Manuscript version: Published Version
The version presented in WRAP is the published version (Version of Record).

Persistent WRAP URL:
http://wrap.warwick.ac.uk/165324

How to cite:
The repository item page linked to above, will contain details on accessing citation guidance from the publisher.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
Long spin coherence times of nitrogen vacancy centers in milled nanodiamonds

B. D. Wood, G. A. Stimpson, J. E. March, Y. N. D. Lekhai, C. J. Stephen, B. L. Green, A. C. Frangeskou, L. Ginés, S. Mandal, O. A. Williams, and G. W. Morley

1Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom

2Diamond Science and Technology Centre for Doctoral Training, University of Warwick, Coventry, CV4 7AL, United Kingdom

3School of Physics and Astronomy, Cardiff University, Queen’s Building, The Parade, Cardiff, CF24 3AA, United Kingdom

(Received 3 March 2022; accepted 7 April 2022; published 2 May 2022)

Nanodiamonds containing negatively charged nitrogen vacancy centers (NV−) have applications as localized sensors in biological materials and have been proposed as a platform to probe the macroscopic limits of spatial superposition and the quantum nature of gravity. A key requirement for these applications is to obtain nanodiamonds containing NV− with long spin coherence times. Using milling to fabricate nanodiamonds processes the full 3D volume of the bulk material at once, unlike etching pillars, but has, up to now, limited NV− spin coherence times. Here, we use natural isotopic abundance nanodiamonds produced by Si3N4 ball milling of chemical vapor deposition grown bulk diamond with an average single substitutional nitrogen concentration of 121 ppb. We show that the electron spin coherence times of NV− centers in these nanodiamonds can exceed 400 μs at room temperature with dynamical decoupling. Scanning electron microscopy provides images of the specific nanodiamonds containing NV− for which a spin coherence time was measured.

DOI: 10.1103/PhysRevB.105.205401

I. INTRODUCTION

The negatively charged nitrogen vacancy center (NV−) in diamond [1] has attracted attention as a tool in quantum information [2,3], magnetometry [4,5], electrometry [6–9], and thermometry [10–13] using optically detected magnetic resonance (ODMR). This leverages the optical initialization and readout of the electron spin state of the NV− center, along with the microwave resonance of the spin state transitions, to control the state of the NV− center [14]. In nanodiamonds, the NV− has potential applications in sensing within biological material as living cells can take in nanodiamonds and remain functional, allowing local sensing within cells [15–26]. Also, nanodiamonds containing NV− have been proposed as a platform to probe macroscopic spatial superpositions [27–32] and the quantum nature of gravity [33–35]. These proposals require macroscopic spatial superposition states of the nanodiamonds involved, therefore, diamonds with a diameter on the order of 1 μm containing a single NV− center are proposed. Along with large nanodiamonds, the electron spin coherence time, T2, of the NV− is a critical factor for these experiments. Dynamical decoupling techniques are used to suppress the dephasing of the NV− spin state due to static or slowly changing fluctuations in the environment, maximizing the T2 time.

In bulk diamond, NV− T2 times exceeding 1 s have been observed, using dynamical decoupling, at cryogenic temperatures [36,37]. At room temperature, the longest NV− T2 time is around 2 ms, using 12C purification and dynamical decoupling [37,38]. However, observed T2 times in nanodiamonds are significantly shorter. The longest reported T2 in micro- or nanodiamonds is 708 μs with dynamical decoupling and using isotopically pure 12C diamond material that is etched into pillars of diameters 300 to 500 nm and lengths 500 nm to 2 μm [39]. For natural abundance 13C micro- or nanodiamonds, the longest T2 time reported for particles fabricated using etching techniques 210 μs [40] and by milling 67 μs [41].

The T2 time is sensitive to the dynamics of spins surrounding the NV−, hence the shorter times for nanodiamonds containing uncontrolled 13C spins. Therefore, it has been suggested that the suppression of NV− T2 in nanodiamonds is due to defects at the surface [42–44].

