The Library
Numerical solutions of the isotropic 3wave kinetic equation
Tools
Connaughton, Colm. (2009) Numerical solutions of the isotropic 3wave kinetic equation. Physica D: Nonlinear Phenomena, Vol.238 (No.2324). pp. 22822297. ISSN 01672789

PDF
WRAP_Connaughton_numerical_solutions_0905.1589v1.pdf  Submitted Version  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (1073Kb) 
Official URL: http://dx.doi.org/10.1016/j.physd.2009.09.012
Abstract
We show that the isotropic 3wave kinetic equation is equivalent to the meanfield rate equations for an aggregationfragmentation problem with an unusual fragmentation mechanism. This analogy is used to write the theory of 3wave turbulence almost entirely in terms of a single scaling parameter. A new numerical method for solving the kinetic equation over a large range of frequencies is developed by extending Lee's method for solving aggregation equations. The new algorithm is validated against some analytical calculations of the KolmogorovZakharov (KZ) constant for some families of model interaction coefficients. The algorithm is then applied to study some wave turbulence problems in which the finiteness of the dissipation scale is an essential feature. Firstly, it is shown that for finite capacity cascades, the dissipation of energy becomes independent of the cutoff frequency as this cutoff is taken to infinity. This is an explicit indication of the presence of a dissipative anomaly. Secondly, a preliminary numerical study is presented of the socalled bottleneck effect in a wave turbulence context. It is found that the structure of the bottleneck, depends nontrivially on the interaction coefficient. Finally, some results are presented on the complementary phenomenon of thermalisation in closed wave systems which demonstrates explicitly for the first time the existence of socalled mixed solutions of the kinetic equation which exhibit aspects of both KZ and equilibrium equipartition spectra.
Item Type:  Journal Article 

Subjects:  Q Science > QA Mathematics Q Science > QC Physics 
Divisions:  Faculty of Science > Centre for Complexity Science Faculty of Science > Mathematics 
Library of Congress Subject Headings (LCSH):  Turbulence, Waves  Mathematical models 
Journal or Publication Title:  Physica D: Nonlinear Phenomena 
Publisher:  Elsevier BV 
ISSN:  01672789 
Date:  December 2009 
Volume:  Vol.238 
Number:  No.2324 
Number of Pages:  16 
Page Range:  pp. 22822297 
Identification Number:  10.1016/j.physd.2009.09.012 
Status:  Peer Reviewed 
Publication Status:  Published 
Access rights to Published version:  Restricted or Subscription Access 
Related URLs:  
References:  [1] A. Newell, S. Nazarenko, and L. Biven, Physica D 152 153, 520 (2001). [2] V. Zakharov, V. Lvov, and G. Falkovich, Kolmogorov Spectra of Turbulence (SpringerVerlag, Berlin, 1992). [3] F. Leyvraz, Phys. Reports 383, 95 (2003). [4] C. Connaughton, R. Rajesh, and O. Zaboronski, Phys. Rev. E 69, 061114 (2004), condmat/0310063. [5] C. Connaughton, R. Rajesh, and O. Zaboronski, in Hand book of Nanophysics, edited by K. Sattler (Taylor and Francis, 2009), chap. Kinetics of ClusterCluster Aggre gation, pp. 1{40. [6] S. Redner, in Statistical models for the fracture of dis ordered media, edited by H.J. Herrmann and S. Roux (Plenum, 