The Prevalence of Opioid Analgesic Use in People with Chronic Noncancer Pain: Systematic Review and Meta-Analysis of Observational Studies

Graeme Wertheimer, MD* Stephanie Mathieson †, PhD†,‡ Christopher G. Maher, DMEdSc†,‡ Chung-Wei Christine Lin, PhD†,‡Andrew J. McLachlan, PhD§, Rachelle Buchbinder, PhD¶ and Martin Underwood, MD**††

*School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia; †Institute for Musculoskeletal Health, Sydney, New South Wales, Australia; ‡Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; §Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; ‡Monash School of Clinical Epidemiology, Cabrini Institute, Malvern, Victoria, Australia; ‡Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia; ¶Medicines Policy Research Unit, Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia; **Warwick Clinical Trials Unit, University of Warwick, Coventry, UK; ††University Hospitals Coventry and Warwickshire, Coventry, UK

Correspondence to: Stephanie Mathieson, PhD, Institute for Musculoskeletal Health, Level 10 North, King George V Building, Royal Prince Alfred Hospital (C39), PO Box 179, Missenden Road, Camperdown, New South Wales 2050 Australia. Tel: 61-2-8627-6256; Fax: 61-2-8627-6262; E-mail: stephanie.mathieson@sydney.edu.au.

Funding sources: No funding was received to conduct this review.

Conflicts of interest and disclosure: Stephanie Mathieson, Graeme Wertheimer, Chung-Wei Christine Lin, and Sallie-Anne Pearson declare no conflicts of interest. Christopher Maher has received research grant funding from the National Health and Medical Research Council (NHMRC) of Australia and has received research grants from New South Wales Health, Medibank Health Research Fund, Sydney Health Partners, Sydney University, Arthritis Australia, Defence Health Foundation, WorkCover New South Wales, and Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation). He has also had his travel expenses covered when presenting at scientific conferences, has received small gifts (e.g., bottle of wine) for giving lectures and talks, and received FlexEze heat wraps for use in the Sydney Health Partners Emergency Department (ShAPED) clinical trial. Andrew McLachlan has received GlaxoSmithKline untied research funding to the Sydney Pharmacy School for a postgraduate student scholarship under his supervision. Rachelle Buchbinder has received research grant funding from NHMRC, Arthritis Australia, Cabrini Foundation, Australian Department of Health, Royal Australian College of General Practitioners, The Hospitals Contribution Fund of Australia, Therapeutic Guidelines Ltd, Monash University, and the US-based Patient-Centered Outcomes Research Institute. She has had her travel expenses covered when invited to speak at conferences hosted by professional organizations. She is a member of the Australian Medical Services Advisory Committee and the National Prescribing Service Medicine Wise Clinical Intervention Advisory Group. Martin Underwood was Chair of the National Institute for Health and Care Excellence accreditation advisory committee until March 2017, for which he received a fee. He is chief investigator or co-investigator on multiple previous and current research grants from the UK National Institute for Health Research and Arthritis Research UK and is a co-investigator on grants funded by the Australian NHMRC. He is a National Institute for Health Research (NIHR) senior investigator. He has received travel expenses for speaking at conferences from the professional organizations hosting the conferences. He is a director and shareholder of Clinivo Limited, which provides electronic data collection for health services research. He is part of an academic partnership with Serco Ltd related to return-to-work initiatives. He is a co-investigator on two NIHR-funded studies receiving support in kind from Stryker Limited. He has accepted honoraria for teaching or lecturing from the Confederation for Advanced Research Training in Africa and Sterling Events. He is an editor of the NIHR journal series and a member of the NIHR Journal Editors Group, for which he receives a fee. He is co-investigator on an NIHR-funded trial of opioid withdrawal (ISRCTN49478934).

