Combining heteronuclear correlation NMR with spin-diffusion to detect relayed Cl–H–H and N–H–H proximities in molecular solids

Parth Raval a, Julien Trébosc b, Tomasz Pawlak c, Yusuke Nishiyama d,e, Steven P. Brown f,**, G.N. Manjunatha Reddy a,7

a University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F, 59000, Lille, France
b Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC – Institut Michel-Eugène CHEVREL, F, 59000, Lille, France
c Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
d RIKEN-JEOL Collaboration Centre, RIKEN, Yokohama Campus, Yokohama, Kanagawa, 230-0045, Japan
e JEOL RESONANCE Inc., Akishima, Tokyo, 196-8558, Japan
f Department of Physics, University of Warwick, Coventry, CV4 7AL, UK

A B S T R A C T

Analysis of short-to-intermediate range intermolecular interactions offers a great way of characterizing the solid-state organization of small molecules and materials. This can be achieved by two-dimensional (2D) homo- and heteronuclear correlation NMR spectroscopy, for example, by carrying out experiments at high magnetic fields in conjunction with fast magic-angle spinning (MAS) techniques. But, detecting 2D peaks for heteronuclear dipolar coupled spin pairs separated by greater than 3 Å is not always straightforward, particularly when low-gamma quadrupolar nuclei are involved. Here, we present a 2D correlation NMR experiment that combines the advantages of heteronuclear-multiple quantum coherence (HMQC) and proton-based spin-diffusion (SD) pulse sequences using radio-frequency-driven-recouping (RFDR) to probe inter and intramolecular H–X interactions. This experiment can be used to acquire 2D H-X-HMQC filtered 1H–1H correlation as well as 2D 1H-X HMQC spectra. Powder forms of dopamine-HCl and L-histidine-HCl H2O are characterized at high fields (21.1 T and 18.8 T) with fast MAS (60 kHz) using the 2D HMQC-SD-RFDR approach. Solid-state NMR results are complemented with NMR crystallography analyses using the gauge-including projector augmented wave (GIPAW) approach. For histidine-HCl H2O, 2D peaks associated with 14N–1H–1H and 35Cl–1H–1H distances of up to 4.4 and 3.9 Å have been detected. This is further corroborated by the observation of 2D peaks corresponding to 14N–1H–1H and 35Cl–1H–1H distances of up to 4.2 and 3.7 Å in dopamine-HCl, indicating the suitability of the HMQC-SD-RFDR experiments for detecting medium-range proximities in molecular solids.

1. Introduction

Solid-state (ss)NMR spectroscopy is widely used to characterize the local structures and dynamics of molecular solids today. Site selectivity, natural isotopic abundance of several NMR active nuclei, and availability of a large pool of one- (1D) and two-dimensional (2D) pulse sequences to carry out homo and heteronuclear correlation experiments are among the unique capabilities of ssNMR spectroscopy for characterizing the solid form. Applications have been presented in the areas of optoelectronics, catalysis, biomacromolecules, pharmaceutical formulations, energy harvesting and storage materials [1–7]. In addition, ssNMR, in conjunction with diffraction-based techniques and modelling approaches (also referred to as NMR crystallography), is increasingly applied to characterize the intermolecular interactions and to determine the three-dimensional structures of (semi)cristalline and amorphous solids [8–18].

The vast majority of ssNMR-based structure elucidation studies involve the analysis of chemical shifts and dipolar couplings and often quadrupolar interactions [3]. The chemical shifts are sensitive to local bonding environments, and the dipolar couplings are sensitive to interatomic distances and site-specific dynamics. Information on the isotropic chemical shifts of spin-half nuclei such as 1H, 13C, 14N, and 15N...
can be obtained by acquiring and analyzing 1D magic-angle spinning (MAS) spectra. In addition, 2D homo- and hetero-nuclear correlation (HETCOR) experiments provide information on through-space proximities and dipolar interactions that can be used to estimate interatomic distances and molecular conformations, which help to determine the 3D structures of molecular solids. For example, double-quantum (DQ) peaks can be excited and detected for \(^1\)H-\(^1\)H spin pairs at sub-nanometer (within 5 Å) distances, and \(^1\)H-\(^3\)H spin-diffusion (SD) and cross-polarization (CP)-based \(^1\)H-\(^3\)H \(^1\)H-\(^1\)H HETCOR experiments enable the interatomic proximities to be probed within, or even beyond a nanometer. For 2D experiments involving both spin-half and quadrupolar nuclei, heteronuclear multiple-quantum coherence (HMQC)-type or insensitive nuclei enhancement by polarization transfer (INEPT)-type experiments have been used to efficiently transfer the polarization from spin-half nuclei to quadrupolar nuclei \([19-25]\). For example, N–H proximities can be probed at natural abundance \(^{14}\)N spin 1, 99.6% natural isotopic abundance) using J-couplings (J-HMQC), dipolar couplings (D-HMQC), and using overtone (OT) \(^{14}\)N transitions \([33,34-38]\). Specifically, 2D HMQC experiments have been applied to characterize \(^{14}\)N–H proximities \([33,34-38]\) as well as \(^{35}\)Cl–\(^1\)H proximities \([38-42]\) in small molecules and pharmaceutical solids.