Here, we show that chemical vapor deposition (CVD) grown diamond with natural 13C abundance and nitrogen concentration < 1 ppm can be processed by milling to fabricate nanodiamonds containing NV−, with T2 exceeding 400 μs at room temperature. Milling conveniently permits the creation of nanodiamonds from the full 3D volume of the bulk material at once, unlike etching. The nanodiamond T2 measurements were carried out using confocal fluorescence microscopy (CFM), and the same nanodiamonds were viewed by scanning electron microscopy (SEM).

Single-crystal CVD diamond was manufactured by Element Six with an average single substitutional nitrogen concentration of 121 ppb measured by electron paramagnetic resonance [46], and a natural abundance of 13C. The expected grown-in NV− concentration was 0.4 ppb [47]. Prior to Si3N4 ball milling [48], the diamonds used for this research were irradiated with 4.5 MeV electrons for one minute and annealed for three hours at 400 °C, four hours at 800 °C, and two hours at 1200 °C. Similarly to previous methods [46,49]. The irradiation time was chosen such that the expected final NV− concentration was approximately 1 ppb. Given the atomic
density of diamond \((1.77 \times 10^{23} \text{ cm}^{-3})\), it was expected that a nanodiamond containing a single center was around 230 nm in diameter.

Reference [48] provides a detailed report of the fabrication process, x-ray photoelectron spectroscopy measurements of the surface, and particle-size distributions. In summary, the diamond plates were milled with Si3N4 balls to avoid magnetic contaminants from steel ball milling. After milling, the sample was acid cleaned in H3PO4 and then cleaned in NaOH, to remove the Si3N4 contaminants. This process does not remove all the Si3N4 contaminants, as the diamond sample gains mass after milling. The nanodiamonds were then annealed in an air atmosphere, dispersed in water, and centrifuged at a relative centrifugal force of \(40 \times 10^3\) g. The air anneal produces nanodiamonds that have surfaces consisting of C-Si, COOH, C=O, O-C, C=C, and C-C bonds.

The nanodiamonds were held in a suspension of methanol at a density of approximately \(1 \text{ mg ml}^{-1}\) and sprayed for three seconds by a nebulizer (Omron MicroAIR U22) into an upturned vial, ensuring that a high density of nanodiamonds were injected. The nanodiamonds were then allowed to precipitate onto silicon wafers. This was to reduce the coffee-ring effect which was often observed in dropr casting and to prevent aggregation, which was found to be prevalent when using direct spray applications. Other methods have also been demonstrated previously for mitigating the coffee-ring effect [50]. n-type silicon wafers doped with \(1 \times 10^{15} \text{ cm}^{-3}\) of phosphorus were plasma etched using photolithography to create a grid system for locating individual nanodiamonds. This allows verification that the same nanodiamond is being addressed in both the CFM and SEM measurements.

Under CFM, nanodiamonds containing single NV centers were identified. CFM images allowed the observation of individual NV centers. Pulse sequences were used to perform Hanbury Brown-Twiss (HBT) measurements. HBT measurements quantify the degree of correlation between photon-detection events for different time delays, \(g^2(\tau)\). A single NV cannot emit two photons simultaneously, therefore \(g^2(0) = 0\) is expected. However, background fluorescence generates spurious coincidence events so \(0 \leq g^2(0) < 0.5\) indicates a single center. Background counts are not subtracted from the HBT data in this paper.

Those that displayed ODMR were selected and an external magnetic field aligned to the NV axis. The magnetic field is generated by a permanent magnet on an arm connected to three motors. Two motors rotate the magnet about perpendicular axes that intersect at the position of the sample. These allow rotation in a sphere around the sample without altering the distance between the magnet and the sample. The final motor linearly alters the distance between the magnet and the sample, without changing the angle. Therefore the angular alignment and magnetic field strength can be varied precisely and independently. To align the magnetic field, the fluorescent count rate is monitored and the angle of the magnet adjusted until the magnet can be brought close to the sample without the count rate decreasing. The count rate decreases in the presence of a misaligned field. Therefore, the angular alignment and magnetic field strength can be varied precisely and independently. To align the magnetic field, the fluorescent count rate is monitored and the angle of the magnet adjusted until the geometry of the milled nanodiamond and the location of the NV center are, by chance, in the required orientation to act as a waveguide [51,52]. This could couple more of the emitted fluorescence into the microscope objective than would be the case from a spherical nanodiamond, boosting the measured fluorescence intensity.