Abstract

Objective. To review studies examining the proportion of people with chronic noncancer pain who report consuming opioids and characteristics associated with their use. Design. Systematic review. Methods. We searched databases from inception to February 8, 2020, and conducted citation tracking. We included observational studies reporting the proportion of adults with chronic noncancer pain who used opioid analgesics. Opioids were categorized as weak (e.g., codeine) or strong (e.g., oxycodone). Study risk of bias was assessed, and Grading of Recommendations for Interventions.
Assessment, Development and Evaluations provided a summary of the overall quality. Results were pooled using a random-effects model. Meta-regression determined factors associated with opioid use. Results. Sixty studies (N=3,961,739) reported data on opioid use in people with chronic noncancer pain from 1990 to 2017. Of these 46, 77% had moderate risk of bias. Opioid use was reported by 26.8% (95% confidence interval [CI], 23.1–30.8; moderate-quality evidence) of people with chronic noncancer pain. The use of weak opioids (17.3%; 95% CI 11.9–24.4; moderate-quality evidence) was more common than the use of strong opioids (9.8%; 95% CI, 6.8–14.0; low-quality evidence). Meta-regression determined that opioid use was associated with geographic region (P = 0.02; lower in Europe than North America), but not sampling year (P = 0.77), setting (P = 0.06), diagnosis (P = 0.34), or disclosure of funding (P = 0.77). Conclusions. Our review summarized data from over 3.9 million people with chronic noncancer pain reporting their opioid use. Between 1990 and 2017, one-quarter of people with chronic noncancer pain reported taking opioids, and this proportion did not change over time.

Key Words: Opioid Analgesics; Chronic Pain; Systematic Review

Introduction
Chronic noncancer pain affects approximately 20% of people worldwide [1], and the prevalence increases with age and female gender [2, 3]. Chronic noncancer pain has a substantial impact on society by costing billions of dollars each year in health care costs and lost productivity [3]. A common cause of chronic noncancer pain includes chronic low back pain, the leading cause of years lived with disability globally [4].

Opioid analgesics are commonly used to manage chronic noncancer pain. Current clinical practice guidelines for the management of chronic noncancer pain, such as those from the Centers for Disease Control and Prevention [5], now recommend avoiding the initial use of opioid analgesics, as the risk of harms, such as overdose and death [5], frequently do not outweigh the benefits. Changes in clinical guideline recommendations may reduce the number of opioid prescriptions issued to patients with chronic noncancer pain. However, considering that not all prescriptions are filled [6], estimates from prescription data do not equate to the actual consumption of medicines. Nonadherence to opioid analgesics prescribed to patients with chronic pain is as high as 50% [7].

The global use of opioid analgesics in general doubled between 2001 and 2003 to between 2011 and 2013 to 7.35 billion daily doses per annum, predominantly driven by increases in North America, Europe, and Oceania [8]. The use of opioids in people with chronic noncancer pain has been reported by individual studies [9, 10], but there has yet to be a systematic overview of such studies. Although the proportion of people with chronic noncancer pain being prescribed an opioid has increased over time [11], it is unclear from the literature whether the consumption of opioids has also increased over time. Furthermore, some types of opioids may be used more frequently, or opioid use may vary between different clinical settings and geographic locations. Establishing the extent to which opioid analgesics are used by people with chronic noncancer pain is important, as the available studies that measure prescription rates may overestimate or underestimate actual opioid analgesic use. The aim of this systematic review was to investigate studies examining the proportion of people with chronic noncancer pain who report using opioid analgesic medicines and the type(s) of opioids used. We also considered whether study estimates were influenced by factors such as the year(s) the study was conducted.

Methods
This systematic review was prospectively registered (PROSPERO CRD42017063957; www.crd.york.ac.uk) and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [12] and Meta-Analysis of Observational Studies in Epidemiology [13] guidelines.

Eligibility
Observational studies reporting the number of adults (≥18 years) with chronic noncancer pain who report taking opioid analgesics to manage their pain were considered for inclusion. Opioid use included the self-reported use of any type of opioid analgesic, at any dose and for any duration, and collected data on opioid use over any period of time. Studies were required to be of a representative sample—e.g., randomly sampled from the electoral roll but not required to be of a national sample. Studies using secondary data such as reports from administrative data on opioid use (not prescription data) were also eligible. We included studies of chronic noncancer pain in one or more body locations (e.g., musculoskeletal pain, fibromyalgia) for at least 3 months. Studies that reported the prescription of nonopioid therapies only, opioid dispensing or prescription data (i.e., issuing of prescriptions from medical records), studies involving only pregnant women, or studies conducted entirely on chronic conditions related to visceral causes (e.g., gastroesophageal reflux disease or stable angina) were excluded.

