
The Library
Engineering the carrier lifetime and switching speed in Si-based mm-wave photomodulators
Tools
Hooper, I. R., Khorani, Edris, Romain, X., Barr, L. E., Niewelt, T., Saxena, S., Wratten, A., Grant, Nicholas E., Murphy, J. D. and Hendry, E. (2022) Engineering the carrier lifetime and switching speed in Si-based mm-wave photomodulators. Journal of Applied Physics, 132 . 233102. doi:10.1063/5.0128234 ISSN 0021-8979.
|
PDF
WRAP-Engineering-the-carrier-lifetime-and-switching-speed-in-Si-based-mm-wave-photomodulators-Murphy-2022.pdf - Published Version - Requires a PDF viewer. Available under License Creative Commons Attribution 4.0. Download (1986Kb) | Preview |
Official URL: https://doi.org/10.1063/5.0128234
Abstract
For a diverse range of semiconductor devices, the charge carrier lifetime is an essential characteristic. However, the carrier lifetime is difficult to control, as it is usually determined by a variety of recombination processes. For indirect bandgap materials, it is well known that effective carrier lifetimes can be improved by passivating the surface, effectively extinguishing surface-related recombination processes. However, for some applications, such as photomodulators for sub-infrared radiation, it is beneficial to tailor lifetimes to specific values, in this particular case trading off between photo-efficiency and switching speed. In this paper, we design a new type of silicon-based metamaterial with a tunable electron–hole lifetime. By periodically patterning a dielectric surface passivation layer, we create a metamaterial whereby the filling fraction of passivated relative to unpassivated areas dictates the effective charge carrier lifetime. We demonstrate tunable lifetimes between 200 μs and 8 ms in a 670 μm thick Si wafer, though in principle our approach allows one to generate any lifetime between the fully passivated and unpassivated limits of a bulk semiconductor. Finally, we investigate the application of these metamaterials as photomodulators, finding switching times that depend upon both the photoexcitation intensity, wafer thickness, and the carrier lifetime.
Item Type: | Journal Article | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QC Physics T Technology > TK Electrical engineering. Electronics Nuclear engineering |
||||||||||||||||||||||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Engineering > Engineering | ||||||||||||||||||||||||||||||
Library of Congress Subject Headings (LCSH): | Light modulators, Semiconductors, Silicon -- Electric properties, Charge transfer, Electron transport, Thin films | ||||||||||||||||||||||||||||||
Journal or Publication Title: | Journal of Applied Physics | ||||||||||||||||||||||||||||||
Publisher: | American Institute of Physics | ||||||||||||||||||||||||||||||
ISSN: | 0021-8979 | ||||||||||||||||||||||||||||||
Official Date: | 16 December 2022 | ||||||||||||||||||||||||||||||
Dates: |
|
||||||||||||||||||||||||||||||
Volume: | 132 | ||||||||||||||||||||||||||||||
Number of Pages: | 8 | ||||||||||||||||||||||||||||||
Article Number: | 233102 | ||||||||||||||||||||||||||||||
DOI: | 10.1063/5.0128234 | ||||||||||||||||||||||||||||||
Status: | Peer Reviewed | ||||||||||||||||||||||||||||||
Publication Status: | Published | ||||||||||||||||||||||||||||||
Access rights to Published version: | Open Access (Creative Commons) | ||||||||||||||||||||||||||||||
Date of first compliant deposit: | 19 December 2022 | ||||||||||||||||||||||||||||||
Date of first compliant Open Access: | 19 December 2022 | ||||||||||||||||||||||||||||||
RIOXX Funder/Project Grant: |
|
||||||||||||||||||||||||||||||
Related URLs: |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year