HBT measurements on the nanodiamond labeled KINMO13ND1 (ND1) in Fig. 1 gave the value \(g^2(0) = 0.39 \pm 0.02\), as shown in Fig. 2(b), indicating that it contained a single NV center. For further discussion of this inflated \(g^2(0)\), see Appendix B. SEM observations of ND1 were used to estimate that the maximum distance an NV center could be from the surface \((R_{\text{max}})\) was \(106 \pm 2\) nm.

Spin-echo decay measurements were performed on seven nanodiamonds containing a single NV that also displayed satisfactory ODMR contrast (the difference in fluorescence intensity for an NV in the \(m_s = 0\) or \(m_s = \pm 1\) states). The nanodiamond ND1 provided the longest \(T_2\) time of all

II. RESULTS AND DISCUSSION

An automated survey collected HBT and fluorescence intensity measurements from 175 nanodiamonds containing NV, as shown in Fig. 2(a). Of the nanodiamonds measured, 34% contained a single NV center whilst 19% contained two, 16% contained three, and 31% contained more than three NV centers, respectively. We have characterized \(0 \leq g^2(0) < 0.5\) to indicate a single center, \(0.5 \leq g^2(0) < 0.67\) indicates two, \(0.67 \leq g^2(0) < 0.75\) indicates three, and \(g^2(0) \geq 0.75\) indicates more than three. The survey was conducted at an excitation laser power of 0.4 mW.

The sites marked to be included in the HBT survey were identified from their fluorescence under CFM, therefore the number of nanodiamonds that do not contain any NV centers was not measured. If Poissonian statistics are assumed for the number of nanodiamonds containing one, two, and three NV centers, a fit of \(e^{-\lambda} \lambda^x / x!\) gives \(\lambda = 1.5 \pm 0.3\). Therefore, it can be estimated that the number of nanodiamonds containing zero NV in the surveyed region is \(40 \pm 12\). However, there are a number of factors that suggest that the data is not well described by Poissonian statistics and that the number of nanodiamonds containing zero NV centers is an order of magnitude estimate at best. First, while NV centers may have been incorporated into the bulk diamond material at an approximately constant rate, a range of nanodiamond sizes exist in the sample. Furthermore, selection bias exists in marking sites for surveys. Bright, roughly circular, isolated fluorescence spots are more likely to be identified as a nanodiamond containing NV and marked for survey than a dim spot or an extended patch of fluorescence.

Figure 2(a) also contains a number of single NV centers with unusually high fluorescence intensity. We typically see single emitters with \(< 100\text{kcts/s}\) under CFM, however an number of surveyed sites exceeded this with one approaching 200kcts/s. A possible explanation for the inflated fluorescence intensity is that the geometry of the milled nanodiamond and the location of the NV center are, by chance, in the required orientation to act as a waveguide [51,52]. This could couple more of the emitted fluorescence into the microscope objective than would be the case from a spherical nanodiamond, boosting the measured fluorescence intensity.
FIG. 1. (a) Confocal fluorescence microscopy (CFM) image in red and blue (lighter gray scale), of nanodiamond KNMO13ND1 (ND1) overlaid onto a reflection image, in purple and orange (darker grayscale), of the grid-marked silicon. Image plotted using the Qudi software suite [45]. ND1 is identified by the solid green (gray) ring. The dashed green (gray) rings around nearby features are overlaid on both (a) and (b) which, along with the grid, verify that the CFM and scanning electron microscopy (SEM) are both viewing the same nanodiamonds. (b) SEM imaging of the same area in (a) is necessary to provide a measurement of size. The inset shows a higher magnification image of ND1. (c) A lower magnification SEM image of an etched silicon map before nanodiamonds are introduced. Vertical and horizontal grid lines are visible along with arcs that are centered on the center of the silicon map. The grid lines visible in (a), (b) are the intersection of horizontal, vertical, and arc markings. In (a), the grid lines are the dark lines to the right of ND1, and in (b) the grid lines are the bright lines to the right of ND1. Each small square has dimensions $25 \times 25 \mu m$. (d) NV$^-$ center schematic, three carbon atoms shown in blue (dark gray) at the bottom, one nitrogen in red (gray) at the top, and the transparent (light grey) central sphere is the vacant lattice site.