Search Strategy
The PubMed (NLM®), MEDLINE (OvidSP), EMBASE (OvidSP), Web of Science (Thomson Reuters), and
International Pharmaceutical Abstracts (OvidSP) databases were searched from individual database inception to February 8, 2020. The full search strategy is detailed in Supplementary Data. Additionally, backward and forward citation tracking of included papers was conducted (Scopus and PubMed [NLM®]), and we communicated with content experts to identify missing studies. There were no language or publication date restrictions.

Screening
Two authors (Graeme Wertheimer and Stephanie Mathieson) independently screened titles and abstracts. The full text of potentially eligible studies was independently appraised to determine their inclusion. Disagreements were resolved by discussion and then arbitration by an independent review author when needed (Christopher G. Maher). For articles written in languages that could not be read by review authors, we sought assistance from colleagues in reading the articles.

Data Extraction and Management
Two authors (selected from Stephanie Mathieson, Graeme Wertheimer, Chung-Wei Christine Lin, Andrew J. McLachlan, Rachelle Buchbinder, Sallie-Anne Pearson, and Martin Underwood) independently extracted data from each study. Disagreements were resolved by discussion and then arbitration by an independent review author (Christopher G. Maher) if necessary. We contacted study authors for clarification and additional data when necessary.

Data were extracted on standardized and piloted data extraction forms. Information extracted included bibliometric data (e.g., date of publication); study characteristics (e.g., sampling methods); participants (e.g., chronic pain diagnosis); and opioid regimen (e.g., proportion used, type, dose regimen).

Medicines were classified following the Anatomical Therapeutic Chemical classification [14]. Opioid analgesics were then categorized as 1) weak (codeine, tramadol, dihydrocodeine, dextropropoxyphene, and tilidine) or 2) strong (e.g., oxycodone, morphine, pethidine, fentanyl, hydromorphone, buprenorphine, tapentadol). The combination was categorized as a weak (e.g., codeine plus acetaminophen) or strong combination opioid analgesic (e.g., oxycodone plus acetaminophen). Opioids were not categorized further into long-acting or short-acting drugs.

Setting was categorized into primary care (e.g., general practitioner); secondary care (e.g., hospital, emergency department, and medical specialists); tertiary care (e.g., multidisciplinary pain treatment programs); general population; or database (e.g., Veterans Affairs, insurance claims databases).

Countries were classified into regions according to the World Health Organization (WHO) as Africa; Americas (Northern, Central, and Southern); Europe; Southeast Asia; Eastern Mediterranean; and Western Pacific [15]. Countries were also classified as low-income, middle-income, or high-income countries according to the World Bank [15].

Risk-of-Bias Assessment
Two reviewers (selected from Graeme Wertheimer, Stephanie Mathieson, Chung-Wei Christine Lin, Andrew J. McLachlan, Rachelle Buchbinder, Sallie-Anne Pearson, and Martin Underwood) independently assessed the risk of bias of eligible studies. Disagreements were resolved by discussion and then arbitration by an independent review author if necessary (Christopher G. Maher). Risk of bias was assessed using a modified risk-of-bias tool developed by Hoy et al. [16] designed to assess the risk of bias of prevalence studies. The assessment criteria and scoring are presented in Supplementary Data.

Strategy for Data Synthesis
The screening and selection of studies was summarized in a diagram following the PRISMA recommendations [12]. The study and participant characteristics are reported descriptively. Dichotomous variables (e.g., opioid use) are reported as proportions, n/N (%). The extent (prevalence) of opioid use was determined as the proportion of people with chronic noncancer pain who reported taking an opioid over any time period. Some studies provided estimates for opioid use per year over multiple years. As we wanted to evaluate if opioid use changed over time, we extracted estimates for opioid use per year, with some studies providing estimates for multiple years. Continuous outcomes were reported as means with 95% confidence intervals (CIs) if these were calculated; otherwise, the standard deviation (SD) if the intention was to describe sample variability. Where possible, outcomes were converted to a common metric to aid comparison (e.g., opioid dose converted to morphine milligram equivalents [MME] per day) [6].

