Manuscript version: Working paper (or pre-print)
The version presented here is a Working Paper (or ‘pre-print’) that may be later published elsewhere.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/172158

How to cite:
Please refer to the repository item page, detailed above, for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.
External Instrument SVAR Analysis for Noninvertible Shocks

Mario Forni, Luca Gambetti and Giovanni Ricco

December 2022

Warwick Economics Research Papers

ISSN 2059-4283 (online)
ISSN 0083-7350 (print)
External Instrument SVAR Analysis for Noninvertible Shocks

Mario Forni1, Luca Gambetti2, and Giovanni Ricco3

1Università di Modena e Reggio Emilia, CEPR and RECent
2Universitat Autònoma de Barcelona, BSE, Università di Torino, CCA
3University of Warwick, OFCE-SciencesPo, and CEPR

20th December 2022

Abstract

We propose a novel external-instrument SVAR procedure to identify and estimate the impulse response functions, regardless of the shock being invertible or recoverable. When the shock is recoverable, we also show how to estimate the unit variance shock and the ‘absolute’ response functions. When the shock is invertible, the method collapses to the standard proxy-SVAR procedure. We show how to test for recoverability and invertibility. We apply our techniques to a monetary policy VAR. It turns out that, using standard specifications, the monetary policy shock is not invertible, but is recoverable. When using our procedure, results are plausible even in a parsimonious specification, not including financial variables. Monetary policy has significant and sizeable effects on prices.

JEL classification: C32, E32.

Keywords: Proxy-SVAR, SVAR-IV, Impulse response functions, Variance Decomposition, Historical Decomposition, Monetary Policy Shock.

Luca Gambetti acknowledges the financial support from the Spanish Ministry of Science and Innovation, through the Severo Ochoa Programme for Centres of Excellence in R&D (CEX2019-000915-S), the financial support from the Spanish Ministry of Science, Innovation and Universities and FEDER through grant PGC2018-094364-B-I00 and the BSE Research Network.
1 Introduction

A severe limitation of the method is that it requires invertibility (Stock and Watson, 2018, Miranda-Agrippino and Ricco, forthcoming). A shock is invertible if it is a linear combination of the present and past values of the VAR variables, i.e. a contemporaneous linear combination of the VAR residuals.

Invertibility is a demanding property, often unlikely to be satisfied by commonly adopted VAR specifications. In fact, several works have argued that it is hardly valid in the presence of ‘news’ technology shocks (Forni et al., 2014), forward guidance (Ramey, 2016) or fiscal foresight (Mertens and Ravn, 2010, Ramey, 2011, Leeper et al., 2013), and necessarily fails for the so-called ‘noise’ shocks (Blanchard et al., 2013, Forni et al., 2017). The problem is that current values of the macroeconomic variables do not convey enough information to recover the shock. Here we show that invertibility does not hold for a few standard monetary-policy VAR specifications.

In this paper we propose a simple SVAR procedure with an external proxy which does not require invertibility. Instead of regressing the VAR residuals onto the current proxy only – what we name ‘the standard procedure’ – we regress the VAR residuals onto the current proxy and its lags. The impulse response functions are then estimated by combining the coefficients of this regression with the reduced-form impulse response functions obtained from the VAR. As for variance decomposition, we show how to implement the upper and lower bounds of Plagborg-Møller and Wolf (2022) within our setting. While the ‘relative’ impulse-response functions can be always estimated, the ‘absolute’ response functions and the structural shock itself cannot, unless the shock is recoverable.

Recoverability (Chahrour and Jurado, 2021) is much less demanding than invertibility. A shock is recoverable if it is a linear combination of the present, past and future values of the VAR variables, or, equivalently, it is a linear combination of the present and future values of the VAR residuals.\footnote{Stock and Watson (2018) require global invertibility. Miranda-Agrippino and Ricco (forthcoming) show the method can be generalized to the case of partial invertibility, at the cost of reinforcing the validity conditions for the instrument.}

\footnote{Consider that, if the number of shocks is equal to the number of variables, recoverability is always fulfilled.}
In this paper, we show how to test for recoverability and estimate the structural shock of interest when it is recoverable. We simply regress the proxy onto the present and future values of the VAR residuals. We show that, if the shock is recoverable, the fitted value is a consistent estimate of the shock and therefore must be serially uncorrelated. Following a valuable suggestion of Plagborg-Møller and Wolf (2022), we then propose to test for recoverability by testing for serial uncorrelation of such fitted value. If the test does not reject the null, we can estimate the unit-variance shock and the corresponding ‘absolute’ impulse-response functions. Having an estimate of the shock, historical decomposition can be performed as usual. Standard variance decomposition is downward biased at finite horizons when the model is not globally invertible. However, we can get an unbiased variance decomposition by looking at the integrals of the spectral densities over specific frequency bands, as suggested in Forni et al. (2019).\(^3\)

The regression of the proxy onto the present and future values of the VAR residuals also allows us to test for invertibility. For, under the invertibility assumption, the shock is a linear combination of current VAR residuals only. Hence a simple F-test for the null of zero coefficients for the future residuals tells us whether the shock is invertible or not. If the null of invertibility is not rejected, our proposed procedure collapses to the standard proxy-SVAR procedure. A few Monte Carlo exercises validate our proposed procedure in small samples.

In the empirical application, we study the effects of US monetary policy using the proxy of Gertler and Karadi (2015). Such instrument is based on surprises in federal fund futures with three-month maturity, so that it is likely to capture both conventional monetary policy shocks and shocks to forward guidance about the path rate at short horizons. This news component might induce noninvertibility, thus providing a strong motivation for our analysis.

Our main findings are the following. First, in standard VAR specifications the monetary policy shock turns out to be noninvertible. This is true even for specifications including the excess bond premium or other financial variables. Hence, the results obtained so far with the standard proxy-SVAR approach should be taken with caution.

Second, when using our proposed procedure, a contractionary shock reduces inflation and output, consistently across different VAR specifications and independently of the inclusion of financial variables, whereas, when using the standard proxy-SVAR approach, results are dramatically different across different VAR specifications.

Finally, the monetary policy shock is recoverable, so that we can perform variance for all shocks, whereas invertibility requires special conditions on the impulse-response functions (see e.g. Lippi and Reichlin, 1993, Lippi and Reichlin, 1994 and Fernandez-Villaverde et al., 2007).

