Richard Watkins, Magdalena Apanasionok and Julie Neil explain how they used systematic instruction to teach science enquiry skills and conceptual understanding in a special school.

Teaching science to pupils with SEND: using an evidence-based approach

In their recent review of special educational needs in schools, the Education Endowment Foundation (EEF, 2020) highlights the fact that teaching strategies that we know work well for mainstream learners are also likely to be effective for pupils with special educational needs and disabilities (SEND). These strategies include:

- flexible grouping;
- cognitive and metacognitive strategies;
- explicit instruction;
- using technology;
- scaffolding.

Over recent years there have been a number of accessible and useful research summaries for teachers, often highlighting the effectiveness of general teaching strategies such as explicit instruction, scaffolding and task-specific feedback (Spooner, McKissick and Knight, 2017; Apanasionok et al., 2019; Knight et al., 2019), but very little research has been turned into practical classroom materials to help teachers improve the provision of science.

There is also a need to support the teaching of science to improve outcomes for pupils with SEND. In England, 14.9% of school-age children are identified as having SEND (DfE, 2019). In 2019, 42% of pupils with special educational needs (SEN) achieved the expected standard in science at the end of key stage 1 (age 7) compared to 90% of pupils with no SEN (DfE, 2020). In the same year, 22% of pupils with SEN reached the expected standard in reading, writing and maths at the end of key stage 2 (age 11) compared with 74% of their peers, and this attainment gap has remained stable since 2017 (DfE, 2020). In this article we describe how we used an evidence-based science programme called the Early Science curriculum to teach science to pupils in a special school, in particular learners with intellectual disability and/or autism spectrum disorder.

Key words: SEND, Systematic instruction
school have favoured cognitive (constructivist) teaching approaches that enable pupils to build their understanding of scientific ideas by undertaking practical scientific inquiry tasks (often called inquiry-based learning). Examples of this style of teaching are common in this journal and also feature prominently in many practical guides to teaching science in primary schools (Serret and Earle, 2018).

In England, the science programme of study for key stages 1 and 2 (ages 5–11) is centred around three main aims: to help pupils develop scientific knowledge and conceptual understanding; to develop an understanding of the nature, processes and methods of science (known as ‘working scientifically’); and to ensure pupils can understand the uses and implications of science (DfE, 2015).

Teaching this content to pupils with SEND using inquiry or discovery-based teaching strategies can be challenging. These strategies are often successful with typically developing learners in mainstream settings, but can be less effective for less-able pupils and pupils with disabilities (Rizzo and Taylor, 2016).

Our research, focused on the existing research literature on teaching science to pupils with SEND, has indicated that science programmes using behavioural teaching strategies (e.g. systematic instruction – a teaching method focused on breaking down complex skills into smaller steps and promoting generalisation) may be an effective way to improve science outcomes (Apanasionok et al., 2019).

The Early Science curriculum

The Early Science curriculum (Jimenez, Knight and Browder, 2012) uses systematic instruction approaches to teach pupils science knowledge and skills through a series of structured lessons and practical enquiry activities. It has been identified as a promising programme in several studies (Smith et al., 2013; Jimenez, Lo and Saunders, 2014; Knight et al., 2018; Apanasionok et al., 2020) and in a systematic review (a systematic review is a higher-order literature search that critically appraises all relevant research in a given field; Apanasionok et al., 2019).

The scientific content in the Early Science curriculum aligns with the elementary school science education standards in the USA (National Research Council, 2000). The curriculum consists of four units: The five senses, The rock cycle, Earth and sky and The life cycle, and we found this content aligned well with most primary science curricula in the United Kingdom. In particular, The five senses and The life cycle units fall within the key stage 1 (ages 5–7) science programme of study in England, including knowledge and conceptual understanding and scientific methods and processes (DfE, 2015). Each unit consists of seven lessons: the first six lessons introduce new topics and the seventh consolidates the content in each unit. Each lesson is repeated multiple times (at least twice) until all pupils in the class become confident with the key skills and vocabulary. Lessons consist of seven main teaching components:

- guided inquiry;
- teacher scripts;
- a Wonder Wally storybook (stories with pictures to support each lesson);
- science safety information;
- explicit instruction;
- task analysis;
- special accommodations/adjustments for the pupils, e.g. amending some of the practical tasks.

Box 1 describes some key features of the curriculum.

Using the Early Science curriculum

We decided to work with a class of nine pupils from a primary department in a large special school to evaluate whether we could use the Early Science curriculum in a UK school setting. The learners in our study had diagnoses of autism spectrum disorder (ASD), intellectual disability (ID) and profound and multiple intellectual disabilities (PMID). The class teacher and two teaching assistants were trained in the implementation and delivery of the Early Science curriculum and supported pupils during the science lessons.