To take full advantage of NMR analysis of molecular solids, it is important to probe packing interactions in the sub-nanometer to nanometer range, or even greater than a nanometer distance. Gaining access to the intermediate-range (1–10 nm) length scale is particularly important to fill the gap between the structural analysis enabled by the short-range probes (e.g., conventional magnetic resonance spectroscopy probes local structures at sub-nanometer distances) and the long-range techniques such as X-ray scattering and electron microscopy that offer morphological and structural information at tens of nanometers regime. For example, it has been feasible to probe intermediate-to-long range distances via spin-diffusion experiments by making use of spin magnetization exchange between nuclei at high natural abundance such as \(^1\)H and \(^{19}\)F due to the strong dipolar interactions between them, or between isotopically enriched nuclei \([43-51]\). Several structural elucidation studies benefit from the analysis of such intermediate-range to long-range structures, including catalytic surfaces, reactive interfaces in stacked thin films in optoelectronic devices, bio-macromolecules, polymers, functional supramolecular assemblies, and pharmaceutical formulations \([44,52-64]\). Notably, analysis of spin-diffusion build-up curves in conjunction with computational modelling has been used to determine three-dimensional structures of small to moderately sized molecules \([47,48,65-68]\). Since these molecular systems contain both spin-half and quadrupolar nuclei, detecting 2D NMR peaks for heteronuclear \(^1\)H–X spin-pairs involving low-gamma quadrupolar nuclei \((X = \(^{14}\)N, \(^{35}\)Cl), probing long-range proximities of up to 5 Å or beyond is difficult due to the weak heteronuclear dipolar interactions. Thus, a combination of features involving a 2D HMQC-type experiment and \(^1\)H–\(^1\)H spin diffusion to probe the short-to-medium range interactions is expected to facilitate structure elucidation in organic solids and materials.

Here we combine HMQC and SD using RFDR pulse sequence elements so as to probe \(^{35}\)Cl–\(^1\)H and \(^{14}\)N–\(^1\)H interatomic proximities in small organic molecules. Results are demonstrated for powdered compositions of l-histidine-HCl·H\(_2\)O and dopamine·HCl (Fig. 1). Pulse sequences used to acquire the conventional 2D HMQC and 2D HMQC-SD-RFDR experiments are shown in Fig. 2. For each sample, the \(^1\)H–\(^1\)H and \(^{14}\)N–\(^{35}\)Cl–\(^1\)H HMQC filtering efficiency is demonstrated on 1D versions of the HMQC and HMQC-SD-RFDR pulse sequences. Then, the ability of a \(^{1}\)H\(^{14}\)N\(^{35}\)Cl-HMQC filtered 2D \(^1\)H–\(^1\)H spin-diffusion experiment to detect the peaks corresponding to proton pairs that are in close proximities to \(^{14}\)N sites is illustrated. Next, proton-detected 2D \(^1\)H–\(^{1}\)N and \(^1\)H–\(^{35}\)Cl HMQC spectra were acquired and analyzed to demonstrate how medium-range N–H and Cl–H correlations are observed for the interatomic N–H and Cl–H distances reaching and exceeding 4 Å. The solid-state NMR results are correlated and complemented by periodic density functional theory calculations using the gauge-including projector augmented wave (GIPAW-DFT) approach. These results suggest that the proposed method has wider relevance in investigating the medium-range interatomic proximities between spin-half and low-gamma quadrupolar nuclei in molecular solids.

2. Experimental details

Solid-state NMR spectroscopy Powders of l-histidine-HCl·H\(_2\)O \((\text{C}_9\text{H}_{15}\text{N}_2\text{O}_2\cdot\text{HCl} \cdot \text{H}_2\text{O})\) and dopamine·HCl \((\text{HO})_2\text{C}_6\text{H}_7\text{O}_2\text{HCl} \cdot \text{H}_2\text{O})\) were purchased from Sigma Aldrich and used as received. Approximately 2.3 mg of l-histidine-HCl·H\(_2\)O and dopamine·HCl were separately packed into 1.3 mm (outer diameter) rotors. All 1D \(^1\)H MAS and 2D \(^1\)H–\(^1\)H correlation experiments were performed on a Bruker Avance Neo solid-state NMR spectrometer operating at a \(^1\)H Larmor frequency of 900 MHz, equipped with a 1.3 mm double-resonance MAS probe head. The \(^1\)H and \(^{14}\)N pulse lengths, dipolar recoupling periods (\(\tau_{\text{rcpl}}\)), and spin diffusion times using RFDR (\(\tau_{\text{RFDR}}\)) were empirically optimized using 1D versions of the HMQC and HMQC-SD-RFDR pulse sequence shown in Fig. 2. 1D \(^1\)H MAS NMR spectra of l-histidine-HCl·H\(_2\)O and dopamine-HCl were acquired with 128 co-added transients. 1D \(^{14}\)N spectra of l-histidine-HCl·H\(_2\)O and dopamine-HCl·H\(_2\)O were acquired with 512 and 4096 co-added transients using a Quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) sequence \([69]\). All \(^1\)H chemical shifts are calibrated with respect to neat TMS as an external reference (\(^1\)H resonance, 1.85 ppm) \([70]\). \(^{14}\)N shifts were referenced to a saturated NH\(_4\)Cl aqueous solution at −352.9 ppm, corresponding to the primary reference, liquid CH\(_3\)NO\(_2\) (0 ppm) \([71]\). To compare with the
alternative IUPAC reference of liquid NH3 at \(-50 \, ^\circ\mathrm{C}\) as used in protein NMR, it is necessary to add 379.5 ppm \([71]\). 35Cl experimental shifts are referenced to 0.1 M NaCl solution in D2O based on the IUPAC recommendation (see Table A1 in Ref. \([72]\)).

