Efficient Photocatalytic Reduction of CO$_2$ Catalyzed by the Metal–Organic Framework MFM-300(Ga)

Tian Luo1, Zi Wang1,2, Xue Han1, Yinlin Chen1, Dinu Iuga3, Daniel Lee4, Bing An1, Shaojun Xu1, Xinchen Kang5, Floriana Tuna1,2, Eric J. L. McInnes1,2, Lewis Hughes6, Ben F. Spencer7, Martin Schröder1,* & Sihai Yang1,*

1Department of Chemistry, University of Manchester, Manchester M13 9PL, 2Photon Science Institute (PSI), University of Manchester, Manchester M13 9PL, 3Department of Physics, University of Warwick, Coventry CV4 7AL, 4Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, 5Institute of Chemistry, Chinese Academy of Science, Beijing 100190, 6Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, 7Department of Materials, University of Manchester, Manchester M13 9PL

*Corresponding authors: M.Schroder@manchester.ac.uk; Sihai.Yang@manchester.ac.uk

Cite this: CCS Chem. 2022, 4, 2560–2569
DOI: 10.31635/ccschem.022.202201931

Photocatalytic reduction of CO$_2$ to carbon fuels is an important target but highly challenging to achieve. Here, we report the efficient photoconversion of CO$_2$ into formic acid over a Ga(III)-based metal–organic framework (MOF) material using triethanolamine as the sacrificial agent. Under light irradiation and at room temperature, photoreduction of CO$_2$ over MFM-300(Ga) yields formic acid with a selectivity of 100%, a high productivity of 502 \pm 18 μmol·g$_{cat}^{-1}$·h$^{-1}$, and excellent catalytic stability. In situ electron paramagnetic resonance spectroscopy reveals that MFM-300(Ga) promotes the generation of CO$_2$\(^{\cdot-}\) radical anions as a reaction intermediate driven by strong binding and activation of CO$_2$ molecules at the bridging –OH sites within the pore. This study represents the first example of a Ga(III)-based MOF catalyst for CO$_2$ reduction.

Keywords: MFM-300, metal–organic framework, CO$_2$ reduction, photocatalysis, host–guest interaction

Introduction

The development of efficient photocatalysts to convert CO$_2$ into value-added chemicals has attracted much interest. In addition to TiO$_2$, various Ga-based semiconductors, such as GaN, GaP, Ga$_2$O$_3$, and ZnG$_2$O$_4$, have been widely investigated as photocatalysts to drive this reaction. However, their wide optical bandgap (E_g) restricts the use of solar light mainly to the ultraviolet region, and, more importantly, their nonporous nature limits the mass transport of CO$_2$. This impedes charge transfer between catalyst and substrate and also leads to the undesirable recombination of photogenerated electrons and holes. A number of strategies have been exploited to improve the photocatalytic performance of Ga-based semiconductors. For example, doping of metals (e.g., Ge, Zn) or nonmetals (e.g., N, Si) can narrow the bandgap and improve the light-harvesting efficiency.
of the resultant material. Fabrication of ultrathin nanosheets, nanowires, or porous structures can increase the surface area and CO₂ uptake. Meanwhile the introduction of a cocatalyst, noble metal nanoparticles, or a second semiconductor to construct Z-scheme or heterojunction-type systems can promote electron transfer. However, the photocatalytic efficiency over state-of-the-art Ga-based semiconductors remains limited, and only gaseous products such as CH₄ and CO are produced. For example, a top-performing heterostructure of Au/Al₂O₃/p-GaN shows a photocatalytic productivity for CO of 230 µmol·g⁻¹·h⁻¹.

Metal–organic framework (MOF) materials incorporate active sites fixed uniformly in 3D space, thus preventing aggregation of catalytic centers and potentially enhancing charge separation. MOFs are therefore emerging as important photocatalysts for the reduction of CO₂, showing potential to overcome the barriers of conventional semiconductors. For example, the intrinsic microporosity and catalytically active sites confined in MOFs can form unique “microreactors” to promote the adsorption and activation of CO₂ via the formation of strong host-guest interactions. More importantly, the backbone of MOFs consisting of infinite metal-ligand linkages