\(^3\)The method is the same used, for different purposes, in Angeletos et al. (2020).
decomposition. The variance decomposition shows that the contribution of the monetary policy shock on both output and prices is sizeable and larger than previously reported. This is a noticeable result, in that it suggests that monetary policy can be effective in controlling prices, contrary to what found in most of the existing literature.

Our paper is closely related to the growing literature studying structural macroeconomic shocks and impulse-response functions by means of ‘narrative’ proxies or instrumental variable methods. In this stream of literature, we can distinguish three approaches: the first one uses a VAR with an external proxy; the second uses Jordà (2005) local projections; the third includes the proxy in the VAR (Ramey, 2016, Plagborg-Møller and Wolf, 2021) or in a VARX (Paul, 2020). Our contribution is in the first line of research, i.e. the external proxy SVAR approach. By generalising the standard procedure, we relax the validity conditions of this method, while retaining its strengths. In this sense, our procedure makes the external-proxy SVAR more appealing compared to existing alternatives. The key advantage of our method is that, under recoverability, it produces an estimate of the structural shock and the variance decomposition. Moreover, our method is more flexible in various respects; in particular, the time span of the proxy can be different from the time span of the VAR variables.

A further contribution of the present paper is represented by the recoverability test and the invertibility test, which provide a simple and valuable guidance for the choice of the VAR variables. Stock and Watson (2018) and Plagborg-Møller and Wolf (2022) also propose invertibility tests based on the proxy. The former requires estimation of LP-IV. The latter consists in testing whether the proxy Granger causes the VAR variables. In our setting, the F-test on the joint significance of future VAR residuals is more appropriate than the Granger causality test, being a natural by-product of the estimation procedure.

The remainder of the paper is organised as follows. Sections 2 and 3 discuss the general framework and present the theoretical results on identification with external instruments. The proposed procedure is summarised in Section 4. Section 5 presents a few simulation exercises, while Section 6 offers an empirical application to the identification of monetary policy shocks. The last section provides some conclusions.

2 Representation theory

In this section we introduce our theoretical framework and study the relation between the structural representation and the VAR representation when the structural shock of interest is not recoverable, recoverable but not invertible, and invertible.
2.1 The model

Let us start from our assumptions about the structural macroeconomic model and the VAR representation.

Assumption 1. (Structural MA representation) The observable macroeconomic variables in the \(n \)-dimensional vector \(y_t \) (possibly after suitable transformations) have the representation

\[
y_t = B(L)u_t, \tag{1}
\]

where (i) \(B(L) = B_0 + B_1L + B_2L^2 + \cdots \) is an \(n \times q \) matrix of rational impulse-response functions in the lag operator \(L \); (ii) \(n \leq q \) and \(B(L) \) has maximum rank \(n \); (iii) \(u_t \) is a \(q \)-dimensional white noise vector including the structural shocks, whose variance covariance matrix is \(I_q \).\(^4\)

The above model is sometimes referred to as the Slutsky-Frisch representation of the macro economy. It can be thought of as resulting from the linearisation of a DSGE model and can easily be derived from its state-space representation. Notice that we do not assume that the number of shocks is equal to the number of variables, so that the matrix \(B(L) \) is not necessarily square. However, we assume that the number of variables cannot be larger than the number of shocks \((n \leq q) \). This assumption can be justified by recognising that the variables are observed with error and such errors are allowed to enter the vector \(u_t \) together with the structural shocks. Since the entries of \(B(L) \) are rational functions, the assumption that \(B(L) \) has maximum rank \(n \) implies that \(B(z) \), \(z \) being a complex variable, has rank \(n \) almost everywhere in the complex plane. This is tantamount to assuming that the spectral density matrix of \(y_t \), i.e.

\[
S_y(\theta) = \frac{1}{2\pi}B(e^{-j\theta})B'(e^{j\theta}),
\]

\(j \) being the imaginary unit, is nonsingular a.e. in \([\pi \pi]\).\(^5\)

In this paper we are concerned with identification of a single shock of interest, say \(u_{it} \). In order to highlight the shock of interest and the corresponding response functions, it is convenient to re-write (1) in the form

\[
y_t = b_i(L)u_{it} + \tilde{B}(L)\tilde{u}_t, \tag{2}
\]

where \(b_i(L) = b_{i0} + b_{i1}L + b_{i2}L^2 + \cdots \) is the \(i \)-th column of \(B(L) \), \(\tilde{B}(L) \) includes the other

\(^4\)We omit the constant term for notational simplicity. A rational impulse-response function is the ratio of two polynomials in \(L \).

\(^5\)A treatment of the case \(q < n \), where the variables have a singular spectral density matrix, can be found in Forni et al. (2020).
columns of $B(L)$ and $\tilde{u}_t = (u_{1t} \cdots u_{i-1,t} u_{i+1,t} \cdots u_{qt})'$.

On the other hand, being stationary and purely nondeterministic by (1), y_t necessarily admits the Wold representation

$$ y_t = C(L)\varepsilon_t $$

where $C(L) = C_0 + C_1L + C_2L^2 + \cdots$ and ε_t is a vector white-noise process with covariance matrix Σ_ε. Of course, this representation is square.

For VAR estimation, it is convenient to add the following assumption.

Assumption 2. (VAR representation) The matrix of the Wold representation $C(L)$ has an inverse in the non-negative powers of L, possibly of infinite order. Hence, letting its inverse be $A(L)$, y_t has the VAR representation

$$ A(L)y_t = \varepsilon_t. $$

2.2 Structural shocks and VAR residuals

What is the relation between the structural shocks u_t and the VAR residuals ε_t? What is the relation between the structural response functions $B(L)$ and the VAR coefficients $A(L)$? To begin, we present a very general result, not requiring either invertibility or recoverability. Then we define these important properties of the structural shocks and specialize our results to the recoverability and the invertibility cases.