When study data were sufficiently statistically homogeneous (I²<50%), study results were combined in a meta-analysis using a random-effects model irrespective of setting or chronic noncancer pain diagnosis. The pooled estimates with 95% CIs are presented using forest plots. Heterogeneity was assessed by visual inspection of the forest plot (e.g., P values and overlapping CIs) and the I² statistic. We considered the interpretation of the I² as per the Cochrane Handbook for Systematic Reviews of Interventions: 1) 0% to 40% might not be important; 2) 30% to 60% may represent moderate heterogeneity; 3) 50% to 90% may represent substantial heterogeneity; and 4) 75% to 100% may represent considerable heterogeneity. Meta-regression explored study-level factors associated with the estimates of opioid use and heterogeneity. Factors included in the model were 1) year (the midpoint [year] of the study period from which the opioid estimate was sampled); 2) WHO region.
(North America [reference], Eastern Mediterranean, Europe, Southeast Asia, and Western Pacific); 3) setting of data sampling (general population [reference], database, primary care, secondary care, tertiary care); 4) chronic pain diagnosis (headache or migraine, low back pain, fibromyalgia, inflammatory arthritis, osteoarthritis, phantom limb pain, chronic pain from spinal cord injury, chronic noncancer pain [reference]); and 5) if study funding was disclosed (yes or no [reference]). There were insufficient data to assess participant-level factors within studies. We used a two-sided \(P \) value Hartung–Knapp maximum-likelihood method. Analyses were conducted in Comprehensive Meta-Analysis Software version 3 [17]. When data could not be pooled, we performed a narrative synthesis.

A Grading of Recommendations Assessment, Development and Evaluation (GRADE) [18] approach provided a summary of the overall quality of evidence. The GRADE assessment criteria and scores are presented in Supplementary Data.

Subgroup and Sensitivity Analyses
We repeated the aforementioned analyses on the subset of data for people with chronic low back pain. Three sensitivity analyses were conducted on the pooled opioid estimate in people with chronic noncancer pain. The first analysis removed studies with a high risk of bias. The second analysis considered tramadol a “strong opioid” rather than a “weak opioid.” This recognized differences in the scheduling of tramadol between countries (e.g., tramadol is considered a “strong opioid” in the UK [19] but a “weak opioid” in other countries such as Australia [20]). The third analysis considered the length of time opioid use was reported in the data collection. We grouped opioid use as current opioid use (reporting opioid use between the day of survey and the previous month) or past opioid use (opioid use from more than 1 month ago to the last 2 years [the longest time identified from included studies]), irrespective of a participant’s duration of treatment or previous opioid use. The length of opioid use was included as a covariate in a post hoc meta-regression model.

Results
Search Results
There were 34,347 citations identified by the search, of which 60 studies were included. The flow of studies is presented in Figure 1.

Included Studies
Sixty studies (n=3,961,739 participants) reported data on opioid use from 1990 to 2017. Studies were published from 1997 to 2019. Studies were mainly from the United States (n=33) [10, 21–53], with other studies from Australia [54–56], Belgium [57], Brazil [58], Canada [59], Chile [60], England [61], Denmark [9, 62–67], Germany [68, 69], India [70], Iran [71, 72], Israel [73], Norway [74], Portugal [75], Spain [76], The Netherlands [77], and/or from multiple countries (France, Germany, Italy, Spain, the UK) [78]. Four studies were from middle-income countries [58, 70–72], and no studies were from low-income countries. Approximately half the studies (n=31) were of specific chronic noncancer pain subpopulations, most commonly low back pain [10, 25, 28, 31, 32, 35, 38, 46, 48], followed by fibromyalgia [40, 43, 44, 51, 53, 68], osteoarthritis [29, 32, 35, 39, 43, 77, 78], headache [21, 23, 24, 58, 67, 76], and rheumatoid arthritis [27, 35, 37]. The details of the included studies are provided in Table 1.

Risk of Bias
The risk-of-bias scores are presented in Supplementary Data. Twelve studies were judged to be at low risk of bias (20.0%). The majority of studies were considered to have moderate risk of bias (77%, n=46 studies). The item considering the reliability and validity of the instrument used to measure opioid use was frequently judged to have high risk of bias, as most studies retrospectively reviewed opioid use from clinical records rather than using validated measures.