FIG. 2. (a) Fluorescence intensity against $g^{(2)}(0)$ value. $0 \leq g^{(2)}(0) < 0.5$ indicates a single center, $0.5 \leq g^{(2)}(0) < 0.67$ indicates two, $0.67 \leq g^{(2)}(0) < 0.75$ indicates three, and $g^{(2)}(0) \geq 0.75$ indicates more than three. A total of 175 nanodiamonds containing NV$^-$ (s) were surveyed. (b) An example Hanbury Brown-Twiss (HBT) measurement of photon correlation for ND1. The black curve is a fit to $1 - a \exp(-\frac{\mu}{\tau_a}) + (1 - b) \exp(-\frac{\mu}{\tau_b})$, where $g^{(2)}(0) = 1 - a$. For this plot, $g^{(2)}(0) = 0.38 \pm 0.04$. After multiple measurements, the value quoted in the text of $g^{(2)}(0) = 0.39 \pm 0.02$ is reached.
nanodiamonds measured, as shown in Fig. 3(a), with values of $T_2^{\text{HE}} = 177 \pm 24 \mu s$, $T_2^{\text{XY8-1}} = 323 \pm 21 \mu s$, and $T_2^{\text{XY8-4}} = 462 \pm 130 \mu s$, respectively. Lines fit by $a + b \exp[-(t/T_2)^{3}]$. The 532 nm laser and microwave (MW) pulses applied for the Hahn echo and XY8-n sequences. The bracketed block in XY8-n is repeated n times.

The measurements in Fig. 3(a) were made with the time delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55] that is proportional to the delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55]. This allows the data to be fit by an exponential without sinusoidal components.

Hahn echo measurements on six other nanodiamonds containing single NV$^-$ gave T_2^{HE} in the range 3.3 to 53 μs, as shown in Fig. 4. The mean T_2^{HE} time, including ND1, was $(T_2^{\text{HE}}) = 51 \mu s$. From SEM imaging of this group, including ND1, the mean size was characterized by $\langle R_{\text{max}} \rangle = 83$ nm. The six measurements were taken with external magnetic fields, measured by ODMR, that ranged from 26 to 50 mT.

The measurements in Fig. 3(a) were made with the time delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55] that is proportional to the delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55]. This allows the data to be fit by an exponential without sinusoidal components.

Hahn echo measurements on six other nanodiamonds containing single NV$^-$ gave T_2^{HE} in the range 3.3 to 53 μs, as shown in Fig. 4. The mean T_2^{HE} time, including ND1, was $(T_2^{\text{HE}}) = 51 \mu s$. From SEM imaging of this group, including ND1, the mean size was characterized by $\langle R_{\max} \rangle = 83$ nm. The six measurements were taken with external magnetic fields, measured by ODMR, that ranged from 26 to 50 mT.

The measurements in Fig. 3(a) were made with the time delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55] that is proportional to the delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55]. This allows the data to be fit by an exponential without sinusoidal components.

