
The Library
Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials
Tools
Hu, Yuzhong, Parida, Kaushik, Zhang, Hao, Wang, Xin, Li, Yongxin, Zhou, Xinran, Morris, Samuel Alexander, Liew, Weng Heng, Wang, Haomin, Li, Tao, Jiang, Feng, Yang, Mingmin, Alexe, Marin, Du, Zehui, Gan, Chee Lip, Yao, Kui, Xu, Bin, Lee, Pooi See and Fan, Hong Jin (2022) Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials. Nature Communications, 13 (1). 5607. doi:10.1038/s41467-022-33325-6 ISSN 2041-1723.
|
PDF
WRAP-Bond-engineering-of-molecular-ferroelectrics-renders-soft-and-high-performance-piezoelectric-energy-harvesting-materials-Hu-2022.pdf - Published Version - Requires a PDF viewer. Available under License Creative Commons Attribution 4.0. Download (1837Kb) | Preview |
Official URL: http://dx.doi.org/10.1038/s41467-022-33325-6
Abstract
Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C6H5N(CH3)3CdBr2Cl0.75I0.25 exhibits excellent piezoelectric constants (d33 = 367 pm/V, g33 = 3595 × 10−3 Vm/N), energy harvesting property (power density is 11 W/m2), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics.
Item Type: | Journal Article | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QC Physics | ||||||||||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Physics | ||||||||||||||||||
Library of Congress Subject Headings (LCSH): | Piezoelectric materials , Ferroelectricity | ||||||||||||||||||
Journal or Publication Title: | Nature Communications | ||||||||||||||||||
Publisher: | Nature Publishing Group | ||||||||||||||||||
ISSN: | 2041-1723 | ||||||||||||||||||
Official Date: | 24 September 2022 | ||||||||||||||||||
Dates: |
|
||||||||||||||||||
Volume: | 13 | ||||||||||||||||||
Number: | 1 | ||||||||||||||||||
Number of Pages: | 10 | ||||||||||||||||||
Article Number: | 5607 | ||||||||||||||||||
DOI: | 10.1038/s41467-022-33325-6 | ||||||||||||||||||
Status: | Peer Reviewed | ||||||||||||||||||
Publication Status: | Published | ||||||||||||||||||
Access rights to Published version: | Open Access (Creative Commons) | ||||||||||||||||||
Date of first compliant deposit: | 4 October 2022 | ||||||||||||||||||
Date of first compliant Open Access: | 5 October 2022 | ||||||||||||||||||
RIOXX Funder/Project Grant: |
|
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year