Opioid Analgesic Use
There was moderate-quality evidence that the proportion of people with chronic noncancer pain who used an opioid was 26.8% (95% CI, 23.1–30.8; n=60 studies; Figure 2). Mean opioid dose across studies was unable to be determined, as 91.6% of studies did not report daily dose consumed. Of the five studies reporting dose [28, 34, 36, 62, 69], the mean opioid dose ranged from 36.9 MME/d (SD, 34.7) [34] to 244.6 MME/d (SD, 185.7) [28]. The types of opioids used by people with chronic noncancer pain were reported in 17 studies. There was moderate-quality evidence that a weak opioid was used by 17.3% (95% CI, 11.9–24.4; n=17 studies) [10, 23, 25, 26, 31, 32, 44, 53, 55, 59, 63, 64, 67, 73, 75, 76, 79] and low-quality evidence that a strong opioid was used by 9.8% (95% CI, 6.8–14.0; n=16 studies) [10, 23, 25, 26, 31, 44, 53, 55, 59, 63–65, 67, 73, 75, 79] of people. A small number of studies reported opioid combination analgesic products. There was moderate-quality evidence that the use of weak opioid combination preparations by people with chronic noncancer pain was 2.7% (95% CI, 2.2–3.2; n=4 studies) [58, 64, 67, 75], and one study reported with moderate-quality evidence that the use of strong combination preparations was 5.0% (95% CI, 2.5–9.7) [64].

Factors Associated with Opioid Analgesic Use
A meta-regression model explained 53% of the variance of reported opioid use in people with chronic noncancer pain \((R^2 = 0.53) \). The WHO region \((P=0.020; \) Europe
was significantly associated with less opioid use, but not the year of data collection ($P=0.770$), setting of data collection ($P=0.064$), chronic pain diagnosis ($P=0.341$), or whether funding was disclosed ($P=0.077$). The adjusted estimates of opioid use over time and the detailed meta-regression results are presented in Supplementary Data.

Subgroup Analyses

Eight studies (13%) reported the use of opioid analgesics in people with chronic low back pain. There was moderate-quality evidence that 29.8% of people with chronic low back pain (95% CI, 20.5–41.2; $n=8$ studies) [10, 25, 28, 35, 38, 46, 48, 75] used an opioid analgesic (Supplementary Data). Three studies reported the types of opioids used by people with chronic low back pain [10, 25, 54]. There was moderate-quality evidence from two studies [10, 25] that weak opioids were used by 3.1% of people with chronic low back pain and low-quality evidence that strong opioids were used by 28.6% of people with chronic noncancer pain [10, 25]. The other study reported both weak and strong opioid analgesic combination opioid products [54].