Hahn echo measurements on six other nanodiamonds containing single NV$^-$ gave T_2^{HE} in the range 3.3 to 53 μs, as shown in Fig. 4. The mean T_2^{HE} time, including ND1, was $(T_2^{\text{HE}}) = 51 \mu s$. From SEM imaging of this group, including ND1, the mean size was characterized by $\langle R_{\max} \rangle = 83$ nm. The six measurements were taken with external magnetic fields, measured by ODMR, that ranged from 26 to 50 mT.

The measurements in Fig. 3(a) were made with the time delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55] that is proportional to the delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55]. This allows the data to be fit by an exponential without sinusoidal components.

Hahn echo measurements on six other nanodiamonds containing single NV$^-$ gave T_2^{HE} in the range 3.3 to 53 μs, as shown in Fig. 4. The mean T_2^{HE} time, including ND1, was $(T_2^{\text{HE}}) = 51 \mu s$. From SEM imaging of this group, including ND1, the mean size was characterized by $\langle R_{\max} \rangle = 83$ nm. The six measurements were taken with external magnetic fields, measured by ODMR, that ranged from 26 to 50 mT.

The measurements in Fig. 3(a) were made with the time delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55] that is proportional to the delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55]. This allows the data to be fit by an exponential without sinusoidal components.

Hahn echo measurements on six other nanodiamonds containing single NV$^-$ gave T_2^{HE} in the range 3.3 to 53 μs, as shown in Fig. 4. The mean T_2^{HE} time, including ND1, was $(T_2^{\text{HE}}) = 51 \mu s$. From SEM imaging of this group, including ND1, the mean size was characterized by $\langle R_{\max} \rangle = 83$ nm. The six measurements were taken with external magnetic fields, measured by ODMR, that ranged from 26 to 50 mT.

The measurements in Fig. 3(a) were made with the time delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55] that is proportional to the delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55]. This allows the data to be fit by an exponential without sinusoidal components.

Hahn echo measurements on six other nanodiamonds containing single NV$^-$ gave T_2^{HE} in the range 3.3 to 53 μs, as shown in Fig. 4. The mean T_2^{HE} time, including ND1, was $(T_2^{\text{HE}}) = 51 \mu s$. From SEM imaging of this group, including ND1, the mean size was characterized by $\langle R_{\max} \rangle = 83$ nm. The six measurements were taken with external magnetic fields, measured by ODMR, that ranged from 26 to 50 mT.

The measurements in Fig. 3(a) were made with the time delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55] that is proportional to the delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55]. This allows the data to be fit by an exponential without sinusoidal components.

Hahn echo measurements on six other nanodiamonds containing single NV$^-$ gave T_2^{HE} in the range 3.3 to 53 μs, as shown in Fig. 4. The mean T_2^{HE} time, including ND1, was $(T_2^{\text{HE}}) = 51 \mu s$. From SEM imaging of this group, including ND1, the mean size was characterized by $\langle R_{\max} \rangle = 83$ nm. The six measurements were taken with external magnetic fields, measured by ODMR, that ranged from 26 to 50 mT.

The measurements in Fig. 3(a) were made with the time delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55] that is proportional to the delay between microwave pulses chosen to sample the peaks of the 13C revivals of the spin-echo signal [53,55]. This allows the data to be fit by an exponential without sinusoidal components.

Hahn echo measurements on six other nanodiamonds containing single NV$^-$ gave T_2^{HE} in the range 3.3 to 53 μs, as shown in Fig. 4. The mean T_2^{HE} time, including ND1, was $(T_2^{\text{HE}}) = 51 \mu s$. From SEM imaging of this group, including ND1, the mean size was characterized by $\langle R_{\max} \rangle = 83$ nm. The six measurements were taken with external magnetic fields, measured by ODMR, that ranged from 26 to 50 mT.
Fig. 4. Hahn echo measurements on six nanodiamonds other than ND1 containing single NV\(^-\). Error bars are not shown as they are smaller than the data points. Dashed lines fit by \(a + b \exp[-(t/T_2)^n]\) or, for those figures that contain \(^{13}\)C revivals, \(a + b \exp[-(t/T_2)^n] (1 - c \sin(\frac{\pi}{d} t) \sin(\frac{\pi}{g} t)^2)\) \([53,55]\). For the plots with revivals, the periods are as follows: for ND2: \(d = 3.6 \pm 0.2 \mu s\), \(g = 4.0 \pm 0.3 \mu s\), and for ND6: \(d = 6.96 \pm 0.05 \mu s\), \(g = 13.9 \pm 0.1 \mu s\).