HMOC. All 2D HMOC NMR experiments were performed on a Bruker Avance Neo (21.1 T Larmor frequency of \(^{1}H = 900.2 \, \mathrm{MHz}, \quad ^{1}N = 65.0 \, \mathrm{MHz}\) or 18.8 T Larmor frequency of \(^{1}H = 800.1 \, \mathrm{MHz}, \quad ^{1}N = 57.8 \, \mathrm{MHz}, \quad \text{and} \quad ^{35}\mathrm{Cl} = 78.4 \, \mathrm{MHz}\) spectrometer, using a 1.3 mm Bruker probe operating in double-resonance mode at a 60.24 kHz MAS frequency. The pulse sequence used to acquire the \(^{1}\mathrm{N}-^{1}\mathrm{H}\) HMOC spectra is reported in Fig. 2a. SR42 pulses were used to reintroduce the heteronuclear \(^{1}\mathrm{N}-^{1}\mathrm{H}\) dipolar couplings, with a duration \(\tau_{\text{rel}} = 166 \, \mu\mathrm{s}\). \([73]\). The \(^{1}\mathrm{H}\) nutation pulse and the \(^{14}\mathrm{N}\) pulse durations were 2.2 \(\mu\mathrm{s}\) and 16.6 \(\mu\mathrm{s}\), respectively. For each of 80 \(\tau_{t}\) FIDs acquired using the States method to achieve sign discrimination in the indirect \(F_1\) dimension with a rotor synchronized increment of 16.6 \(\mu\mathrm{s}\), 32 transients were coadded with a recycle delay of 2 \(\mathrm{s}\). A \(^{1}\mathrm{H}\) nutation frequency of 208.3 kHz was used for the 90° pulse in the single-pulse experiments. For \(\ell\)-histidine-HCl.H2O, all the 2D \(^{1}\mathrm{H}-^{14}\mathrm{N}\) and \(^{1}\mathrm{H}-^{35}\mathrm{Cl}\) (HMOC and HMOC-SD-RFDR) spectra were acquired with 48 \(\tau_{t}\) FIDs, each with 32 and 128 co-added transients, respectively. For 2D \(^{1}\mathrm{H}-^{14}\mathrm{N}\) and \(^{1}\mathrm{H}-^{35}\mathrm{Cl}\) correlation experiments, the total experimental times were respectively \(-1\) h and \(-3.5\) h each. For both HMOC and HMOC-RFDR sequences, a \(^{1}\mathrm{H}\) nutation frequency of 113.6 kHz was applied for the 90° pulse (2.2 \(\mu\mathrm{s}\)) and 180° pulse (4.4 \(\mu\mathrm{s}\)). A rotor-synchronized SR42 pulse was employed to recouple \(^{1}\mathrm{H}-^{14}\mathrm{N}\) or \(^{1}\mathrm{H}-^{35}\mathrm{Cl}\) dipolar interactions. For dopamine-HCl, all 1D \(^{1}\mathrm{H}\) MAS and \(^{1}\mathrm{H}(^{14}\mathrm{N})\) filtered 1D MAS, and 2D \(^{1}\mathrm{H}-^{14}\mathrm{N}\) HMOC spectra were acquired on a Bruker Avance Neo (21.1 T Larmor frequency of \(^{1}\mathrm{H} = 900.2 \, \mathrm{MHz}, \quad ^{1}N = 65.0 \, \mathrm{MHz}\) spectrometer. The \(^{1}\mathrm{H}\) nutation frequency was 175.4 kHz for a 90° pulse. 2D \(^{1}\mathrm{H}-^{14}\mathrm{N}\) HMOC spectra were acquired with 48 \(\tau_{t}\) FIDs, each with 32 co-added transients, corresponding to an experimental time of \(-1.3\) h each. 2D \(^{1}\mathrm{H}-^{35}\mathrm{Cl}\) spectra were acquired with 80 \(\tau_{t}\) FIDs, each with 128 co-added transients, corresponding to an experimental time of \(-8.5\) h each.