Figure 1 | Characterisation and crystal structure of MFM-300(Ga). (a) The UV-DRS spectrum of MFM-300(Ga) with Tauc plot (insert); (b) SEM image of MFM-300(Ga) with TEM image (insert); (c) high-resolution XPS spectrum of Ga 2p, and (d) ⁷¹Ga(¹H) D-HMQC 2D MAS NMR spectrum of MFM-300(Ga) and corresponding 1D direct excitation ⁷¹Ga (top) and ¹H (left) MAS NMR spectra, recorded at 20.0 T with a MAS frequency of 60 kHz; crystal structure of MFM-300 (Ga): (e) octahedral [GaO₄(OH)₂]; (f) ligand; (g and h) views of binding sites (bridging –OH groups) for adsorbed CO₂ molecules within MFM-300(Ga) studied by In situ synchrotron X-ray single-crystal diffraction. Host-guest hydrogen bonds and intermolecular dipole interactions are highlighted in cyan and yellow, respectively.
can facilitate efficient ligand-to-metal-charge-transfer (LMCT), thus prolonging the excitation lifetime by boosting the isolation and utilisation of photoinduced electrons. A number of MOF systems have been tested for photoreduction of CO₂, and Ti-based MOFs are particularly attractive. In contrast, to date, no Ga-based MOF has been shown to exhibit activity for CO₂ conversion, and we report here the first example for the efficient photoreduction of CO₂. Under light irradiation and at room temperature, MFM-300(Ga) catalyzes the conversion of CO₂ into formic acid with a 100% selectivity and an excellent productivity up to 502 ± 18 μmol·g⁻¹·h⁻¹, significantly higher than conventional Ga-based semiconductors and among the best-behaving MOF-based photocatalysts for this reaction. Importantly, in situ electron paramagnetic resonance (EPR) spectroscopy confirms that the CO₂ radical anion (CO₂·⁻) is generated as an intermediate to the production of formic acid over MFM-300(Ga).

Results and Discussion

MFM-300(Ga), [Ga₂(OH)₂(L)] (H₄L = biphenyl-3,3',5,5'-tetracarboxylic acid) was chosen for the photoreduction of CO₂ due to its high stability, high adsorption, and strong binding of CO₂ molecules via the formation of hydrogen bonds to the bridging –OH groups in the pore. MFM-300(Ga) is comprised of chains of [GaO₄(OH)₂]₅ octahedra linked by cis-μ₂-OH groups, and these chains are further bridged by tetracarboxylate ligands to form a ‘wine rack’ open framework. Desolvated MFM-300(Ga) shows a Brunauer-Emmett-Teller (BET) surface area of 1064 m²·g⁻¹ and an uptake of CO₂ of 5.00 mmol·g⁻¹ at 298 K and 1 bar (see Supporting Information Figure S1). The purity of the bulk material has been confirmed by powder X-ray diffraction (PXRD) (see Supporting Information Figure S2) and thermogravimetric analysis (see Supporting Information Figure S3a). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that crystals of MFM-300(Ga) exhibit cuboid-shaped morphology with an average size of 15 μm (Figure 1b). High-resolution X-ray photoelectron spectroscopy (XPS) analysis of MFM-300(Ga) shows the peaks of Ga 2p₁/₂, 2p₃/₂, 3dₓ/₂, and 3dₜ/₂ at 1145.5, 1118.6, 21.2, and 20.7 eV, respectively, consistent with the trivalent Ga(III) (Figure 1c, see Supporting Information Figure S4). Solid-state ⁷¹Ga NMR spectroscopy reveal a highly ordered structure consistent with a single repeating octahedral [GaO₂(OH)₂] environment (see Supporting Information Figure S5). The high-field ⁷¹Ga(¹H) 2D through-space (dipolar) heteronuclear correlation NMR spectrum of MFM-300(Ga) demonstrates this more extensively with strong correlations between the Ga environment and the hydroxyls (at δ(¹H) = 2.8 ppm) and a weaker interaction with the more distant aromatic proton between the carboxylates (at δ(¹H) = 9.0 ppm), with no other correlations observed (Figure 1d). Moreover, the ratio of the ¹H NMR signal intensities of the aromatic protons to the hydroxy protons is ~3:1 (see Supporting Information Figure S5c), entirely consistent with the structural model shown in Figures 1e-1h. Solid-state UV-vis diffuse reflectance spectroscopy (UV-DRS) of MFM-300(Ga) shows an intensive and broad absorption band in the ultraviolet region, which is assigned to the π→π* transition of the biphenyl ligand (Figure 1a). The Tauc plot yields an optical bandgap of 3.30 eV, lower than that of commercial Ga₂O₃ (E₉ = 4.56, 4.70, and 4.67 eV for α-, β-, and γ-Ga₂O₃, respectively) and ZnGa₂O₄ (E₉ = 4.18 eV). The photocurrent response of MFM-300(Ga) confirms that the current density increases upon irradiation and decreases upon turning off the light (see Supporting Information Figure S6).

Figure 2 | Photocatalytic CO₂ reduction over MFM-300(Ga). (a) Different reaction time; (b) recycling tests. Reaction conditions: MFM-300(Ga) (10 mg), TEOA/CH₃CN (3 mL/15 mL, saturated with CO₂), 25 °C, 350–780 nm, light irradiation for 4 h.