A meta-regression model determined that sampling year and geographic region were not associated with the use of opioid analgesics in people with chronic low back pain.
<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>Sampling Year</th>
<th>Study Design</th>
<th>Setting</th>
<th>No. of Participants</th>
<th>Pain Complaint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilbeny, 2018</td>
<td>Chile</td>
<td>2013</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>278</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Blyth, 2003</td>
<td>Australia</td>
<td>1998</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>474</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Braden, 2008</td>
<td>United States</td>
<td>2000, 2005</td>
<td>Cross-sectional</td>
<td>Database (insurance claims)</td>
<td>1,457,511</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Breivik, 2006</td>
<td>Europe</td>
<td>2003</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>4,839</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Calhoun, 2008</td>
<td>United States</td>
<td>Not reported</td>
<td>Cross-sectional</td>
<td>Secondary care</td>
<td>229</td>
<td>Chronic migraine</td>
</tr>
<tr>
<td>Carey, 2009</td>
<td>United States</td>
<td>2006</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>873</td>
<td>Chronic low back and neck pain</td>
</tr>
<tr>
<td>Colis, 2004</td>
<td>Spain</td>
<td>1998–1999</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>74</td>
<td>Chronic headache</td>
</tr>
<tr>
<td>Crane, 2015</td>
<td>United States</td>
<td>2005–2008</td>
<td>Cohort</td>
<td>Database (insurance claims)</td>
<td>30,33</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>Dureja, 2014</td>
<td>India</td>
<td>Not reported</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>5,004</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Eriksen, 2006</td>
<td>Denmark</td>
<td>2000</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>1,906</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Fillingim, 2003</td>
<td>United States</td>
<td>Not reported</td>
<td>Cross-sectional</td>
<td>Tertiary care</td>
<td>240</td>
<td>Chronic low back pain</td>
</tr>
<tr>
<td>Fraenkel, 2004</td>
<td>United States</td>
<td>Not reported</td>
<td>Cross-sectional</td>
<td>Secondary care</td>
<td>100</td>
<td>Osteoarthritis (knee)</td>
</tr>
<tr>
<td>Goed, 2015</td>
<td>United States</td>
<td>2004</td>
<td>Cross-sectional</td>
<td>Tertiary care</td>
<td>1,04</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Goode, 2010</td>
<td>United States</td>
<td>2006</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>141</td>
<td>Chronic low back and neck pain</td>
</tr>
<tr>
<td>Gore, 2011</td>
<td>United States</td>
<td>2008</td>
<td>Cross-sectional</td>
<td>Database (insurance claims)</td>
<td>112,951</td>
<td>Osteoarthritis</td>
</tr>
<tr>
<td>Gore, 2012</td>
<td>United States</td>
<td>2008</td>
<td>Cross-sectional</td>
<td>Database (insurance claims)</td>
<td>101,294</td>
<td>Chronic low back pain</td>
</tr>
<tr>
<td>Hayes, 2018</td>
<td>United States</td>
<td>2010–2013</td>
<td>Cohort</td>
<td>General public</td>
<td>5,876</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Hayes, 2018</td>
<td>United States</td>
<td>2010–2014</td>
<td>Cohort</td>
<td>General public</td>
<td>894</td>
<td>Chronic low back pain</td>
</tr>
<tr>
<td>Hoogeboom, 2012</td>
<td>The Netherlands</td>
<td>2009</td>
<td>Cross-sectional</td>
<td>Primary care</td>
<td>401</td>
<td>Osteoarthritis (hip or knee)</td>
</tr>
<tr>
<td>Ismaili Parooohi, 2015</td>
<td>Iran</td>
<td>2012</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>73</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Jensen, 2006</td>
<td>Denmark</td>
<td>2000</td>
<td>Cross-sectional</td>
<td>Tertiary care</td>
<td>160</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Khanna, 2007</td>
<td>United States</td>
<td>2003</td>
<td>Cross-sectional</td>
<td>Database (insurance claims)</td>
<td>1,157</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>Kingsbury, 2014</td>
<td>UK</td>
<td>2011</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>3,750</td>
<td>Osteoarthritis</td>
</tr>
<tr>
<td>Knauer, 2010</td>
<td>United States</td>
<td>2010</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>727</td>
<td>Chronic low back pain</td>
</tr>
<tr>
<td>Krymchantowski, 2003</td>
<td>Brazil</td>
<td>2000–2002</td>
<td>Cohort</td>
<td>Tertiary care</td>
<td>133</td>
<td>Chronic headache</td>
</tr>
<tr>
<td>Kurita, 2012</td>
<td>Denmark</td>
<td>2010</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>3,305</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Le, 2012</td>
<td>United States</td>
<td>2007</td>
<td>Cross-sectional</td>
<td>Database (insurance claims)</td>
<td>238,237</td>
<td>Osteoarthritis</td>
</tr>
<tr>
<td>Marshall, 2011</td>
<td>Germany</td>
<td>2007–2008</td>
<td>Cross-sectional</td>
<td>Database (insurance claims)</td>
<td>19,392</td>
<td>Fibromyalgia</td>
</tr>
<tr>
<td>Author</td>
<td>Country</td>
<td>Sampling Year</td>
<td>Study Design</td>
<td>Setting</td>
<td>No. of Participants</td>
<td>Pain Complaint</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Marschall, 2016 [69]</td>
<td>Germany</td>
<td>2012</td>
<td>Cross-sectional</td>
<td>Database (insurance claims)</td>
<td>870,000</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Moulin, 2002 [79]</td>
<td>Canada</td>
<td>2001</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>2,001</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Pleiser, 2016 [66]</td>
<td>Denmark</td>
<td>2013</td>
<td>Cross-sectional</td>
<td>Tertiary care</td>
<td>98</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Poulin, 2016 [59]</td>
<td>Canada</td>
<td>2013</td>
<td>Cross-sectional</td>
<td>Secondary care</td>
<td>58</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Sloan, 2019 [47]</td>
<td>United States</td>
<td>2012–2017</td>
<td>Cohort</td>
<td>Database (insurance claims)</td>
<td>93,231</td>
<td>Inflammatory spondylopathies</td>
</tr>
<tr>
<td>Torrance, 2007 [61]</td>
<td>England</td>
<td>2004</td>
<td>Cross-sectional</td>
<td>Primary care</td>
<td>1,420</td>
<td>Chronic noncancer pain</td>
</tr>
<tr>
<td>Westergaard, 2015 [67]</td>
<td>Denmark</td>
<td>2010</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>2,087</td>
<td>Chronic headache</td>
</tr>
<tr>
<td>Widerstrom-Noga, 2003 [52]</td>
<td>United States</td>
<td>Not reported</td>
<td>Cross-sectional</td>
<td>General public</td>
<td>120</td>
<td>Chronic pain with spinal cord injury</td>
</tr>
</tbody>
</table>
pain ($P=0.091$). A model with additional covariates could not be constructed due to the small number of studies.