2.2.1 A general result

Clearly, the VAR residuals ε_t are linear combinations of the current and lagged structural shocks u_t, since from Equations (1) and (4) we see that

$$ \varepsilon_t = A(L)y_t = A(L)B(L)u_t = Q(L)u_t. $$

But what about the inverse relation, i.e. the one relating u_t to ε_t? Unfortunately, in the general case we cannot write u_t as an exact function of the ε’s. To see this, consider the case $q > n$, i.e. there are more structural shocks than VAR residuals: intuition suggests that in this case we cannot have an exact linear mapping relating all of the shocks in u_t to those in ε_t. We show below that this is in fact the case. The best we can do, within a linear setting, is to approximate u_t by taking the projection of u_t onto \mathcal{H}, the space spanned by the present, past and future of the Wold shocks ε_t: $\mathcal{H} = \text{span}(\varepsilon_{j,t-k}, j = 1, \ldots, n, k \in \mathbb{Z})$. Denoting with
P the linear projection operator, we have

$$u_t = P(u_t|\mathcal{H}) + s_t = D'(F)\varepsilon_t + s_t,$$

(6)

where s_t is the residual of the projection, $F = L^{-1}$ is the forward operator such that $F\varepsilon_t = \varepsilon_{t+1}$ and $D'(F)$ is a $q \times n$ matrix of linear filters. Existence of the above infinite sum representation is guaranteed by the fact that ε_t is a vector white noise.

The following result shows that there is a precise relation between (5) and (6).

Proposition 1. (Basic representation theorem)

(i) $D(F)$ is one-sided in the non-negative powers of F.

(ii) $Q(L)$ defined in (5) is linked to the projection coefficients in (6) by the relations

$$Q(L) = \Sigma_\varepsilon D(L); \quad D(L) = \Sigma_\varepsilon^{-1} Q(L).$$

(7)

(iii) The structural impulse-response functions are linked to the Wold impulse response functions by the relation

$$B(L) = C(L)Q(L) = C(L)\Sigma_\varepsilon D(L).$$

In particular, for the impulse-response functions of interest the relation is

$$b_i(L) = C(L)q_i(L) = C(L)\Sigma_\varepsilon d_i(L).$$

(8)

Proof. Let \mathcal{H}_t^+ be the ‘half-space’ spanned by present and future ε’s, i.e. $\mathcal{H}_t^+ = \text{span}(\varepsilon_{j,t-k}, j = 1, \ldots, n, k \leq 0)$, and \mathcal{H}_t^- be the half-space spanned by present and past ε’s, i.e. $\mathcal{H}_t^- = \text{span}(\varepsilon_{j,t-k}, j = 1, \ldots, n, k \geq 0)$. Then \mathcal{H} is the direct sum of the orthogonal subspaces \mathcal{H}_t^+ and \mathcal{H}_{t-1}^-, so that $P(u_t|\mathcal{H}) = P(u_t|\mathcal{H}_t^+) + P(u_t|\mathcal{H}_{t-1}^-)$. But the latter projection is zero, since u_t is white noise, and therefore is orthogonal to $\varepsilon_{t-k} = Q(L)u_{t-k}$ for any $k > 0$. This establishes (i). To prove (ii) we use the cross-covariance generating function of ε_t and u_t, say $G_{\varepsilon u}(z)$, z being a complex variable. From (5) we get $G_{\varepsilon u}(z) = Q(z)$. Now let us consider

6Let a_t and e_t be two zero-mean weakly stationary variables. Let $\Gamma_k = E(a_t b_{t-k}')$. The cross-covariance generating functions is defined as the z-transform of the cross-covariance function, i.e. $G_{ae}(z) = \sum_\infty^{\infty} \Gamma_k z^{-k}$. A well-known result in time series theory is the following. Let v_t be a vector white noise with covariance matrix Σ_v. Let $a_t = M(L)v_t + p_t$, where p_t is orthogonal to v_t at all leads and lags and $M(L) = \sum_\infty^{\infty} M_k L^k$. Finally, let $e_t = N(L)v_t + s_t$, where p_t is orthogonal to v_t and p_t at all leads and lags and $N(L) = \sum_\infty^{\infty} N_k L^k$. Then the cross-covariance generating function of a_t and e_t is given by $G_{ae}(z) = M(z)\Sigma_v N'(z^{-1})$.

the opposite covariance, i.e. the cross-covariance generating function of \(u_t \) and \(\varepsilon_t \): from (6) we get \(G_{u\varepsilon}(z) = D'(z^{-1})\Sigma_\varepsilon. \) But \(G_{\varepsilon u}(z) = G'_{u\varepsilon}(z^{-1}) = \Sigma_\varepsilon D(z) \). The first equation in (7) follows. As for the second, we have just to show that \(\Sigma_\varepsilon \) is invertible. Now, the rank of the spectral density matrix of \(y_t \), which is equal to \(B(e^{-j\theta})B'(e^{j\theta}), j \) being the imaginary unit, is equal to \(n \) a.e. in \([-\pi, \pi)\), since \(B(L) \) has maximum rank \(n \) by Assumption 1 (ii). But \(B(e^{-j\theta})B'(e^{j\theta}) = C(e^{-j\theta})\Sigma_\varepsilon C'(e^{j\theta}) \), so that \(\Sigma_\varepsilon \) has rank \(n \). Finally, (iii) is obtained by pre-multiplying Equation (5) by \(C(L) = A(L)^{-1} \) and using (ii).

Proposition 1 establishes a mapping between the Wold impulse-response functions \(C(L) \) and the structural impulse-response functions \(B(L) \) which holds true independently of invertibility or recoverability of the structural shocks.

2.2.2 Recoverable shocks

An important special case is the one of \(u_{it} \) being recoverable. In this case, we have an exact mapping relating \(u_{it} \) to the present and future of \(\varepsilon_t \).

Definition 1. (Recoverability) Let \(H^y \) be the closed linear space spanned by present, past and future values of \(y_t \): \(H^y = \text{span}(y_{j,t-k}, j = 1, \ldots, n, k \in \mathbb{Z}) \). We say that the structural shock \(u_{it} \) is recoverable with respect to \(y_t \) if and only if \(u_{it} \in H^y \). We say that \(u_t \) is (globally) recoverable with respect to \(y_t \) if and only if all of the structural shocks are recoverable.

The result below is closely related to the representation results of Lippi and Reichlin (1994).