DOI: 10.31635/ccschem.022.202201931
Citation: CCS Chem. 2022, 4, 2560–2569
Link to VoR: https://doi.org/10.31635/ccschem.022.202201931
The photocatalytic activity of MFM-300(Ga) toward the reduction of CO$_2$ has been studied in CO$_2$-saturated CH$_3$CN-containing triethanolamine (TEOA) as the sacrificial agent under irradiation at 350–780 nm for 1–12 h. The gaseous products were analysed by gas chromatography and the liquid product by 1H NMR spectroscopy. The photocatalytic efficiency was measured as the moles of product obtained per gram of catalyst per hour (mol·g$_{\text{cat}}^{-1}·\text{h}^{-1}$) to afford a direct comparison with reported catalysts. Formic acid was the only product detected in the liquid phase, and no carbon-containing gaseous products were detected. The photocatalytic performance as a function of reaction time over MFM-300(Ga) indicates that a high productivity of 502 ± 18 μmol·g$_{\text{cat}}^{-1}·\text{h}^{-1}$ for formic acid was achieved at 4 h (Figures 2a, see Supporting Information Figure S7). More importantly, the photocatalytic activity and the crystallinity of MFM-300(Ga) were retained over three cycles of reaction (Figure 2b). The photocatalytic efficiency of MFM-300(Ga) is higher than the majority of reported MOFs (Table 1) for converting CO$_2$ into formic acid, such as amino-functionalised MIL-125(Ti), UiO-66(Zr), and MIL-101(Fe), and is only lower than two cases. One is the mixed metal and mixed ligand systems of NH$_2$-UiO-66(Zr/Ti) and (NH$_2$)$_2$-UiO-66(Zr/Ti), which are prepared via post-synthetic modifications to introduce Ti(IV) sites into the framework. The other is a recent report describing a π-conjugated naphthoporphyrin system constructed with Zr metal clusters, which demonstrates the highest value (6630 μmol·g$_{\text{cat}}^{-1}·\text{h}^{-1}$) reported in the literature. A comparison of state-of-the-art studies of thermal hydrogenation of CO$_2$ into formic acid over MOF-based catalysts is given in Supporting Information Table S1.

To gain further insights into this reaction, a series of control experiments were conducted (Table 2). No carbon-containing product was detected from reactions in the absence of (1) MFM-300(Ga), (2) CO$_2$ (where N$_2$ is used instead), or (3) light. These results confirm that the carbon source of formic acid is CO$_2$ and that the reaction proceeds via photocatalytic routes driven by the MOF catalyst. Replacement of TEOA with triethylamine (TEA) gives a low productivity of 64 μmol·g$_{\text{cat}}^{-1}·\text{h}^{-1}$ for formic acid, which is consistent with recent reports on the important role of TEOA in binding and assisting the transport of CO$_2$ in CH$_3$CN. A range of different organic solvents have been tested, and CH$_3$CN demonstrates the highest activity due to the optimal efficiency of mass transfer and the enhanced binding of CO$_2$ by TEOA in CH$_3$CN (see Supporting Information Figure S8). Interestingly, no product was observed when using Ga$_2$O$_3$ (∼50 mesh, E_g = 4.57), GaN (E_g = 3.04), GaP (E_g = 1.92), or a powdered mixture of Ga(NO$_3$)$_3$ and H$_2$L as the photocatalyst (see Supporting Information Figure S9). This indicates that the

<table>
<thead>
<tr>
<th>MOF-Based Materials</th>
<th>Chemical Formula</th>
<th>CO2 Uptake (mmol·g${\text{cat}}^{-1}$ (1 atm))</th>
<th>Sacrificial Agent</th>
<th>Solvents</th>
<th>Photocatalytic Efficiency (μmol·g$_{\text{cat}}^{-1}·\text{h}^{-1}$)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNP-MOF</td>
<td>Zn${6}$(OH)${12}$(TPN)$_{3}$</td>
<td>1.69 (273 K)</td>
<td>1.03 (278 K)</td>
<td>TEOA</td>
<td>6630</td>
<td>29</td>
</tr>
<tr>
<td>NH$_2$-Uio-66-Zr(Ti)</td>
<td>Zn${3.4}$Ti${2.4}$O${3}$(OH)${4}$(C${6}$H${5}$O${2}$(NH)${3}$)${2}$(C${6}$H${5}$O${2}$)(H${2}$O)${2}$.0.85</td>
<td>6.77 (273 K)</td>
<td>5.00 (279 K)</td>
<td>TEOA and BNAH</td>
<td>782</td>
<td>30</td>
</tr>
<tr>
<td>NH$_2$-MIL-101(Fe)</td>
<td>G$2$${3}$${3}$${3}O{3}(OH){3}$(L)</td>
<td>1.82 (273 K)</td>
<td>0.89 (273 K)</td>
<td>TEOA</td>
<td>752</td>
<td>31</td>
</tr>
<tr>
<td>Co-MOF, LIFM-45</td>
<td>Fe3(OH)${3}$(H${2}$O)${3}$(L)</td>
<td>1.18 (273 K)</td>
<td>0.92 (273 K)</td>
<td>TEOA</td>
<td>1052</td>
<td>31</td>
</tr>
<tr>
<td>Ni-MIL-55(Fe)</td>
<td>Fe3(OH)${3}$(H${2}$O)${3}$(BDC-NH2)${3}$</td>
<td>0.89 (273 K)</td>
<td>0.60 (273 K)</td>
<td>TEOA</td>
<td>502</td>
<td>31</td>
</tr>
<tr>
<td>Ni-MIL-88(Fe)</td>
<td>Fe3(OH)${3}$(H${2}$O)${3}$(BDC)$_{3}$</td>
<td>0.64 (273 K)</td>
<td>0.46 (273 K)</td>
<td>TEOA</td>
<td>This work</td>
<td>31</td>
</tr>
</tbody>
</table>