HMOC-SD-RFDR pulse sequence: To begin with, an HMOC pulse sequence (Fig. 2a) is used for the excitation and reconversion of HMOC coherences, whereby the interval between the two \(^{1}\mathrm{N}\) pulses is rotor synchronized with sample spinning, i.e., \(\tau_{t} = \pi n\), where \(n\) is an integer. During this sequence, the SR4 pulse sequence was applied during the excitation and reconversion periods to decouple the \(^{1}\mathrm{H}-^{14}\mathrm{N}\) homonuclear dipolar interactions and recouple the \(^{1}\mathrm{H}-^{14}\mathrm{N}\) heteronuclear dipolar interactions. To this sequence, a spin-diffusion filter is added with two 90° pulses separated by a mixing delay, also referred to as a spin diffusion delay. Since \(^{1}\mathrm{H}-^{14}\mathrm{N}\) spin diffusion is suppressed when experiments are carried out at fast sample spinning (here 60 kHz MAS), radio-frequency-driven recoupling (RFDR) \([74]\) pulses (Fig. 2b) are added within the spin diffusion filter to enhance the spin diffusion process. This leads to a \(^{1}\mathrm{H}\) detected 2D pulse sequence that can be applied to acquire 2D \(^{1}\mathrm{H}\) \((^{1}\mathrm{N})\)-HMOC filtered \(^{1}\mathrm{H}-^{14}\mathrm{N}\) NOESY-like spectra (by placing the \(\tau_{t}\) evolution between the HMOC block and the spin diffusion block, as depicted in gray color) as well as 2D \(^{1}\mathrm{H}-^{14}\mathrm{N}\) relay HMOC spectra. To compare the spectral filtering efficiency, spectra acquired using the 1D versions of the HMOC and HMOC-SD-RFDR experiments are compared with a single-pulse experiment in Fig. 3 and in a later section (all spectra are acquired at identical experimental conditions). The sensitivity of the conventional 1D \(^{1}\mathrm{H}(^{1}\mathrm{N}-^{35}\mathrm{Cl})\) HMOC experiment is about 5%, and the \(^{1}\mathrm{H}(^{1}\mathrm{N}-^{35}\mathrm{Cl})\)-HMOC-SD-RFDR experiment is about 1%, as compared to the single-pulse \(^{1}\mathrm{H}\) MAS experiment. Of particular note, the sensitivity of the proposed experiment depends on the relative strengths of both homo and heteronuclear dipolar couplings. For example, in both samples, the efficiency for NH3 protons is less due to the rotational dynamics of the NH3 group as compared to the aromatic protons. 2D HMOC-SD-RFDR experiments were acquired under identical conditions to those of conventional HMOC experiments, except the RFDR-based spin-diffusion mixing times are added as indicated in the appropriate figure captions.

Quantum mechanical calculations using a periodic-DFT approach. The molecular coordinates obtained from previously published crystal structures of \(\ell\)-histidine.HCl.H2O (CCDC code: HISCTMO1) \([75]\) and dopamine-HCl (CCDC codes for the HCl salt and zwitterionic forms are DOPAMN and TIRZAX) \([76]\) were taken to prepare input files for the quantum mechanical calculations. The geometry optimizations of crystal structures were carried out with periodic density functional theory (DFT) calculations. For all the geometry optimized structures, the NMR chemical shifts were computed using the gauge including projected augmented wave (GIPAW) method as described by Pickard and Mauri \([77,78]\). All periodic DFT calculations were performed using the CASTEP 19.11 code \([79]\). Each self-consistent field (SCF) loop was performed until the energy was converged to within 3.67 \(\times\) \(10^{-8}\) Hartrees. For all calculations, the generalized density approximation DFT functional PBE with the Tkachenko-Scheffler (TS) dispersion correction scheme (DFT-D method) was applied with ultrasoft pseudopotentials \([80,81]\). The maximum plane wave cut-off energy was 23.15 Hartrees. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization algorithm was used, and a Monkhorst–Pack grid of minimum sample spacing 0.07
$\times 2\pi \, \text{Å}^{-1}$ was applied to sample the Brillouin zone. The positions of the atoms were allowed to vary within the unit cell until the average forces, energies, and displacements remaining were below 3.6749 $\times 10^{-7}$ Hartree/Å, 0.0011025 Hartrees, and 0.001 Å, respectively. The interatomic distances for histidine-HCl-H$_2$O and dopamine-HCl molecules stated in this study correspond to the DFT optimized structures.