Proposition 2. (Structural shocks and VAR residuals) If \(u_{it} \) is recoverable with respect to \(y_t \),

\[
 u_{it} = d'_i(F)\varepsilon_t = q'_i(F)\Sigma^{-1}_\varepsilon \varepsilon_t,
\]

where \(d_i(F) = d_{i0} + d_{i1}F + d_{i2}F^2 + \cdots \) is the \(i \)-th column of \(D(F) \) and \(q_i(F) = q_{i0} + q_{i1}F + q_{i2}F^2 + \cdots \) is the \(i \)-th column of \(Q(F) \). Moreover

\[
 d'_i(F)\Sigma_\varepsilon d_i(L) = q'_i(F)\Sigma^{-1}_\varepsilon q_i(L) = 1.
\]

Proof. We see from (4) and (3) that \(\varepsilon_{t-k} \in H^y \) for any \(k \) and \(y_{t-k} \in H \) for any \(k \). Hence \(H^y = H \), so that \(u_{it} \) is recoverable if and only if it belongs to \(H \). It follows that, if \(u_{it} \) is recoverable, in Equation (6) \(s_{it} = 0 \) and \(u_{it} = d'_i(F)\varepsilon_t \). This proves (9). Finally, by taking

7
the autocovariance generating function of all members of (9) we get
\[1 = d'_i(z^{-1})\Sigma_\varepsilon d_i(z) = q'_i(z^{-1})\Sigma_\varepsilon^{-1}q_i(z). \]

Remark 1. (Global recoverability) An immediate consequence of the above result is that, if \(u_t \) is globally recoverable, then \(s_t = 0 \) and \(u_t = D'(F)\varepsilon_t \). Hence from (5) we see that \(D'(F) \) is a left-inverse of \(Q(L) \). This can be true in our setting, where \(n \leq q \), only if \(q = n \) (so that \(D'(F) \) is the inverse of \(Q(L) \)). The converse is also true, i.e. if \(q = n \), then \(u_t \) is recoverable. For, from (5) we get \(\Sigma_\varepsilon = Q(z)Q'(z^{-1}) \). Hence, if \(\det Q(z) \) vanishes for \(z = z^* \), then \(\det Q(z^{-1}) \) must have a pole in \(z^* \), which is impossible if \(|z^*| = 1 \), since \(\varepsilon_t \) is stationary. Hence \(Q(L) \) is invertible (possibly toward the future) and \(u_{it} \in \mathcal{H} \) for any \(i \). In conclusion, \(u_t \) is globally recoverable if and only if \(q = n \).\(^7\)

Remark 2. (Recoverability measure) Let us consider the spectral density function of the projection of \(u_{it} \) onto \(\mathcal{H} \), i.e. \(d'_i(F)\varepsilon_t = q'_i(F)\Sigma_\varepsilon^{-1}\varepsilon_t \). We have
\[R^2_r(\theta) = d'_i(e^{j\theta})\Sigma_\varepsilon d_i(e^{-j\theta}) = q'_i(e^{j\theta})\Sigma_\varepsilon^{-1}q_i(e^{-j\theta}), \]
where \(j \) denotes the imaginary unit. This quantity represents the fraction of the total variance of \(u_{it} \) explained by the projection, decomposed by frequency, and is equal to 1 at all frequencies if \(u_{it} \) is recoverable. Correspondingly, the variance of the projection, i.e.
\[R^2_r = \sum_{k=0}^{\infty} d'_{ik}\Sigma_\varepsilon d_{ik} = \sum_{k=0}^{\infty} q'_{ik}\Sigma_\varepsilon^{-1}q_{ik} \]
is the fraction of total variance explained by the \(\varepsilon \)'s and is equal to 1 when \(u_{it} \) is recoverable. Hence \(R^2_r(\theta) \) and \(R^2_r \) can be regarded as measures of recoverability.

2.2.3 Fundamental/invertible shocks

If \(u_{it} \) is recoverable, it may be the case that it fulfils a more demanding property, that is fundamentalness. In the literature, fundamentalness is often regarded as a synonymous of invertibility. Indeed, fundamentalness is somewhat weaker than invertibility, in that invertibility requires that \(u_{it} \) can be written as a linear combination of the present and past history of \(y_t \), whereas fundamentalness does not. For instance, if \(y_t = (1 - L)u_t \), then \(u_t \) is fundamental but does not have a VAR representation since \(1 - L \) is not invertible. In our setting however we are assuming that \(y_t \) has a VAR representation, so that fundamentalness and invertibility coincide.

\(^7\)See also Chahrour and Jurado (2021).
Definition 2. (Fundamentalness) Let H_t^- be the closed linear space spanned by present and past values of y_t: $H_t^- = \overline{\text{span}}(y_{j,t-k}, j = 1, \ldots, n, k \geq 0)$. We say that the structural shock u_{it} is fundamental with respect to y_t if and only if $u_{it} \in H_t^-$. We say that u_t is fundamental with respect to y_t if and only if all structural shocks are fundamental with respect to y_t.

From the definition of fundamentalness we see that if u_{it} is fundamental for y_t, then u_{it} is recoverable, whereas the converse is not necessarily true. The following well-known result holds.

Proposition 3. (Structural shocks and VAR residuals) If u_{it} is fundamental for y_t, then $d_i(F) = d_{i0} = d_i$ and $q_i(F) = q_{i0} = q_i$, so that

$$u_{it} = d_i'\varepsilon_t = q_i'\Sigma^{-1}_\varepsilon \varepsilon_t. \quad (10)$$

Proof. We see from (3) and (4) that $\varepsilon_{t-k}, k \geq 0$, span the same linear space as $y_{t-k}, k \geq 0$. Hence if u_{it} is fundamental it belongs to H_t^-. On the other hand, if u_{it} is fundamental, it is also recoverable, so that, by Proposition 2, we have $u_{it} = d_i(F)\varepsilon_t$. By projecting both sides of this equation onto H_t^- we get $u_{it} = P(u_{it}|H_t^-) = d_{i0}\varepsilon_t$, since $d_{ik}\varepsilon_{t+k}$ is orthogonal to H_t^- for $k > 0$.