(Continues)
<table>
<thead>
<tr>
<th>MOF-Based Materials</th>
<th>Chemical Formula</th>
<th>CO₂ Uptake /mmol·g⁻¹</th>
<th>Sacrificial Agent</th>
<th>Solvents</th>
<th>Photocatalytic Efficiency (μmol·gcat⁻¹·h⁻¹) References</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD-MOF-2</td>
<td>[Co₂(HAD)₂(AD)₂ (IA)₂]·DMF</td>
<td>1.86 (298 K)</td>
<td>TIPA</td>
<td>CH₃CN</td>
<td>443</td>
</tr>
<tr>
<td>AD-MOF-1</td>
<td>[Co₂(HAD)₂ (AD)₂-(BA)]·DMF·2H₂O</td>
<td>2.33 (298 K)</td>
<td>TIPA</td>
<td>CH₃CN/H₂O</td>
<td>179</td>
</tr>
<tr>
<td>Fe₃+Fe₂-NH₂</td>
<td>[Fe₂-Tri₃]·NO₃</td>
<td>1.38 (298 K)</td>
<td>TIPA</td>
<td>CH₃CN/H₂O</td>
<td>396</td>
</tr>
<tr>
<td>Fe₃+Fe₂</td>
<td>[Fe₂-Tri₃]·NO₃</td>
<td>1.23 (298 K)</td>
<td>(1)</td>
<td></td>
<td>309</td>
</tr>
<tr>
<td>PCN-138</td>
<td>[Zr₆(μ₃-O)₄(μ₃-OH)₄]·TCP(A)·TBTB</td>
<td>2.82 (273 K)</td>
<td>TIPA</td>
<td>H₂O</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.82 (298 K)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ir-CP</td>
<td>[Y(Ir(ppy)₂(dcbpy)₂)]·OH</td>
<td>-</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>158</td>
</tr>
<tr>
<td>Eu-Ru(Phen)₃</td>
<td>[Eu₂(μ₂-H₂O)(H₂O)₂(L)₂]·(NO₃)₂·(2-FBA)₂·(H₂O)₂</td>
<td>-</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>94</td>
</tr>
<tr>
<td>Cd/Ru-MOF-1</td>
<td>{Cd₃[Ru-L]₂·2(Me₂NH₂)·solvent}·n</td>
<td>-</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>67</td>
</tr>
<tr>
<td>Cd/Ru-MOF-2</td>
<td>{Cd[Ru-L]³·3(H₂O)}·n</td>
<td>1.56 (298 K)</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>60</td>
</tr>
<tr>
<td>PCN-222(Zr)</td>
<td>Zr₆(μ₃-O)₆(OH)₆(TCPP)²</td>
<td>2.59 (273 K)</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.56 (298 K)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNU-28(Zr)</td>
<td>[Zr₆O₄(OH)₄(L)₆]·6DMF</td>
<td>2.83 (273 K)</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.49 (298 K)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCN-136</td>
<td>Zr₆(μ₃-O)₄(μ₃-OH)₆(H₂O)₆(HCHC)</td>
<td>2.72 (273 K)</td>
<td>TIPA</td>
<td>CH₃CN/H₂O</td>
<td>44</td>
</tr>
<tr>
<td>Zr-SDCA-NH₂</td>
<td>[Zr₆O₄(OH)₄(L)₆]·8DMF</td>
<td>3.74 (273 K)</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.57 (298 K)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNU-31-Zn</td>
<td>Fe₂/Zn(μ₃-O)(TCA)₂(H₂O)₃</td>
<td>1.65 (298 K)</td>
<td>-</td>
<td>H₂O</td>
<td>26</td>
</tr>
<tr>
<td>NH₂-MIL-125(51)</td>
<td>Ti₈O₈(OH)₄(BDC-NH₂)</td>
<td>5.90 (273 K)</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>16</td>
</tr>
<tr>
<td>MIL-125(T1)</td>
<td>Ti₈O₈(OH)₄(BDC)</td>
<td>4.40 (273 K)</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>4</td>
</tr>
<tr>
<td>NH₂-UO-66-(Zr/Ti)</td>
<td>(Zr/Ti)₆O₄(OH)₄(BDC-NH₂)</td>
<td>3.79 (273 K)</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>12</td>
</tr>
<tr>
<td>NH₂-UO-66(Zr)</td>
<td>Zr₆O₄(OH)₄(BDC-NH₂)</td>
<td>3.04 (273 K)</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>7</td>
</tr>
<tr>
<td>NH₂-UO-66(Zr)</td>
<td>Zr₆O₄(OH)₄(BDC-NH₂)</td>
<td>3.04 (273 K)</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>26</td>
</tr>
<tr>
<td>Uio-66(Zr)</td>
<td>Zr₆O₄(OH)₄(BDC)</td>
<td>2.37 (273 K)</td>
<td>TEOA</td>
<td>CH₃CN</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: TEOA, triethanolamine; BNAH, 1-benzyl-1,4,4-dihydronicotinamide; H₄L, biphenyl-3,3',5,5'-tetracarboxylic acid; H₂BDC, benzene-1,4-dicarboxylic acid; HAD, adenine; BA, butanedioic acid; IA, isobutyric acid; DMF, N,N-dimethylformamide; Tri, 1,2,4-triazole; DMAc, N,N-dimethylacetamide; TIPA, trisopropanolamine; H₂TCP, tetrakis(4-carboxyphenyl)porphyrin; TBTB, 4,4',4'-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzene; ppy, 2-phenylpyridine; dcbpy, 2,2'-bipyridine-4,4'-dicarboxylate; H₄L⁰, 2-amino-[1,1':4',1''-terphenyl]-3,3',5,5'-tetracarboxylic acid; H₃L¹, Ru(phen)₃-derided tricarboxylate acid metallogand; 2-FBA, 2-fluorobenzoate; L²=5,5'-dcbpy=2,2'-bipyridine-5,5'-dicarboxylate; L⁴=(4,4'-dcbpy)₂(ppy), bpy=2,2'-bipyridine; H₄L⁶, 4,4'-anthracene-9,10-diylbis(e-tyhne-2,1-diyl) dibenzoic acid; HCHC, hexakis(4-carboxyphenyl)hexabenzocoronene; H₄L⁷, 2,2-diamino-4,4'-stilbene dicarboxylic acid; TCA, 4,4',4'-tricarboxytriphenylene.
Table 2 | Summary of Reaction Conditions of Comparison Experiments