Sensitivity Analyses

There was little change in estimates of opioid use when the two studies with high risk of bias [50, 53] were removed (26.5%; 95% CI, 22.8–30.6; n=58 studies; low-quality evidence vs 26.8%; 95% CI, 23.1–30.8; n=60 studies; moderate-quality evidence).

When tramadol was classified as a strong opioid, the use of weak opioids increased to 18.9% (14.1% to 24.8%, n=16 studies) and the use of strong opioids increased to 12.0% (9.9% to 14.5%; n=16 studies). There was little change to estimates for use of combination
opioid preparations (a minor decrease in weak combination use to 2.2% [1.6% to 3.1%; n=5 studies] and a small decrease in strong combination use to 4.4% [4.1% to 4.7%; n=2 studies]).

The pooled estimate of opioid use in people with chronic noncancer pain was not affected by the length of time opioids were used. Although studies reported the duration of opioid use from current opioid use to past opioid use, including the last 2 years, these covariates of current and past opioid use were not significant in the meta-regression model (P=0.122).

Discussion

Our review of published studies reporting opioid use in people with chronic noncancer pain found that 26.8% of people with chronic noncancer pain reported using opioid analgesics. In people with chronic noncancer pain, weak opioids were used by more people than strong opioids (17.3% vs 9.8%). In people with chronic low back pain, 29.8% reported using opioids, and strong opioid use was much greater than weak opioid use (28.6% vs 3.1%). We found from meta-regression analysis that geographic region (decreased use in Southeast Asia compared with North America) and setting (tertiary care compared with the general population) significantly contributed to opioid use in people with chronic noncancer pain but that opioid use did not change between 1990 and 2017.

Our review was based on a thorough literature search, summarizing data from 60 studies of over 3.9 million people with chronic noncancer pain reporting on opioid use from 1990 to 2017. We acknowledge that chronic pain diagnoses, as well as opioid use, are often self-reported. The definition of opioid use varied between studies, ranging from current opioid use to opioid use over the last 2 years. However, we accounted for this difference in measurement period during the risk-of-bias assessment (length of prevalence period), and sensitivity analysis confirmed that measurement period did not affect opioid estimates. Despite the number of eligible studies, only 30% of studies reported information on the types of opioids used, and few studies reported on the treatment regimen, so we were unable to determine if there have been changes over time in these aspects of the treatment.

Several covariates were not associated with increased opioid use, including that the use of opioids by people with chronic noncancer pain has not changed over time. This is unexpected and contrary to reports of increasing opioid use in general [8] and reports of the increase in the prescription of opioids to patients with chronic noncancer pain throughout many countries [80–83]. Our previous research found that from 42 studies, the proportion of patients with chronic noncancer pain prescribed opioid analgesics was 30.7% (95% CI, 28.7–32.7), and meta-regression analysis determined that opioid prescribing was associated with year of sampling (more prescribing in recent years; P=0.014) [11]. The explanation for the difference between increasing opioid prescribing and constant self-reported opioid use in people with chronic noncancer pain is unclear but worthy of future exploration.