Remark 3. (Global fundamentalness) An immediate consequence of Proposition 3 is that, if u_t is globally fundamental for y_t, then it is a contemporaneous linear combination of the ε’s, that is $u_t = D'\varepsilon_t$. Hence using Proposition 1 we get $Q(L) = \Sigma_\varepsilon D'$, so that $Q(L) = Q = B_0$ (since $A_0 = I_n$, see Equation 5). Moreover, we see from Equation (5) that $D'\varepsilon_t = u_t = D'Qu_t$, so that $D'Q = I_n$. Since we have global fundamentalness, B_0, Q and D must be square (see Remark 1), so that D' is the inverse of the matrix of the impact effects B_0.

Remark 4. (Fundamentalness measure) In analogy with Remark 2, we can define a measure of fundamentalness as $R^2_f = d_i'\Sigma_\varepsilon d_i$. This measure corresponds to the fundamentalness measure proposed by Forni et al. (2019).

Regarding the impulse-response functions, we see from Proposition 3 that, if u_{it} is fundamental, Equation (8) reduces to

$$b_i(L) = C(L)q_i = C(L)\Sigma_\varepsilon d_i, \quad (11)$$

where $d_i'\Sigma_\varepsilon d_i = q_i'\Sigma^{-1}_\varepsilon q_i = 1$.

9
2.3 A general representation

From the above result we can derive a general representation of y_t in the fundamental shocks, the recoverable but nonfundamental shocks and the nonrecoverable shocks.\(^8\)

Proposition 4. (General Representation) Any vector process y_t satisfying Assumptions 1 and 2 can be represented as

$$ y_t = B^f(L)u^f_t + B^r(L)u^r_t + B^n(L)u^n_t $$

$$ = C(L)Q^f u^f_t + C(L)Q^r(L)u^r_t + C(L)Q^n(L)u^n_t $$

$$ = C(L)\Sigma_e D^f u^f_t + C(L)\Sigma_e D^r(L)u^r_t + C(L)\Sigma_e D^n(L)u^n_t. \quad (12) $$

where u^f_t is the sub-vector of the fundamental structural shocks, u^r_t of the recoverable (but nonfundamental) shocks, and u^n_t of the nonrecoverable ones. Σ_e is the covariance matrix of the Wold innovations ε_t and $C(L)$ is the matrix of the Wold representation. $Q^h(L)u^h_t$, for $h = f, r, n$, is the projection of ε_t onto u^h_{t-k}, with $k \geq 0$; and $D^h(L)$, for $h = f, r, n$, is such that $D^h(F)\varepsilon_t$ is the projection of u^h_t onto ε_{t+k}, with $k \geq 0$. Moreover, the following properties hold:

(i) D^f and Q^f are such that $D^f \Sigma_e D^f = Q^f \Sigma_e^{-1} Q^f = I_{q_f}$, q_f being the number of fundamental shocks;

(ii) $D^r(L)$ and $Q^r(L)$ are such that $D^r(F) \Sigma_e D^r(L) = Q^r(F) \Sigma_e^{-1} Q^r(L) = I_{q_r}$, q_r being the number of recoverable but nonfundamental shocks.

Proof. Let us reorder u_t in the structural representation in equation (1) in such a way that $u_t = (u^f_t \ u^r_t \ u^n_t)'$. Correspondingly, we partition $B(L)$ as $B(L) = (B^f(L) \ B^r(L) \ B^n(L))$, $Q(L)$ as $Q(L) = (Q^f \ Q^r(L) \ Q^n(L))$, and $D(L)$ as $D(L) = (D^f \ D^r(L) \ D^n(L))$. The equations in (12) are obtained from (1), (5), (8) and (11). Properties (i) and (ii) follow from Propositions 2 and 3.

3 Identification, estimation, and testing

We now discuss how the structural impulse-response functions and the structural shocks can be identified and estimated by using an external proxy in the VAR framework discussed in the previous section.

\(^8\)Proposition 4 generalises representation results provided in Lippi and Reichlin (1994) and Miranda-Agrippino and Ricco (2021).
3.1 The proxy

Let us start by introducing the proxy.

Assumption 3. (The Proxy) The researcher can observe the proxy \(\tilde{z}_t \), following the relation

\[
\tilde{z}_t = \beta(L)\tilde{z}_{t-1} + \mu'(L)x_{t-1} + \alpha u_{it} + w_t,
\]

where \(w_t \) is an error orthogonal to \(u_{j,t-k}, j = 1, \ldots, q \), for any integer \(k \) and to \(z_{t-k}, x_{t-k}, k \geq 0 \), and \(\beta(L), \mu(L) \) are rational functions in the lag operator \(L \) (for simplicity we omit the constant term).

This assumption is similar to the one used in Plagborg-Møller and Wolf (2022), which in turn is essentially equivalent to the weak LP-IV condition of Stock and Watson (2018). A remarkable difference, however, is that the vector \(x_t \) appearing on the right side of (13) is not necessarily equal to the VAR vector \(y_t \).

Stock and Watson (2018) stresses that equation (13) is more restrictive than the standard validity conditions for the SVAR-IV, i.e. (i) \(\text{cov}(\tilde{z}_t, u_{it}) \neq 0 \) and (ii) \(\text{cov}(\tilde{z}_t, u_{kt}) = 0 \) for \(k \neq i \). Let us observe, however, that (i) and (ii) are sufficient only when assuming global invertibility, which of course is more demanding than invertibility of \(u_{it} \) alone (for the definition of invertibility see Section 2.2 below). If we require only partial invertibility, we need a stronger validity condition, similar to equation (13) above (see Miranda-Agrippino and Ricco, forthcoming).\(^9\)

The above proxy cannot be used directly in our setting unless \(\beta(L) = 0 \). Hence, in place of \(\tilde{z}_t \), we shall consider the residual of the projection of \(\tilde{z}_t \) onto the past history of \(\tilde{z}_t \) and \(x_t \), i.e.

\[
z_t = \alpha u_{it} + w_t.
\]

Indeed the first step of our proposed procedure is to ‘clean’ \(\tilde{z}_t \) by estimating (13) and then using the residual \(z_t \) in place of \(\tilde{z}_t \).