3. Results and discussion

L-histidine-HCl H$_2$O: The solid-state form of L-histidine-HCl-H$_2$O, and protonated and tautomeric structures of histidine have been well characterized by 1H, 13C, 14N,15N, and 35Cl MAS NMR spectroscopy in previous studies [36,38,40,82,83]. Here, we used L-histidine-HCl-H$_2$O as a control sample to test the proposed HMQC-SD-RFDR experiment. Fig. 3 compares 1H MAS spectra of L-histidine-HCl-H$_2$O acquired by a single-pulse as well as 1D versions of 1H$(^{14}$N) and 1H$(^{35}$Cl) HMQC and HMQC-SD-RFDR pulse sequences. A single-pulse 1H MAS NMR spectrum exhibits peaks at 2.8 ppm corresponding to the CH$_2$/CH sites and at 5.2 ppm originating from water molecules, and the partially resolved signals at 8.9 and 7.7 ppm are due to H6, H1, H8 sites as depicted in the schematic structure. The 1H chemical shifts of hydrogen bonded protons are observed at higher frequencies (i.e., 8.4, 12.5, and 17.1 ppm): N-H (1) – O(w) hydrogen bonding interactions with oxygen atoms of water molecules, intermolecular N-H(5) – O and N-H(7) – O hydrogen-bonding interactions with the carboxylic acid groups of the neighboring histidine molecules, for which the intermolecular donor (N)-acceptor(O) distances are 2.61 and 2.78 Å, respectively. A 1H-1H double-quantum-single-quantum (DQ-SQ) correlation NMR spectrum together with the DQ peak assignments corresponding to 1H-1H distances between 3 Å and 4.5 Å is presented in Fig. S1 (Supporting Information). For the spectra acquired under identical experimental conditions, spectral simplification and sensitivity of the 1H signals achieved by 1H$(^{14}$N) and 1H$(^{35}$Cl) HMQC filters with respect to the single-pulse experiment are examined and compared (Fig. 3, colored shaded regions). The 1D 1H$(^{14}$N)-HMOC filtered spectra acquired with 320 μs of SR4 recoupling time exhibited signals corresponding to the directly bonded 1H-1N sites, i.e., H1, H5, and H7 peaks are detected, while the signals originating from all other protons are poorly detected (or undetected). Although the addition of a spin diffusion delay leads to the exchange of magnetization from 1H$(^{14}$N) sites to the neighboring 1H sites, the proton spin-diffusion (SD) is less efficient when experiments are carried out under fast MAS [84-86]. Therefore, the RFDR pulses have been used within the spin-diffusion filter to enhance the 1H-1H spin-diffusion process. The addition of a SD-RFDR block (1000 μs) to the 1D HMOC experiment with the same 320 μs of SR4 recoupling time enables the weak intensity signals (H2, H3, H4, and Hw) to be detected with much higher intensities, although the intensities of H5 and H7 peaks are reduced, yielding signal uniformity like that of single-pulse experiment. A similar trend is observed for the 1H$(^{35}$Cl) HMOC filtered spectra of L-histidine-HCl-H$_2$O, whereby the spectra acquired with 265.6 μs of SR4 recoupling time before and after the addition of RFDR (265.6 μs) showed different 1H peak intensities. In the latter, the H5 and H2–H4 sites exhibited signal enhancements, as indicated in Fig. 3. A striking advantage of the SD-RFDR block is that it enables the 1H signals corresponding to the dipolar coupled 1H-1H pairs in the vicinity of 14N and 35Cl sites to be detected, demonstrating the sensitivity enhancements for specific 14N-1H-1H and 35Cl-1H-1H sites via relay transfer.

To test the role of RFDR blocks in enhancing the 1H-1H spin-diffusion process to the neighboring 1H sites, NOESY-like 2D 1H-1H NMR spectra of L-histidine-HCl-H$_2$O were acquired (21.1 T, 60 kHz MAS) with and without SD-RFDR blocks. The conventional NOESY-like 2D 1H-1H
correlation spectra of L-histidine·HCl·H$_2$O acquired with different mixing times in the 1–100 ms range are presented in Supporting Information (Fig. S2), whereby the short mixing time of 10 ms was insufficient to exchange the magnetization between the neighboring sites, and 100 ms enabled magnetization exchange between different sites. The advantage of using RFDR blocks to enhance spin-diffusion process in 2D experiments acquired under fast MAS is demonstrated in Fig. S3. By adding an HMQC filter prior to the 1H–14N HMOC-SD-RFDR spectrum with a mixing time of 16.6 μs, the addition of RFDR pulse of 166 μs enabled the 2D correlation peaks between all the sites to be observed (Fig. S3d), confirming that the RFDR enhances the spin-diffusion process. It is to be noted that similar experiments can be carried out using 35Cl(1H) HMOC filter to achieve spectral simplification in HCl salts of small organic molecules.

Next, 2D 1H–14N HMOC spectra were acquired without and with SD-RFDR pulses (Fig. 4) in order to probe N–H and N–H–H proximities. We start by analyzing the conventional 2D 1H-SD-RFDR pulse sequence, a 2D 1H(14N) HMOC-filtered 1H–1H SD spectrum can be acquired. In a HMOC-filtered 2D 1H–1H SD-RFDR spectrum with a mixing time of 16.6 μs, e., one rotor period (Fig. S3c), the diagonal peaks associated with NH$_3$, H5, and H7 protons are observed. By comparison, the RFDR mixing time of 531.2 μs enabled the 2D correlation peaks between all the sites to be observed (Fig. S3d), confirming that the RFDR enhances the spin-diffusion process. It is to be noted that similar experiments can be carried out using 35Cl(1H) HMOC filter to achieve spectral simplification in HCl salts of small organic molecules.

Fig. 5. Two-dimensional 1H–35Cl HMOC spectra with skyline projections of L-histidine·HCl·H$_2$O acquired at 18.8 T and 60.24 kHz MAS without (a, b) and with (d, e) SD-RFDR blocks. SR4 recoupling with a τ_{RCPL} duration of (a, d) 265.6 μs and (b) 531.2 μs was used to reintroduce the heteronuclear 35Cl–1H dipolar interactions. RFDR durations were 265.6 μs (d) and 531.2 μs (e). The base contour levels are at 6% of the maximum peak height. The peak at ~59 ppm in the vertical H chemical shift (ppm) dimension is a satellite transition. Representations of the periodic DFT geometry optimized structure of L-histidine·HCl·H$_2$O illustrating the 35Cl-H and 35Cl-H–H proximities (Fig. 4e) were probed via relay transfer (solid boxes). Such relayed correlations are observed due to the magnetization transfer between strongly dipolar coupled 1H–1H pairs in the vicinity of 14N sites and can be strengthened by utilizing the larger D_{NH} values, particularly by using 1H-RFDR transfer. 2D peaks are observed for the proton pairs that are up to 4 Å away from the 14N sites (Fig. 4f), suggesting that the correlations between nitrogen atoms and remote protons can be observed using this approach. It is noteworthy that 3D 1H–14N or 1H–14N magnetic dipole–dipole interactions provide identical information [36,88,89]. However, the 2D