The proportion of people with chronic noncancer pain in low-income and middle-income countries who use an opioid remains unclear. We found no studies reporting opioid use in low-income countries and only four studies from middle-income countries: three from the upper-middle-income countries of Brazil [58] and Iran [71, 72] and one from a lower-middle-income country of India [70]. The range of opioid use estimates from middle-income countries (3% [58] to 26% [72]) was less than estimates from high-income countries (3% [75] to 72% [62]). This contrasts with the known higher prevalence of chronic pain in low-income and middle-income countries (33% [84]) compared with global estimates (20% [1]).

Opioid use in general in low-income and middle-income countries faces several barriers, such as stringent regulations, reduced access to pain medicines, and criminal prosecution [8, 85] that may not be faced as commonly in high-income countries. People with chronic noncancer pain may face similar barriers to accessing opioids.

Similar to clinical practice guidelines for the management of chronic noncancer pain, guidelines for the management of chronic low back pain [86] now discourage the use of opioids for similar reasons of increased risks vs potential benefits [87]. We found that a slightly greater proportion of people with chronic low back pain used opioids compared with the chronic noncancer pain population, but the proportion did not increase over time. The studies reporting opioid use in people with chronic low back pain came from high-income countries; hence, the proportion of people with chronic low back pain from low-income and middle-income countries who use an opioid remains unclear.

Cultural, social, and regulatory differences between countries limit the generalizability of opioid use estimates and the types of opioids used among high-income, middle-income, and low-income countries. Some pharmaceutical companies have identified low-income and middle-income countries as a new source of revenue as “emerging markets.” The media have been quick to highlight this social issue [88]. Marketing campaigns have identified countries such as Brazil, with a population of over 200 million, with more than two-thirds of the population affected by chronic noncancer pain [89], as targets to increase opioid sales. This has fueled concern that low-income and middle-income countries may follow in the footsteps of high-income countries with the overprescribing of opioids [90].

Future research may explore the reasons behind the unchanged self-reported use of opioid analgesics in people with chronic noncancer pain over time compared with the increase in the prescription of opioids in this...
population over time as previously identified in the literature [11]. Community awareness about the potential harms of opioid analgesics may influence individuals’ decisions not to take an opioid medicine they were prescribed, but this has yet to be explored thoroughly in the chronic pain population. The differences between patient and clinician views on opioid use and prescribing have been identified from qualitative research. For example, one study investigating the incentives and barriers to opioid use in acute or chronic musculoskeletal disorders concluded that patients feel that opioids should be used cautiously, whereas clinicians prescribed opioids out of habit and convenience [91]. A recent systematic review of 31 studies identified that people with chronic noncancer pain felt that they were continually balancing the pros and cons of opioids and felt that they were not always “on the same page” as their health care professional [92]. Future studies could examine if opioid prescribing to patients with chronic pain is habitual and if potential contributors such as the increasing prevalence of chronic pain conditions are leading to the increased opioid prescribing for patients with chronic noncancer pain. In due course, future published prevalence studies may identify any changes in the trend of opioid use and/or opioid prescribing following the updated clinical practice guidelines for the management of chronic pain such as those from the Centers for Disease Control and Prevention [6].

Conclusions
Over one-quarter of people with chronic noncancer pain and nearly one-third of people with chronic low back pain report taking opioid analgesics. These proportions did not change during the time period from 1990 to 2017.

Acknowledgments

References

54. Miller A, Sanderson K, Bruno R, Breslin M, Neil AL. The prevalence of pain and analgesia use in the Australian population:
Use of Opioids in Chronic Pain

90. Makary MA, Overton HN, Wang P. Overprescribing is major clinician incentives and barriers for opioid use for musculoskeletal disorders a qualitative study on opioid use in musculoskeletal pain patients referred to a Danish multidisciplinary pain center. Pain 1997;73:393–400.