3.2 The IRFs and the shock

In this subsection, we present the core of our estimation procedure. First we consider the case of nonrecoverable shocks. In this case we cannot estimate either the shock or the impulse

\(^9\)As an example, consider the proxy \(\tilde{z}_t = u_{1t} + u_{2,t-1} + w_t \), where \(u_{2t} \) is not fundamental. If the shock of interest is the first one (\(i = 1 \)), this proxy fulfills (i) and (ii). But in general \(u_{2,t-1} \) will be correlated with \(\varepsilon_t \), thus inducing a bias in the estimated response functions.
response functions corresponding to a unit-variance shock (the absolute IRFs) but we can estimate the relative response functions. Moreover, we can estimate upper and lower bounds for the absolute IRFs. Then we turn to the case of a recoverable shock. In this case we can estimate both the shock and the absolute IRFs. Finally we consider the case of a fundamental shock. In this case our estimation procedure collapses to the standard proxy-SVAR procedure.

Throughout this and the following sections, we present results for the ‘cleaned’ proxy $z_t = \alpha u_{it} + w_t$ (see Equation 14). Let us observe, however, that all results hold true also for the original proxy \tilde{z}_t, provided that $\beta(L) = 0$ in equation (13).

3.2.1 Nonrecoverable shocks

Let us consider the projection of ε_t onto the present and past of the proxy:

$$
\varepsilon_t = \psi(L)z_t + e_t.
$$

(15)

The following result holds.

Proposition 5. (Relative IRFs) The coefficients of the projection (15) are related to $q_i(L)$ appearing in (8) by the equation

$$
\psi(L)\sigma_z^2 = q_i(L)\alpha.
$$

(16)

Hence the impulse-response functions fulfil the relation

$$
b_i(L)\alpha = C(L)\psi(L)\sigma_z^2.
$$

(17)

Proof. Notice first that the residual of (15) e_t is orthogonal to z_{t-k} for $k \geq 0$ by construction; moreover, it is orthogonal to z_{t-k} for $k < 0$ since the future of z_t is orthogonal to both ε_{t-k} and z_{t-k}, $k \geq 0$. Hence e_t is orthogonal to z_t at all leads and lags. Therefore, by taking the cross-covariance generating functions of ε_t and z_t we get $G_{\varepsilon z}(L) = \psi(L)\sigma_z^2$. Similarly, from equation (5) we get $G_{\varepsilon u_i}(L) = q_i(L)$, $q_i(L)$ being the i-th column of $Q(L)$. But it is easily seen from (14) that $G_{\varepsilon z}(L) = \alpha G_{\varepsilon u_i}(L) = \alpha q_i(L)$. Equation (16) follows. Equation (17) is an immediate consequence of (8).

A consequence of Proposition 5 is that a possible strategy to estimate the impulse response functions is to perform the OLS regression of ε_t onto the present and past values of z_t until a maximum lag r to get an estimate of $\hat{\psi}(L) = \hat{\psi}(L)\hat{\sigma}_z^2$, say $\hat{\psi}(L)$, and estimate $b_i(L)\alpha$ as

$$
\hat{b}_i(L)\alpha = \hat{C}(L)\hat{\psi}(L)\hat{\sigma}_z^2 = \hat{\gamma}(L)\hat{\sigma}_z^2.
$$

(18)
Unfortunately, in the general case α cannot be estimated consistently so that we cannot estimate the impulse response functions corresponding to a unit-variance shock. However, we can estimate the relative IRFs, by normalising the IRFs obtained according to (18) by dividing by the effect on a pre-specified variable at a given lag, as suggested in Stock and Watson (2018). For instance we can normalise the impulse-response functions by dividing by the impact effect on the first variable:

$$\frac{\hat{b}_i(L)}{\hat{b}_{i1}(0)} = \frac{\hat{\gamma}(L)}{\hat{\gamma}_1(0)},$$

where $\hat{\gamma}_1(L)$ is the first entry of $\gamma(L)$. The IRFs are then the ones corresponding to a shock having impact effect 1 on the first variable.

Remark 5. (An alternative estimator for the IRFs) An alternative strategy for the estimation of the relative impulse response functions is to perform the opposite projection, i.e. the OLS projection of z_t onto the present and future of ε_t, until a maximum lead r, to get an estimate of $\delta(F) = \alpha d_i(F)$ (see Equation 6) and use the equality $b_i(L) = C(L)\Sigma \varepsilon d_i(L)$ (see Formula 8). This strategy however implies estimation of a single equation with $(r+1)n$ regressors as against the $r+1$ regressors of each one of the n equations in (15). Our simulations, not reported here, confirm that the procedure proposed above performs better than this alternative.

Plagborg-Møller and Wolf (2022) show that, while it is impossible to estimate the absolute response functions, it is nonetheless possible to compute upper and lower bounds for the parameter α; such upper and lower bounds can be derived in our setting and provide lower and upper bounds, respectively, for the absolute response functions $b_i(L) = \gamma(L)\sigma_z^2/\alpha$.

Proposition 6. (Upper and lower bounds) Letting $\overline{\alpha}^2$ and $\underline{\alpha}^2$ be the upper and the lower bound of α^2, respectively, we have

$$\alpha^2 \leq \sigma_z^2 = \overline{\alpha}^2$$

$$\alpha^2 \geq \alpha^2 \sup_{\theta \in (0, \pi]} R^2_r(\theta) = \alpha^4 \sup_{\theta \in (0, \pi]} \psi'(e^{i\theta})\Sigma^{-1}\psi(e^{-i\theta}).$$

(20)

Proof. The first inequality is easily obtained from (14). As for the second, from (16) we get $(\sigma_z^2)^2 \psi'(e^{i\theta})\Sigma^{-1}\psi(e^{-i\theta}) = R^2_r(\theta)\alpha^2$, where $R^2_r(\theta)$ is the measure of recoverability defined in Remark 2. Inequality (20) follows from $R^2_r(\theta) \leq 1$.