respectively. These distances are depicted in the periodic DFT optimized crystal structure of L-histidine·HCl·H$_2$O shown in Fig. 4c. Further increase in the recoupling time up to 800 μs (spectra not shown) yields a poor signal to noise ratio and no additional long-range N–H interactions were detected, suggesting that the conventional HMOC experiment is unable to probe through-space proximities with N–H exceeding 3 Å (dashed boxes in Fig. 4b) [87]. This is because of the dipolar-based HMOC experiment utilizing heteronuclear dipolar interactions (D_{NH}), which are an order magnitude weaker than the homonuclear proton-proton dipolar couplings (D_{HH}). For example, a through-space dipolar coupled 14N–1H pair separated by ~4.43 Å distance exhibits a dipolar coupling of ~100 Hz, which is too weak to produce a detectable 2D peak in the conventional HMOC spectrum. For the same 14N–1H heteronuclear recoupling of 166 μs, the addition of RFDR pulse of 166 μs leads to the detection of poorly dipolar coupled 14N–1H sites (≥3 Å); for example, 2D peaks correlating N1 and Hw, H2, H3 and H4 chemical shifts with a nearest 14N to Hw distance of 3.4 Å and 14N to H2, H3, H4 distances of 3.4 Å are observed. In addition, these 2D peaks are observed with much higher intensities when RFDR with a duration of 512 μs is used. This is evidenced in the HMOC-SD-RFDR spectra of L-histidine·HCl·H$_2$O (Fig. 4d and e), whereby RFDR-assisted recoupling of 1H–14N dipolar interactions enables medium-range 14N–1H–1H interactions to be probed via relay transfer (solid boxes). Such relayed correlations are observed due to the magnetization transfer between strongly dipolar coupled 1H–1H pairs in the vicinity of 14N sites and can be strengthened by utilizing the larger D_{NH} values, particularly by using 1H-RFDR transfer. 2D peaks are observed for the proton pairs that are up to 4 Å away from the 14N sites (Fig. 4f), suggesting that the correlations between nitrogen atoms and remote protons can be observed using this approach. It is noteworthy that 3D 1H–14N or 1H–14N–1H magnetic dipole–dipole interactions provide identical information [36,88,89]. However, the 2D
The HMQC-SD-RFDR experiment presented in this study requires shorter acquisition times than the 3D experiments to provide identical information, which is an added advantage.

The proposed HMQC-SD-RFDR approach has been applied to examine relayed 35Cl-1H-1H proximities in l-histidine.HCl.H$_2$O. A 1D 35Cl NMR spectrum acquired with a QCPMG sequence is presented in Fig. 5a (Supporting Information) together with a lineshape fitting analysis to obtain the isotropic chemical shifts and quadrupolar coupling constants, as listed in Table S1. The narrow quadrupolar lineshape is due to the weak quadrupolar interaction associated with the chloride anions. Fig. 5 compares 2D 1H-35Cl D-HMQC spectra recorded without and with SD-RFDR pulses. In the conventional 1H-35Cl HMQC spectra of l-histidine.HCl.H$_2$O acquired with a short recoupling time of 265.6 μs (Fig. 5a), the 2D correlation peaks associated with closely proximate and dipolar coupled 1H-35Cl are observed for the Cl atoms and H1, H6 and H8, and Hw protons. The inter and intramolecular Cl--H distances associated with Cl--H1, Cl--H6, Cl--H7, Cl--H8, and Cl--Hw are 2.20, 2.44, 2.94, 2.75 and 2.16 Å, respectively (Fig. 5c). Similar 2D peaks are observed for a 2D HMQC spectrum acquired with a recoupling time of 531.2 μs, shown in Fig. 5b; however, a weak intensity peak corresponding to Cl--H5 (3.86 Å) appears. This indeed corroborates that the detection of the 2D 35Cl-1H peak for a Cl--H distance closer to 4 Å is difficult to achieve in a conventional 2D HMQC experiment due to the weaker D_{55}. By combining heteronuclear 35Cl--1H and homonuclear 1H--1H spin diffusion process, these weak intensity peaks are detected with much higher intensities, as shown in the HMQC-SD spectra presented in Fig. 5d and e. In addition, the enhanced uniformity of 2D peak intensities is apparent from these spectra, which indicates the addition of RFDR enables the detection of relayed 35Cl--1H--1H peaks with an interatomic 35Cl--1H distance exceeding 3.8 Å (Fig. 5f).