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Light (nm)</th>
<th>Gas</th>
<th>HCOOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MFM-300(Ga)</td>
<td>350–780</td>
<td>TEOA</td>
<td>CO2</td>
</tr>
<tr>
<td>2</td>
<td>n.a.</td>
<td>350–780</td>
<td>TEOA</td>
<td>CO2</td>
</tr>
<tr>
<td>3</td>
<td>MFM-300(Ga)</td>
<td>350–780</td>
<td>TEOA</td>
<td>N2</td>
</tr>
<tr>
<td>4</td>
<td>MFM-300(Ga)</td>
<td>350–780</td>
<td>n.a.</td>
<td>CO2</td>
</tr>
<tr>
<td>5</td>
<td>MFM-300(Ga)</td>
<td>n.a.</td>
<td>TEOA</td>
<td>CO2</td>
</tr>
<tr>
<td>6</td>
<td>MFM-300(Ga)</td>
<td>350–780</td>
<td>TEOA</td>
<td>CO2</td>
</tr>
<tr>
<td>7</td>
<td>Ga(NO3)3·9H2O and H4L</td>
<td>350–780</td>
<td>TEOA</td>
<td>CO2</td>
</tr>
<tr>
<td>8</td>
<td>Ga2O3</td>
<td>350–780</td>
<td>TEOA</td>
<td>CO2</td>
</tr>
<tr>
<td>9</td>
<td>GaN</td>
<td>350–780</td>
<td>TEOA</td>
<td>CO2</td>
</tr>
<tr>
<td>10</td>
<td>GaP</td>
<td>350–780</td>
<td>TEOA</td>
<td>CO2</td>
</tr>
<tr>
<td>11</td>
<td>MIL-53(Ga)</td>
<td>350–780</td>
<td>TEOA</td>
<td>CO2</td>
</tr>
<tr>
<td>12</td>
<td>MIL-68(Ga)</td>
<td>350–780</td>
<td>TEOA</td>
<td>CO2</td>
</tr>
</tbody>
</table>

Reaction conditions: MFM-300(Ga) (10 mg), TEOA/CH3CN (3 mL/15 mL, saturated with CO2), 25 °C, 350–780 nm, light irradiation for 4 h. For entry 6, 3 mL TEA was added to replace TEOA. For entry 7, a powdered mixture of Ga(NO3)3·9H2O (0.04 mmol, 16.7 mg) and H4L (0.02 mmol, 6.6 mg) were used (H4L: biphenyl-3,3,5-tricarboxylic acid). For entry 8–12, the catalysts used were 10 mg in each reaction.

framework structure of MFM-300(Ga) is crucial for adsorption of CO2 and the separation and transfer of photoinduced electrons.

