Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Anomalous parallel momentum transport due to E x B flow shear in a tokamak plasma

Tools
- Tools
+ Tools

Casson, F. J. (Francis James), Peeters, A. G., Camenen, Y., Hornsby, W. A., Snodin, A. P., Strintzi, D. and Szepesi, Gabor (2009) Anomalous parallel momentum transport due to E x B flow shear in a tokamak plasma. Physics of Plasmas, Vol.16 (No.9). Article no.092303. doi:10.1063/1.3227650 ISSN 1070-664X.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1063/1.3227650

Request Changes to record.

Abstract

Nondiffusive anomalous momentum transport in toroidal plasmas occurs through symmetry breaking mechanisms. In this paper the contribution of sheared E X B flows to parallel momentum transport [R. R. Dominguez and G. M. Staebler, Phys Fluids B 5, 3876 (1993)] is investigated with nonlinear gyrokinetic simulations in toroidal geometry. The background perpendicular shear is treated independently from the parallel velocity shear to isolate a nondiffusive, nonpinch contribution to the parallel momentum flux. It is found that the size of the term depends strongly on the magnetic shear, with the sign reversing for negative magnetic shear. Perpendicular shear flows are responsible for both symmetry breaking and suppression of turbulence, resulting in a shearing rate at which there is a maximum contribution to the momentum transport. The E X B momentum transport is shown to be quenched by increasing flow shear more strongly than the standard linear quench rule for turbulent heat diffusivity. (C) 2009 American Institute of Physics. [doi:10.1063/1.3227650]

Item Type: Journal Article
Subjects: Q Science > QC Physics
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Physics of Plasmas
Publisher: American Institute of Physics
ISSN: 1070-664X
Official Date: September 2009
Dates:
DateEvent
September 2009Published
Volume: Vol.16
Number: No.9
Number of Pages: 10
Page Range: Article no.092303
DOI: 10.1063/1.3227650
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Funder: Engineering and Physical Sciences Research Council (EPSRC)

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us