Dopamine-HCl. Dopamine is a catecholamine derived from l-tyrosine, which has key biological significance as a neurotransmitter in the central nervous system and as a hormone in vesicles of the adrenal medulla that influences and controls the heartbeat rate, oxidative stress, and blood pressure [90,91]. The impaired dopamine metabolism and the absence of dopamine-containing neurons are associated with brain disorders such as Parkinson’s disease [92]. In addition, dopamine is a food supplement (l-Dopa) that can be used as a direct precursor to increase the dopamine level in the body. In the presence of oxygen and alkaline/electric environments, dopamine self-assembles into polydopamine (pDA) [93]. Care was taken to prevent the self-polymerization of dopamine by storing the powder form in a glass desiccator. To ensure that the dopamine characterized in this study is in monomeric form, liquid-state 1D 1H and 2D 1H--1H and 1H--35Cl correlation NMR spectra were acquired and analyzed (Supporting Information, Figs. S5–S7): the narrow 1H signals indicate the monomeric form of dopamine rather than the polymeric form. In the solid state, dopamine exists in different crystalline polymorphs such as neutral and zwitterionic forms, for which crystal structures have been previously solved [76,94]. Here, the solid-state form of dopamine-HCl is characterized by an NMR crystallography approach that combines solid-state NMR and periodic DFT calculations of previously published crystal structures. To further ensure that the dopamine preserved its molecular form, the GIPAW-DFT calculated chemical shifts for 1H SQ and DQ correlation peaks for all 1H--1H pairs (within 3 Å) in molecular and zwitterionic forms are overlaid on the experimental DQ-SQ peaks (Supporting Information, Fig. S8). A good agreement between the experimental 1H SQ and DQ chemical shifts calculated with the GIPAW-DFT calculated 1H NMR chemical shifts is observed for the molecular form, but not for the zwitterionic form.

In Fig. 6 and 1D 1H(14N) and 1H(35Cl) HMQC spectra acquired with and without SD-RFDR blocks are compared with a single-pulse 1H spectrum. The broad peak centered at ~7.6 ppm is due to an overlapped contribution from the NH2 and aromatic protons. In the aliphatic region, the chemical shifts at 3.4 ppm and 5.9 ppm correspond to a CH2 group next to the aromatic ring, and one of these protons is hydrogen-bonded to the oxygen atoms of the adjacent dopamine molecules. The peak at 4.9 ppm corresponds to the CH2 group next to the NH2 group. The peak integral ratio of 7:4 associated with the signals at 6.5–9.5 ppm and 2.5–6.5 ppm further confirms the peak assignments. While all 1H peaks are observed in the conventional 1H spectrum, the 1H(14N)-HMQC filtered 1H spectrum acquired with $\tau_{rcpl} = 132.8$ μs and $\tau_{RFDR} = 531.2$ μs (cyan shaded region), and 1H(35Cl) HMQC filtered 1H spectrum acquired with $\tau_{rcpl} = 265.6$ μs and $\tau_{RFDR} = 531.2$ μs recoupling times (purple shaded region).
acquired and compared in order to highlight the role of RFDR pulses in enhancing the magnetization exchange between the neighboring 1H sites in dopamine-HCl.

Conventional 2D 1H-14N HMQC spectra of dopamine-HCl acquired with different recoupling times of 132.8 \textmu s and 332 \textmu s are presented in Fig. 7a and b (top) together with the molecular packing interactions in the periodic DFT optimized crystal structure of dopamine-HCl. For both recoupling times, 2D peaks at \textasciitilde7.6 ppm (1H) and approximately \textasciitilde325 ppm (14N) indicate the short-range interactions between N1-H within the NH\textsubscript{3} groups are detected. However, 2D peaks corresponding to the long-range N-H correlations were not detected in the conventional HMQC experiment. In the HMQC-RFDR spectra shown in Fig. 7d and e (bottom), 2D peaks between \textasciitilde\textasciitilde325 ppm (14N) and 2-6 ppm (1H) indicate the relaxed correlation signals enabled by the spin diffusion process.

We extend this analysis to probe the 1H-35Cl proximities in dopamine-HCl. A 1D 35Cl NMR spectrum acquired with a QCPMG sequence is presented in Fig. S10 (Supporting Information) together with a line-shape fitting analysis. The isotropic chemical shift, quadrupolar coupling constant, and asymmetry parameter are listed in Table S2. In 1H-35Cl HMQC spectra of dopamine-HCl acquired with and without SD-RFDR blocks (Fig. 8), short and long-range correlations are observed. For a SR4 recoupling duration of 1024 \textmu s (Fig. 8a), 2D peak at 7.6 ppm (1H) and \textasciitilde150 to 10 ppm (35Cl) is observed, which corresponds to the CI-NH\textsubscript{3} and Cl-OHproximities with interatomic distances of \textasciitilde2.2 \AA. When RFDR pulses of duration 1024 \textmu s are applied, 2D peaks between 35Cl and CH\textsubscript{2} groups are also observed, as evident in Fig. 8b. The nearest internuclear 35Cl-CH\textsubscript{2} (adjacent to NH\textsubscript{3}) and 35Cl-CH\textsubscript{2} (adjacent to the aromatic ring) distances are 3.5 and 3.7 \AA, respectively. Although the 2D HMQC-SD-RFDR approach enables the relayed correlation peaks to be detected, the measurement of interatomic distances from 2D volume integrals is less straightforward. In order to gain a quantitative insight into the distance constraints, a series of 2D experiments varying the heteronuclear recoupling time and spin diffusion mixing time would need to be acquired and the signal intensity buildup would need to be analyzed.