In practice, the upper bound can be easily estimated as $\hat{\alpha} = \hat{\sigma}_z$; the lower bound can
be estimated by taking the maximum of \(\hat{\psi}'(e^{j\theta})\hat{\Sigma}_\varepsilon^{-1}\hat{\psi}(e^{-j\theta}) \) over the Fourier frequencies \(\theta_f = f(2\pi/T) \), for \(f = 1, \ldots, T \), \(T \) being the number of observations:

\[
\hat{\alpha} = \hat{\sigma}^2 \max_{0 < f \leq T} \sqrt{\hat{\psi}'(e^{j\theta_f})\hat{\Sigma}_\varepsilon^{-1}\hat{\psi}(e^{-j\theta_f})}.
\]

Having an estimate of the two bounds, the lower bound for the absolute impulse response functions can be estimated as

\[
\hat{b}_i(L) = \hat{\gamma}(L)\hat{\sigma}_z^2/\hat{\alpha} = \hat{\gamma}(L)\hat{\sigma}_z = \hat{C}(L)\hat{\psi}(L)\hat{\sigma}_z.
\] (21)

Similarly, the upper bound for the impulse response functions can be estimated as

\[
\tilde{b}_i(L) = \hat{\gamma}(L)\hat{\sigma}_z^2/\hat{\alpha} = \frac{\hat{C}(L)\hat{\psi}(L)}{\max_{0 < f \leq T} \sqrt{\hat{\psi}'(e^{j\pi/T})\hat{\Sigma}_\varepsilon^{-1}\hat{\psi}(e^{-j\pi/T})}}.
\] (22)

The upper and lower bounds for \(\alpha \) can also be used to get upper and lower bounds for the fraction of variance accounted for by the shock of interest. We explain in detail how to perform variance decomposition in subsection 3.3 below.

3.2.2 Recoverable but nonfundamental shocks

If the shock is recoverable, we can estimate the absolute IRFs and the shock itself. Let us begin with the absolute IRFs. The following results holds.

Proposition 7. (Absolute IRFs) If \(u_{it} \) is recoverable, its (absolute) impulse response functions are given by the equation

\[
b_i(L) = \gamma(L)\sigma_z^2/\alpha = \frac{C(L)\psi(L)}{\sqrt{\sum_{k=0}^{\infty} \psi_k'\Sigma^{-1}_\varepsilon\psi_k}}.
\]

Proof. From (16) and Remark 2 we get

\[
\alpha^2 \sum_{k=0}^{\infty} q_{ik}'\Sigma_\varepsilon^{-1}q_{ik} = \alpha^2 R^2_r = (\sigma_z^2)^2 \sum_{k=0}^{\infty} \psi_k'\Sigma_\varepsilon^{-1}\psi_k.
\]

If \(u_{it} \) is recoverable, we have \(R^2_r = 1 \), so that

\[
\alpha = \sigma_z^2 \sqrt{\sum_{k=0}^{\infty} \psi_k'\Sigma_\varepsilon^{-1}\psi_k}.
\] (23)

The statement follows from Proposition 5.

\[\square\]
From the above proposition we see that \(b_i(L) \) can be estimated as

\[
\hat{b}_i(L) = \hat{\gamma}(L)\hat{\sigma}_z^2 / \hat{\alpha} = \frac{\tilde{C}(L)\hat{\psi}(L)}{\sqrt{\sum_{k=0}^{\infty} \hat{\psi}_k'\hat{\Sigma}_\epsilon^{-1}\hat{\psi}_k}}.
\]

(24)

Coming to the shock, let us consider the projection of \(z_t \) onto the space spanned by the present and the future of the VAR residuals:

\[
z_t = \delta'(F)\varepsilon_t + v_t.
\]

(25)

The following proposition holds.

Proposition 8. (The structural shock) *If \(u_{it} \) is recoverable, then*

\[
u_{it} = \frac{\delta'(F)\varepsilon_t}{\sqrt{\sum_{k=0}^{\infty} \delta'_k\hat{\Sigma}_\epsilon \delta_k}}.
\]

Proof. We have \(P(z_t|\mathcal{H}_t^+) = \alpha P(u_{it}|\mathcal{H}_t^+) + P(w_t|\mathcal{H}_t^+) \). But the latter projection is zero, since \(w_t \) is orthogonal to \(u_{j,t-k} \) \(j = 1, \ldots, q \), for any integer \(k \), so that it is orthogonal to \(\mathcal{H} \). Hence from (6) we get

\[
z_t = \delta'(F)\varepsilon_t + v_t = \alpha d'_i(F)\varepsilon_t + (\alpha s_{it} + w_t),
\]

where \(\alpha d'_i(F)\varepsilon_t \) is the projection and \(v_t = \alpha s_{it} + w_t \) is the residual. If \(u_{it} \) is recoverable, \(s_{it} = 0 \), so that \(v_t = w_t \) and \(\delta'(F)\varepsilon_t = \alpha u_{it} \). Since \(\alpha \) is the standard deviation of \(\alpha u_{it} \), the result follows. \(\square \)

From the above proposition we see that, if the shock is recoverable, it can be estimated as

\[
\hat{u}_{it} = \frac{\hat{\delta}'(F)\hat{\varepsilon}_t}{\sqrt{\sum_{k=0}^{\infty} \hat{\delta}'_k\hat{\Sigma}_\epsilon \hat{\delta}_k}}.
\]

(26)

Having an estimate of the shock, we can perform historical and variance decomposition as explained in Section 3.3 below.

Remark 6. (An alternative estimator for the shock) An alternative strategy for the estimation of the shock is to use the equality \(q_i(F) = \psi(F)\sigma_z / \alpha \) (see (17)), which, coupled with equation (9), gives \(\tilde{u}_{it} = \hat{\psi}(F)\hat{\Sigma}_\epsilon^{-1}\hat{\sigma}_z / \hat{\alpha} \).\(^{10}\)

\(^{10}\)We do not follow this alternative route since our simulations, available on request, show that the estimator \(\hat{u}_{it} \) performs better than \(\tilde{u}_{it} \).
Remark 7. (Measuring instrument validity) Having an estimate of the shock, we can measure the Instrument Relevance (IR), and test for it, by using the correlation coefficient of \hat{u}_{it} and z_t:

$$\hat{IR} = \text{corr}(\hat{u}_{it}, z_t).$$

3.2.3 Fundamental shocks

If we have fundamentalness, the following result holds.