The nanodiamond. As such, we do not observe a correlation between the size of the nanodiamond and the \(T_2\) time (see Appendix D).

III. CONCLUSION

We observed a nanodiamond containing a single NV\(^-\) electron spin coherence exceeding 400 \(\mu s\), with dynamical decoupling. For other nanodiamonds containing single NV\(^-\) centers, the average \(T_2\) time measured by the Hahn echo sequence across the sample was 51 \(\mu s\). All spin coherence measurements were performed at room temperature. The nanodiamonds containing NV\(^-\) were fabricated from CVD diamond bulk material by Si\(_3\)N\(_4\) ball milling \([46,48]\). CVD allows diamond to be grown with low, and controllable, defect concentrations and milling permits the conversion of the entire bulk sample into nanodiamonds quickly, unlike masked etching of pillars. We have also used etched grid markings in silicon to be able to address specific nanodiamonds, that provided \(T_2\) measurements, under SEM.

These \(T_2\) times demonstrate that nanodiamonds produced by milling can contain NV\(^-\) centers with \(T_2\) times that are comparable with or longer, than those produced by etching. These \(T_2\) times should enable AC magnetometry with a sensitivity on the order of 100 nT Hz\(^{-1/2}\) \([4]\). Furthermore, the high-volume fabrication enabled by milling is compatible with applications such as sensing \([15–26]\) and nanodiamond levitation \([27–31,34,35,46,57–62]\).

ACKNOWLEDGMENTS

G.A.S.’s PhD studentship is funded by the Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Diamond Science and Technology (Grant No. EP/L015315/1). J.E.M.’s PhD studentship is funded by the Royal Society. B.L.G. is supported by the Royal Academy of Engineering. This work is supported by the UK National Quantum Technologies Programme through the NQIT Hub (Networked Quantum Information Technologies), the Quantum Computing and Simulation (QCS) Hub, and the Quantum Technology Hub for Sensors and Metrology with funding from UKRI EPSRC Grants No. EP/M013243/1,
FIG. 5. Confocal fluorescence microscopy (CFM) images of ND1 identified by a green (light gray) dashed ring. (a) CFM taken prior to scanning electron microscopy (SEM) observation of ND1. (b) CFM taken after SEM observation of ND1. A bright rectangle of background fluorescence is visible surrounding ND1. This background is not present prior to SEM observation. Images plotted using the Qudi software suite [45].

APPENDIX A: ELECTRON IRRADIATION

The irradiation was performed by Synergy Health in Swindon, United Kingdom. The beam is not well-characterized, however, the beam current is approximately 20 mA and produces vacancies at a rate of around 0.3 ppm/hr. Based on prior experience of using the irradiation facility, the one minute exposure time was chosen such that the expected final NV− concentration was approximately 1 ppb.

APPENDIX B: ND1 PHOTON AUTOCORRELATION

HBT measurements on ND1 gave a fitted autocorrelation value of $g^{(2)}(0) = 0.39 \pm 0.02$. Whilst this satisfies the $g^{(2)}(0) < 0.5$ condition for a single NV−, it is larger than the values we typically observe for single NV− in nanodiamonds at room temperature. The inflated $g^{(2)}(0)$ value could be caused either by ND1 containing two NV− centers with the emission intensity of one suppressed or ND1 containing a single NV− with a high background count rate, as background counts are not subtracted from the HBT data.