To investigate the effects of ligands and framework structures of Ga-MOFs on the photocatalytic property, MIL-53(Ga) and MIL-68(Ga), both constructed from terephthalic acid, were studied for this reaction.48–50 The phase purity of these MOFs has been confirmed by PXRD (see Supporting Information Figure S10). The bandgaps for MIL-53(Ga) and MIL-68(Ga) are determined to be 3.21 and 3.93 eV, respectively, by UV-DRS analysis (see Supporting Information Figure S11). Under the same reaction conditions as above, neither MOF shows photocatalytic activity toward the reduction of CO2. Although showing similar BET surface areas (1117–1140 m2·g−1) and a structure comprising [GaO2(OH)2] moieties, the CO2 adsorption capacity of MIL-53(Ga) and MIL-68(Ga) (1.46–1.65 mmol·g−1) is much lower than that (5.00 mmol·g−1) of MFM-300(Ga) (see Supporting Information Table S2). This is likely due to the rigid framework and presence of active μ2-OH sites in MFM-300(Ga) that promote the transport and binding of CO2 as confirmed by in situ crystallographic and spectroscopic analyses.25,26 Furthermore, the biphenyl ligand of MFM-300(Ga) demonstrates increased π-electron delocalisation in the framework backbone and hence enhanced LMCT compared with terephthalate in MIL-53(Ga) and MIL-68(Ga). These collectively result in the drastic difference in their photocatalytic activity.

Photophysical and electrochemical experiments were conducted to understand the redox properties of MFM-300(Ga). Mott-Schottky (MS) analysis and valence-band XPS studies were conducted to determine the positions of the conduction band (Ecb) and the valence band (Evb) of MFM-300(Ga), respectively.22,51 The Evb is determined to be 2.2 V versus normalised hydrogen electrode (NHE) from the VB-XPS result (see Supporting Information Figure S12a). The positive slope of all MS plots recorded at different frequencies indicates that MFM-300(Ga) is a typical n-type semiconductor, and the intercept is independent of the frequency. The flat band potential (Efb) is determined as −0.99 V versus NHE (see Supporting Information Figure S12b), which is usually ∼0.1 V more positive than the Evb for n-type materials.52 Thus, the Ecb is estimated to be −1.09 V versus NHE. The gap between VB and CB is thus 3.29 eV, which is in excellent agreement with the bandgap of 3.30 eV obtained from UV-DRS analysis.

To identify the radical species involved in the catalytic process, in situ spin-trapping EPR experiments under photocatalytic conditions were conducted. Since the lifetime of free radicals is several orders of magnitude shorter than the acquisition time of EPR spectra, 5,5-dimethyl-1-pyrroline-n-oxide (DMPO) was used as a spin trap to enable the identification of radicals as long-lived DMPO-radical adducts.53 An intense six-line signal with g = 2.005 and hyperfine coupling constants Aν = 15.2 G and Aν = 18.9 G was detected and unambiguously assigned to DMPO-CO2−54,55 (see Figure 3a and Supporting Information Table S3). This indicates that the CO2 radical anion (CO2−) is the direct intermediate to form formic acid. No radical was captured for the reaction conducted under dark conditions. Significantly, to the best of our knowledge, this is the first time that a direct intermediate radical has been detected in the photoreduction of CO2 over a MOF-based catalyst.

The catalytic cycle for this reaction is proposed (Figure 3b). Upon light irradiation, MFM-300(Ga) is activated, and the electrons in the VB (2.2 V) are promoted to the CB (−1.09 V), and the photoinduced holes at the VB are readily filled up by the electron sacrificial agent TEOA. Surprisingly, the photoinduced electrons with a reductive potential of −1.09 V versus NHE can reduce CO2 to CO2− radical anions, given the strongly negative redox potential of −1.90 V versus NHE [Eq. (1)] for this process.56 This indicates that the strong binding of CO2 molecules to the bridging μ2-OH sites of MFM-300(Ga) through the formation of hydrogen bonds as determined by in situ synchrotron X-ray diffraction25 not only promotes the transfer of photoinduced electrons from MFM-300(Ga) to the bound CO2 molecules but also activates the adsorbed CO2 molecules. This shifts the reduction to a more anodic potential. Interestingly, the path of photocatalytic reduction of CO2 into formic acid is widely regarded as accepting electrons and protons...
simultaneously at a redox potential of −0.61 V versus NHE \[E^0_{\text{redox}} = -1.90 \text{ V vs. NHE}\] (1) By contrast, the adsorbed CO2 molecule in MFM-300(Ga) is able to accept a single electron via host–guest hydrogen bonding to generate a CO2•− radical anion, which is unprecedented in the MOF-driven photo-reduction of CO2 and affords new insights into the mechanism of photocatalytic reduction of CO2. Recently, the positive impact of strong host–guest interactions on the activation of the adsorbed substrate has also been demonstrated by the conversion of small molecules over porous catalysts.57,58 Thus, the photocatalytic activity of MOFs is determined by the synergistic effect of bandgap, rate of charge transfer, uptake of CO2, and most importantly, the interaction between the catalyst scaffold and adsorbed CO2 molecules, which will inform the design of new photocatalysts.