1990). [7] P. L. Krapivsky and E. BenNaim, Phys. Rev. E 68, 021102 (2003). [8] A. P. Siebesma, R. R. Tremblay, A. Erzan, and L. Pietronero, Physica A 156, 613 (1989). [9] E. BenNaim and P. L. Krapivsky, Phys. Rev. E 77, 061132 (2008). [10] M. Ernst, in Fractals in Physics, edited by L. Pietronero and E. Tosatti (North Holland, Amsterdam, 1986), p. 289. [11] M. H. Ernst and P. G. J. van Dongen, J.Stat. Phys. 1/2, 295 (1988). [12] C. Connaughton, R. Rajesh, and O. Zaboronski, Phys. Rev. Lett. 94, 194503 (2005), condmat/0410114. [13] C. Connaughton, R. Rajesh, and O. Zaboronski, Physica D 222, 97 (2006), condmat/0510389. [14] E. Hendriks, M. Ernst, and R. Zi�, J. Stat. Phys. 31, 519 (1983). [15] H. Hayakawa, J. Phys. A 20, L801 (1987). [16] V. Kontorovich, Physica D 152{153, 676 (2001). [17] L. Biven, S. Nazarenko, and A. C. Newell, Phys. Lett. A 280, 28 (2001). [18] G. Falkovich and A. Shafarenko, J. Nonlinear Sci. 1, 452 (1991). [19] S. A. Kitaigorodskii, J. Phys. Oceanography 13, 816 (1983). [20] A. C. Newell and V. E. Zakharov, Phys. Lett. A 372, 4230 (2008). [21] C. Connaughton, Ph.D. thesis, University of Warwick (2002). [22] A. C. Newell and V. E. Zakharov, Phys. Rev. Lett. 69, 1149 (1992). [23] C. Connaughton, A. Newell, and S. Nazarenko, Physica D 184, 86 (2003). [24] M. Lee, Icarus 143, 74 (2000). [25] M. Lee, J. Phys. A: Math. Gen. 34, 10219 (2001). [26] V. E. Zakharov and A. N. Pushkarev, Nonlin. Proc. Geo phys. 6, 1 (1999). [27] S. Hasselmann, K. Hasselmann, J. H. Allender, and T. P. Barnett, J. Phys. Ocean. 15, 1378 (1985). [28] V. G. Polnikov and L. Farina, Nonlin. Proc. Geophys. 9, 497 (2002). [29] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C (2nd ed.): the art of scienti�c computing (Cambridge University Press, New York, NY, USA, 1992), ISBN 0521431085. [30] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, and F. Rossi, GNU Scienti�c Library Reference Manual  3rd Edition (Network Theory Ltd., 2009), ISBN 0954612078. [31] H. H. Rosenbrock, Comp. J. 3, 175 (1960). [32] J. Bec and K. Khanin, Phys. Reports 447, 1 (2007), 0704.1611. [33] G. L. Eyink, Physica D 237, 1956 (2008), ISSN 0167 2789, Euler Equations: 250 Years On  Proceedings of an international conference. [34] W. Dobler, N. E. L. Haugen, T. A. Yousef, and A. Bran denburg, Phys. Rev. E 68, 026304 (2003). [35] G. Falkovich, Phys. Fluids 6, 1411 (1994). [36] G. Falkovich and I. V. Ryzhenkova, Sov. Phys. JETP 71, 1085 (1990). [37] S. Dyachenko, A. Newell, A. Pushkarev, and V. Za kharov, Physica D 57, 96 (1992). [38] C. Connaughton and S. Nazarenko, Phys. Rev. Lett. 92, 044501 (2004). [39] C. Cichowlas, P. Bonati, F. Debbasch, and M. Brachet, Phys. Rev. Lett. 95, 264502 (2005). [40] U. Frisch, S. Kurien, R. Pandit, W. Pauls, S. S. Ray, A. Wirth, and J.Z. Zhu, Phys. Rev. Lett. 101, 144501 (2008). [41] W. J. T. Bos and J.P. Bertoglio, Phys. Fluids 18, 071701 (2006). [42] G. Krstulovic, P. D. Mininni, M. E. Brachet, and A. Pou quet, ArXiv eprints (2008), 0806.0810. [43] S. Galtier, S. Nazarenko, A. Newell, and A. Pouquet, J. Plasma Phys. 63, 447 (2000). [44] C. Connaughton, A. Newell, and Y. Pomeau, Physica D 184, 64 (2003). 
URI:  http://wrap.warwick.ac.uk/id/eprint/16792 
Data sourced from Thomson Reuters' Web of Knowledge
Actions (login required)
View Item 