The first potential cause for emission suppression is if the two NV− have different orientations in the diamond lattice then the input polarization of the 532 nm excitation could couple preferentially with one orientation over the other. However, a number of experimental observations suggest that if there are two NV− then they have the same orientation. First, there is only one pair of peaks observed in ODMR when an external magnetic field is applied. Second, a magnet can be aligned and moved from a distance of approximately 30 mm to approximately 5 mm from ND1 without changing the emitted fluorescence intensity. If there were two NV− of different orientations, the off-axis magnetic field would further suppress the counts from one of them. Finally, multiple HBT measurements were taken with and without an aligned magnetic field and there was no clear difference in the $g^{(2)}(0)$ value between the two cases. Once again, if there were two NV− of different orientations, the magnetic field should change the level of suppression of the emission from one of the NV−, changing the $g^{(2)}(0)$ value.

Second, if one of the two NV− is charge switching to NV0, then its average fluorescence intensity is reduced. However, step changes in count rate due to charge-state switching have never been observed for ND1. It could be that charge switching is happening at a high frequency that cannot be seen as step changes in the fluorescence count rate, however, the charge switching would have had to have been consistently high frequency over the many hours of ND1 observations.

Finally, high background count levels can inflate $g^{(2)}(0)$ values by increasing the number of coincident counts. For ND1, dynamical decoupling measurements were taken after the sample had been observed by SEM. After SEM, a rectangle of background fluorescence, more intense than the global background, was visible around ND1, as shown in Fig. 5. It is possible that the electron dose incident on the silicon on which ND1 sits caused fluorescent material to electrostatically stick to the silicon around ND1. Furthermore, a HBT measurement taken prior to SEM observation gave a value of $g^{(2)}(0) = 0.21 \pm 0.11$.

Therefore, despite the inflated value for an ideal single NV− center, $g^{(2)}(0) = 0.39 \pm 0.02$, secondary observations and the $g^{(2)}(0) < 0.5$ condition being satisfied suggest that ND1 is a nanodiamond containing a single NV− in the presence of a high level of background counts.

APPENDIX C: 13C REVIVALS

Dynamical decoupling sequences, such as Hahn echo and XY8-n, act to cancel magnetic fluctuations local to the NV−
FIG. 6. Hahn echo measurement of ND1 with shorter inter-point spacing than in Fig. 3 of the main text. Revivals in spin-echo signal due to ^{13}C spins are well fit by $a + b \exp[-(t/T_2^n)(1 - c \sin(\frac{\pi t}{g})^2)]$ [53,55], where $d = 6.975 \pm 0.007 \mu s$ and $g = 11.44 \pm 0.02 \mu s$.

APPENDIX D: NANODIAMOND SIZE VS. T_2 TIME

Using the grid markings etched onto the silicon the nanodiamonds are deposited on, each nanodiamond that contained an NV$^-$ for which a T_2 was measured was viewed under SEM. Figure 7 shows that we did not observe a correlation between nanodiamond size and T_2 time.

There are limitations to characterizing the nanodiamond size under SEM. The two-dimensional image allows the projected size to be measured but provides no information as to the depth of the nanodiamond. Nanodiamonds are sometimes deposited in clumps, leaving it unclear under SEM as to whether there is one large nanodiamond that contains the NV$^-$ or a smaller nanodiamond containing the NV$^-$ next to another small nanodiamond that does not contain an NV$^-$. This is the case for the two data points in Fig. 7 that have $T_2 < 10 \mu s$.

Even if the SEM observations could provide perfect information on the size and shape of each nanodiamond, we...
have no knowledge of the location of the NV− center within the diamond. Therefore, \(R_{\text{max}} \) is an estimate from the SEM images of the maximum distance that the NV− center could be from the surface. These factors, along with those discussed in the main text, all contribute to mask any possible correlation between the nanodiamond size and T2 time.

L. Ginès, S. Mandal, D. J. Morgan, R. Lewis, P. R. Davies, P. Borri, G. W. Morley, and O. A. Williams, Production of metal-free diamond nanoparticles, ACS Omega 3, 16099 (2018).