Further improvements to the proposed HMQC-SD-RFDR approach can be sought, for example, using the TRAPDOR-HMQC (TRAPDOR - transfer of polarization in double resonance) approach \cite{42,95}, by detecting the double-quantum (DQ) satellite transitions of quadrupolar nuclei. It has been shown that the DQ version is less sensitive to MAS instabilities and also benefits from a slightly higher resolution since the DQ chemical shift evolves at a frequency twice as large as the SQ chemical shifts. It has also been demonstrated that frequency-swept 14N overtone CW-RESPDOR (continuous wave rotational-echo saturation-pulse double-resonance) experiments efficiently probe 1H-14N proximities with much longer internuclear distances than for the HMQC experiment \cite{30}. The use of SD-RFDR block with CW-RESPDOR is expected to further extend the limit of detection of 2D peaks. Acceleration in the acquisition times can also be achieved at fast MAS by frequency selective (FS)-HMQC experiments, whereby selective excitation and detection of 1H leads to a reduction in the inter-scan delays \cite{41}. Notably, the proposed pulse sequence and its variants can be applied to detect 1H-31P and 1H-30S proximities in order to facilitate the structure elucidation of weak intermolecular interactions in organic molecules, reactive surfaces and interfaces of functional materials. It is to be noted that the SD transfer at fast spinning (>60 kHz MAS) may also be influenced by the chemical shift offset difference particularly when there is a small range of chemical-shift differences in the 1H MAS spectra. It can be compensated by the addition of a spin lock,
although the short T_2^* of protons allows only short mixing times to be applied and long mixing times often reduce sensitivity. Reverse amplitude-modulated mixed rotational and rotary-resonance (AM-MIRROR) sequences can be tailored to compensate for offsets in the relevant range of chemical-shift differences, and these sequences also offer relatively high sensitivity compared to other sequences [54]. In addition, the reverse AM-MIRROR sequence requires lower rf fields than RFDR, and the optimum rf frequencies do not depend on the MAS frequency but only on the recoupled chemical-shift range.

Fig. 8. Two-dimensional 1H-35Cl correlation spectra with skyline projection of dopamine-HCl acquired at 18.8 T and 62.5 kHz MAS with (a) conventional HMQC and (b) HMQC-SD-RFDR pulse sequences with τ_B recoupling of 1024 μs and τ_{RFDR} of 304 μs. In both cases, data were acquired with 128 coadded transients and 80 t_1 FIDs, corresponding to a total experimental time of 8.5 h each. The base contour levels are at 3% of the maximum peak height. A schematic representation of crystal packing in periodic DFT geometry optimized structures illustrating the short- and long-range interactions probed by the HMQC and HMQC-SD-RFDR approaches. Specifically, spheres represent the 1H-35Cl proximities within a distance of (a) 2.2 Å and (b) 3.7 Å.

4. Conclusions

This study presents a 2D HMQC-SD-RFDR experiment for probing the 1H-1H and 1H-X (here, X = 14N and 35Cl) proximities in small organic molecules. A detailed analysis of 1D and 2D HMQC-SD-RFDR spectra is presented for γ-histidine-HCl-H$_2$O and dopamine-HCl. The 1D version of the SD-HMQC sequence leads to spectral simplification by detecting 1H (14N) and 1H(35Cl) peaks for protons that are either J-coupled or dipolar coupled with 14N or 35Cl sites. By introducing an SD-RFDR block, 1H peaks associated with 14N-1H and 35Cl-1H sites can be selectively excited and detected through relay transfer. Therefore, the spectral simplification in 1D spectra can be achieved by tuning the heteronuclear recoupling durations within the HMQC block as well as the spin diffusion time in the RFDR blocks. This can be simply achieved through the one-dimensional version of the proposed experiment. More elaboratively, the proposed experiments can be used to acquire 2D 14N-filtered 1H-1H spin-diffusion spectra and 1H-14N or 35Cl-1H correlation NMR spectra. Specifically, the 2D 1H-14N D-HMQC-SD-RFDR correlation experiment demonstrates a strong ability for observing remote 14N-1H correlations for which the N-H distances exceed 4 Å, which is difficult to achieve with the conventional 1H-14N HMQC experiment. The proposed approach particularly benefits from using higher magnetic field strengths under fast MAS conditions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work is supported by EU-H2020 research and innovation programme under the Marie Sklodowska-Curie Grant 795091. G.N.M.R. and S.P.B. acknowledge funding from the UK Engineering and Physical Sciences Research Council (EPSRC, EP/K003674/1). The authors thank the Chevreul Institute (FR 2638), supported by the Ministère de l’Enseignement Supérieur et de la Recherche et de l’Innovation, CNRS, Région Hauts-de-France, Métropole Européenne de Lille, and the EU regional development funds. Financial support from the IR INFRANLYTICS FR2054 for conducting the research is gratefully acknowledged.

For DFT calculations, computational resources were partially provided by the Polish Infrastructure for Supporting Computational Science in the European Research Space (PL-Grid). Y.N. acknowledges the support of JSPS KAKENHI Grant Number 20K05483 and by the JST-Mirai Program (Grant No. JPMJMI17A2, Japan). The experimental and calculated data can be downloaded from Warwick research active portal at http://wrap.warwick.ac.uk/166510/.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ssnmr.2022.101808.

References

P. Raval et al.