Due to time limitations, we focused only on the first unit of the curriculum: The five senses. We used materials included in the Early Science curriculum pack, including picture-word cards, lesson scripts, photo cards, a KWHL (What do we Know?, What do we Want to know?, How can we find out? and What did we Learn?) chart, and science safety cards/resources. We gave each pupil a My Science Log (a set of multiple-choice quizzes implemented after each lesson to assess understanding), and the progress monitoring form included in the curriculum pack was used to monitor the progress of individual pupils.

We found we could deliver most sessions in the 40-minute time slot allocated to teaching science in the school’s timetable. Each lesson started with pupils greeting a fictional Wonder Wally character displayed on a poster in the front of the classroom. The science teacher then introduced the main focus of the lesson and read

<table>
<thead>
<tr>
<th>Box 1 Key features of the Early Science curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guided inquiry</td>
</tr>
<tr>
<td>Explicit instruction</td>
</tr>
<tr>
<td>Task analysis</td>
</tr>
<tr>
<td>Scripted lessons</td>
</tr>
</tbody>
</table>
one story from the Wonder Wally storybook, emphasising the key scientific vocabulary we needed to introduce. All the lessons followed the same teaching steps and focused on simple exploration tasks that allowed pupils to make simple predictions and record observations. At the end of the session, we made sure pupils were able to review their observations and discuss ideas in the context of their initial predictions. The remaining time at the end of a lesson was spent on a review of key concepts and the completion of their My Science Logs.

Staff and pupil feedback
We found that nearly all pupils engaged very well with the Early Science curriculum lessons. Many pupils were able to remember some of the key concepts several weeks after the lessons, something that was not typically the case with this cohort of pupils; for example, nearly all the pupils were able to recall the five senses and explain what they are. Although pupils did find some aspects of the curriculum very challenging, they all made very good progress in improving their science skills and knowledge during the course of the study (as recorded in the My Science Logs and unit assessment; for more information and results see Apanasionok et al., 2020).

We enjoyed using the Early Science curriculum as a teaching resource. The scripted lessons and the guided instruction helped learners understand new scientific knowledge and concepts and use simple enquiry skills, such as making predictions, recording observations and evaluating outcomes. Many of the teaching assistants were familiar with science sessions based on less structured enquiry and/or more sensory-approaches, so they were surprised that the pupils were clearly able to benefit from a more guided and explicit approach with a greater focus on specific science content and associated vocabulary.

Teachers and teaching assistants identified the following key features as being helpful:
- challenging pupils to pair symbols with objects;
- using time-delay strategy;
- using exemplar and non-exemplar procedures;
- the predictable structure of the lessons.

Does the Early Science curriculum fit into a UK school setting?
Although this curriculum was designed in the United States and referenced to their elementary science standards (National Research Council, 2000), we did not find any significant problems adapting it for use in a UK setting.

<table>
<thead>
<tr>
<th>Box 2 Issues arising and solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect to improve</td>
</tr>
<tr>
<td>Time</td>
</tr>
<tr>
<td>Staffing ratios</td>
</tr>
<tr>
<td>Supporting pupils to record findings</td>
</tr>
<tr>
<td>Practical tasks</td>
</tr>
</tbody>
</table>
special school. The only issues we noted were time limitations and lack of staff to support some of the more challenging pupils during practical sessions, assisting them to complete their science logs and unit assessments (needed because of difficulties in communicating their ideas and observations), and the need to adjust the nature of some of the practical tasks (Box 2). However, none of these issues prevented us from successfully using the Early Science curriculum.

Conclusions
The pupils in our study enjoyed learning science using the Early Science curriculum. We found that

References and further reading
EEF (2020) Special educational needs in mainstream schools: five recommendations on special education needs in mainstream schools. London: Education Endowment Foundation. Available at: https://educationendowmentfoundation.org.uk/tools/guidance-reports/special-educational-needs-disabilities

Richard C. Watkins and Magdalena M. Apanasionok both work at the Centre for Educational Development, Appraisal and Research (CEDAR), University of Warwick, Coventry, UK. Richard also works for the Regional School Effectiveness and Improvement Service for North Wales. At the time of the study Julie Neil was at Calthorpe Academy, Birmingham; she is now at Bray’s School, Birmingham. Email: M.Apanasionok@warwick.ac.uk

Pupils filling out My Student Log at the end of the lesson to summarise what they have learned

It was possible to use the lesson plans and resources in a UK special school setting, and the teaching units and lessons were well matched to the science programme of study in England. Along with the vast majority of teachers in the UK, staff in this special school had previously employed enquiry- and/or sensory-based strategies to teach science. The evidence and feedback from this study is that programmes built around more explicit/systematic instructional approaches are likely to offer a more promising approach to teaching science to pupils with SEND, including successfully teaching relevant scientific knowledge and inquiry skills to enable learners to work scientifically.

Acknowledgement
This study was carried out as a part of a Doctoral dissertation funded in collaboration by the University of Warwick and Calthorpe Academy.