Conclusion

The porosity and design flexibility of MOFs, coupled with their intrinsic semiconductor and photoelectrical properties, make them promising candidates as efficient photocatalysts. We report the first example of a Ga-MOF-based semiconductor that can promote the photo-reduction of CO2 to formic acid with a selectivity of 100% and a high productivity of 502 ± 18 μmol·gcat⁻¹·h⁻¹ under light irradiation and at room temperature using TEOA as an electron sacrificial agent. MFM-300(Ga) shows excellent catalytic stability over three cycles of reactions with full retention of the productivity of formic acid. In situ EPR spectroscopic analysis confirms the generation of the CO2•− radical anion as the reaction intermediate promoted by the strong host–guest interactions between the bridging μ2-OH groups of MFM-300(Ga) and the adsorbed CO2 molecules. Compared with other reported Ga-MOFs in literature, the presence of strong binding sites and efficient LMCT plays an important role in boosting the photocatalytic activity toward CO2 reduction, which sheds light on the design of future MOF-based photocatalysts with improved activity.

Supporting Information

Supporting Information is available and includes detailed experimental procedures and characterization data.

Conflict of Interest

There is no conflict of interest to report.

Acknowledgments

This research was supported by EPSRC (EP/I011870, EP/V056409), the Royal Society and the University of Manchester with funding, and EPSRC for funding of the EPSRC National EPR Facility at the University of Manchester. This project has also received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 742401, NANOCHEM). The UK High-Field Solid-State NMR Facility used in this research was funded by EPSRC and BBSRC (EP/T015063/1) as well as the University of Warwick including via partial funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands and the European Regional Development Fund.

\[
\begin{align*}
\text{CO}_2 + e^- & \rightarrow \text{CO}_2^{•−} & E^0_{\text{redox}} &= −1.90 \text{ V vs. NHE} \quad (1) \\
\text{CO}_2 + 2\text{H}^+ + 2e^- & + \text{HCOOH} & E^0_{\text{redox}} &= −0.61 \text{ V vs. NHE} \quad (2)
\end{align*}
\]

Figure 3

(a) In situ X-band EPR spectra of photocatalytic reactions over MFM-300(Ga) using DMPO as spin trap, (black) before and (red) after light irradiation, with simulated (blue) spectrum showing a major component, DMPO-CO2•− (green, simulation), and a minor component, DMPO-Ox (cyan, simulation) under photocatalytic conditions over MFM-300(Ga). (b) The proposed mechanism of the photocatalytic reduction of CO2 over MFM-300(Ga).
The authors wish to acknowledge Dr. Marek Nikiel for the help with XPS measurement.

References

Light-Driven CO2 Reduction.

π H.; Jiang, H. L. Visible-Light Photoreduction of CO2 in a Metal

Visible-Light-Driven CO2 Reduction to Formate by a New

Stable Photocatalysts for CO2 Reduction.

MOFs for Photocatalytic CO2 Reduction: Role of Coordina

tion of Volatile Aromatic Pollutants in Air. J. Catal. 2007, 250,

12–18.

Zeng, J.; Wang, X.; Xie, B.; Li, Q.; Zhang, X. Large

π-Conjugated Metal–Organic Frameworks for Infrared-

Light-Driven CO2 Reduction. J. Am. Chem. Soc. 2022, 144,

1218–1231.

Liao, W. M.; Zhang, J. H.; Wang, Z.; Lu, Y. L.; Yin, S. Y;

Wang, H. P.; Fan, Y. N.; Pan, M.; Su, C. Y. Semiconductive

Amine-Functionalized Co(II)-MOF for Visible-Light-Driven

2018, 57, 11436–11442.

Wang, D.; Huang, R.; Liu, W.; Sun, D.; Li, Z. Fe-Based

MOFs for Photocatalytic CO2 Reduction: Role of Coordina

tion Unsaturated Sites and Dual Excitation Pathways. ACS

31. Li, N.; Liu, J.; Liu, J. J.; Dong, L. Z.; Xin, Z. F.; Teng, Y. L.;

Lan, Y. Q. Adenine Components in Biomimetic Metal–Organic

32. Wang, Y. J.; Wang, H. J.; Luo, F.; Yao, S.; Lu, T. B.; Zhang,

Z. M. Inter-Clusters Synergy in Iron–Organic Frameworks for

300, 120479.

