ultrathin passivation layer reduces the surface recombination velocity by at least 70% and increases the charge carrier lifetime by a factor of 3. These improvements are maintained even after storing the samples in ambient atmosphere for over 3 years. This passivation also greatly improves the performance thermal tolerance of these thin NWs and extends their operating temperature from <150 K to room temperature. This study provides a new route toward high-performance room-temperature narrow-diameter NW devices with long-term stability.
Item Type: | Journal Article | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QC Physics Q Science > QD Chemistry T Technology > TK Electrical engineering. Electronics Nuclear engineering |
||||||||||||||||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Physics | ||||||||||||||||||||||||
Library of Congress Subject Headings (LCSH): | Nanowires, Optoelectronic devices , Surface chemistry, Indium phosphide , Interfaces (Physical sciences) | ||||||||||||||||||||||||
Journal or Publication Title: | Nano Letters | ||||||||||||||||||||||||
Publisher: | American Chemical Society | ||||||||||||||||||||||||
ISSN: | 1530-6984 | ||||||||||||||||||||||||
Official Date: | 27 April 2022 | ||||||||||||||||||||||||
Dates: |
|
||||||||||||||||||||||||
Volume: | 22 | ||||||||||||||||||||||||
Number: | 8 | ||||||||||||||||||||||||
Page Range: | pp. 3433-3439 | ||||||||||||||||||||||||
DOI: | 10.1021/acs.nanolett.2c00805 | ||||||||||||||||||||||||
Status: | Peer Reviewed | ||||||||||||||||||||||||
Publication Status: | Published | ||||||||||||||||||||||||
Reuse Statement (publisher, data, author rights): | This document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.nanolett.2c00805 | ||||||||||||||||||||||||
Access rights to Published version: | Open Access (Creative Commons) | ||||||||||||||||||||||||
Date of first compliant deposit: | 21 April 2022 | ||||||||||||||||||||||||
Date of first compliant Open Access: | 14 April 2023 | ||||||||||||||||||||||||
RIOXX Funder/Project Grant: |
|
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year