Drake, H. F.; Lan, Y. Q.; Jiang, L.; Zhou, H. C. Face-Sharing

Archimedean Solid Stacking for the Construction of Mixed-

Ligand Metal–Organic Frameworks. J. Am. Chem. Soc. 2019,

141, 13841–13848.

Hong, M.; Luo, J. Effective Visible-Light Driven CO2 Photo-

reduction via a Promising Bifunctional Iridium Coordination

L.; Kong, X. J.; Long, L. S.; Zheng, L. S. Photo-Generated

Dinuclear (Eu(II))2 Active Sites for Selective CO2 Reduction in

a Photosensitizing Metal–Organic Framework. Nat. Commu-

nun. 2018, 9, 3353.

Interpenetrated Ruthenium Metal–Organic Frameworks as

2015, 54, 8375–8379.

H.; Jiang, H. L. Visible-Light Photoreduction of CO2 in a Metal

via Electron Trap States. J. Am. Chem. Soc. 2015, 137,

13440–13443.

Visible-Light-Driven CO2 Reduction to Formate by a New

Anthracene-Based Zirconium MOF via Dual Catalytic

Guan, W.; Drake, H. F.; Pang, J.; Lan, Y. Q.; Aalsma, A.; Zhou,

H. C. Creating Well-Defined Hexabenzocoronene in

Zirconium Metal–Organic Framework by Postsynthetic An-

Chen, P.; Xing, H. Enhancement of Visible-Light-Driven CO2

Reduction Performance Using an Amine-Functionalized Zir-

conium Metal–Organic Framework. Dalton. Trans. 2018,

47, 909–915.

41. Dong, L.; Zhang, L.; Liu, J.; Huang, Q.; Lu, M.; Ji, W.; Lan,

Y. Stable Heterometallic Cluster-Based Organic Framework

2020, 59, 2659–2663.

42. Sun, D.; Liu, W.; Qiu, M.; Zhang, Y.; Li, Z. Introduction of a

Mediator for Enhancing Photocatalytic Performance via

Post-Synthetic Metal Exchange in Metal–Organic Frameworks

43. Sun, D.; Fu, Y.; Liu, W.; Ye, L.; Wang, D.; Yang, L.; Fu, X.; Li,

Z. Studies on Photocatalytic CO2 Reduction over NH2-Uio-66

(Zr) and Its Derivatives: Towards a Better Understanding of

2013, 19, 14279–14285.

44. Wang, C.; Xie, Z.; Dekrafft, K. E.; Lin, W. Doping Metal-

Organic Frameworks for Water Oxidation, Carbon Dioxide

2011, 133, 13445–13454.

45. Morimoto, T.; Nakajima, T.; Sawa, S.; Nakanishi, R.; Imori,

D.; Ishitani, O. CO2 Capture by a Rhenium(I) Complex with

the Aid of Triethanolamine. J. Am. Chem. Soc. 2013, 135,

16825–16828.

46. Sampaio, R. N.; Grills, D. C.; Polyansky, D. E.; Szalda, D. J.;

Fujita, E. Unexpected Roles of Triethanolamine in the Pho-

tochemical Reduction of CO2 to Formate by Ruthenium

47. Volkering, C.; Leisou, T.; Guillou, N.; Férey, G.; Elkaïm, E.;

Vimont, A. XRD and IR Structural Investigations of a Particular

Breathing Effect in the MOF-Type Gallium Terpe-

Tuning the Balance Between Dispersion and Entropy to

Design Temperature-Responsive Flexible Metal-Organic

49. Christophe, V.; Meddouri, M.; Leisou, T.; Guillou, N.;

Marrot, J.; Fe’rey, G.; Haouas, M.; Taulelle, F.; Audebrand, N.;

Latroche, M. The Kagomé Topology of the Gallium and Indi-

um Metal–Organic Framework Types with a MIL-68 Structure:

Synthesis, XRD, Solid-State NMR Characterizations, and Hy-

50. Zhang, R.; Song, X.; Liu, Y.; Wang, P.; Wang, Z.; Zheng,

Z.; Dai, Y.; Huang, B. Monomolecular V82-Doped MOFs for

Photocatalytic Oxidation with Enhanced Stability, Recyclabi-

Wang, X. H.; Dong, M.; Zhao, X.; Sun, C. Y.; Wang, X. L.; Su, Z.

M.; Su, Z. M. A Bimetallic-MOF Catalyst for Efficient CO2

Photoreduction from Simulated Flue Gas to Value-Added

52. Buettner, G. R. Spin Trapping: ESR Parameters of

DOI: 10.31635/ccschem.022.202201931

Citation: CCS Chem. 2022, 4, 2560–2569

Link to VoR: https://doi.org/10.31635/ccschem.022.202201931