Proposition 9. (IRFs and shocks under fundamentalness)

(i) Let us consider the projection equation $\varepsilon_t = \psi'z_t + \epsilon_t$. If u_{it} is fundamental, then

$$b_i(L) = \frac{C(L)\psi}{\sqrt{\psi'\hat{\Sigma}_e^{-1}\psi}}.$$

(ii) Let us consider the projection equation $z_t = \delta'\varepsilon_t + \epsilon_t$. If u_{it} is fundamental, then

$$u_{it} = \frac{\delta'\varepsilon_t}{\sqrt{\delta'\hat{\Sigma}_e\delta}}.$$

Proof. Let us first notice that, if u_{it} is fundamental, ε_t is orthogonal to z_{t-k} for $k > 0$, since z_{t-k} is a contemporaneous linear combination of ε_{t-k} (see Proposition 3) and ε_t is a vector white noise. It follows that in equation (15) the coefficients of lagged z_t's are all zero and $\psi(L) = \psi_0 = \psi$. Result (i) then follows from Proposition 7. For the same reason, in equation (25) the coefficients of leaded ε_t's are all zero and $\delta(F) = \delta_0 = \delta$. Result (ii) then follows from Proposition 8.

From Proposition 9 (i) we see that, if the shock is fundamental, we can estimate (15) without including the lags of z_t, i.e. we can estimate by OLS the projection $\varepsilon_t = \psi'z_t + \epsilon_t$ to get an estimate of ψ. The impulse-response functions can then be estimated as

$$\hat{b}_i(L) = \frac{\hat{C}(L)\hat{\psi}}{\sqrt{\hat{\psi}'\hat{\Sigma}_e^{-1}\hat{\psi}}}.$$ (27)

Notice that the above procedure is nothing else than the standard estimation procedure, which is usually applied without testing (see below for our proposed fundamentalness test).

Turning to estimation of the shock, by Proposition 9 (ii) we can estimate (25) including only the current ε_t among the regressors, in order to estimate δ; having $\hat{\delta}$, the unit variance
shock can be estimated as

\[\hat{u}_{it} = \frac{\hat{\delta}'\hat{\epsilon}_t}{\sqrt{\hat{\delta}'\hat{\Sigma}_\epsilon\hat{\delta}}}. \]

(28)

3.3 Historical and variance decomposition

In this subsection we discuss historical decomposition and variance decomposition. First we consider the case of recoverability, then we turn to nonrecoverability.

3.3.1 Recoverable shocks

We have shown that, if the shock of interest is recoverable, it can be estimated. Having an estimate of the shock and the corresponding impulse-response functions, historical decomposition can be performed in the standard way.

Variance decomposition is more problematic. The standard forecast error variance decomposition is only valid in the case of globally invertible models. This is because it is based on the variance of the forecast error, which depends on all structural shocks and the corresponding impulse response functions. Having an estimate of the IRFs of \(u_{it} \) we can of course compute the numerator of the ratio, but we cannot estimate the denominator without estimating the whole structural model.

Plagborg-Møller and Wolf (2022) replace the forecast error variance based on present and past values of \(u_t \) with the one based on present and past values of \(y_t \), which can be easily estimated, and name this ratio FVR. This ratio however is difficult to interpret, since the numerator and the denominator refer to forecast errors of different nature: on the one hand, the information set given by the structural shocks; on the other hand, the information set given by the VAR residuals, which, being less informative than the structural shocks, have larger forecast errors. Hence in general the FVR underestimates the variance contribution of the structural shock of interest. Having an estimate of all structural shocks, the sum of the variance contributions of these shocks, computed with the FVR, is smaller than 1, unless we have global fundamentalness (see Forni et al., 2019, Section 3.4).

To solve this problem, we suggest to use the variance decomposition given by the integral of the spectral density over suitable frequency bands. This decomposition has been proposed in Forni et al. (2019) for the case of partial fundamentalness and has become popular with Angeletos et al. (2020), where it is used to identify the so called Main Business-Cycle Shock. It is the variance decomposition referred to as VD in Plagborg-Møller and Wolf (2022). We recommend to use this variance decomposition even if fundamentalness of the shock of interest
is not rejected according to the test described in the following subsection, since of course we might have fundamentalness of this shock but not global fundamentalness; and, as stated above, standard variance decomposition requires global fundamentalness.

Let \(b_{ih}(L) \) be the \(h \)-th element of \(b_i(L) \). The total variance of the component of \(y_{ht} \) which is attributable to \(u_{it} \) can be computed as \(\int_0^\pi b_{ih}(e^{-j\theta})b_{ih}(e^{j\theta})d\theta/\pi \), where \(j \) denotes the imaginary unit. But we can also compute the variance on a specific frequency band \([\theta_1 \theta_2]\). If we are interested for instance in the variance of waves of business cycle periodicity, say between 8 and 32 quarters, the corresponding angular frequencies (with quarterly data) are \(\theta_1 = \pi/16 \) and \(\theta_2 = \pi/4 \) and the corresponding variance is \(\int_{\pi/16}^{\pi/4} b_{ih}(e^{-j\theta})b_{ih}(e^{j\theta})d\theta/\pi \). In practice, the integral must be approximated by averaging over a suitable frequency grid within the relevant interval (for instance, the Fourier frequencies \(\theta_f = f(2\pi/T) \), \(f \) being a natural number such that \(\theta_1(T/2\pi) \leq f \leq \theta_2(T/2\pi) \)).

As for the denominator, we need the spectral density of \(y_{ht} \), say \(\frac{1}{2\pi}S_h(\theta) \), where

\[
\hat{S}_h(\theta) = \hat{C}_h(e^{-j\theta})\hat{\Sigma}_c\hat{C}_h(e^{j\theta})',
\]

\(C_h(L) \) being the \(h \)-th row of the matrix \(C(L) \) appearing in the Wold representation. The total variance of \(y_{ht} \) on the frequency band \([\theta_1 \theta_2]\) is given by \(\int_{\theta_1}^{\theta_2} \hat{S}_h(\theta)d\theta/\pi \). Hence the contribution of \(u_{it} \) to the variance of \(y_{ht} \) on the frequency band \([\theta_1 \theta_2]\), say \(c_{ih}(\theta_1, \theta_2) \) can be estimated as

\[
\hat{c}_h(\theta_1, \theta_2) = \frac{\int_{\theta_1}^{\theta_2} \hat{b}_{ih}(e^{-j\theta})\hat{b}_{ih}(e^{j\theta})d\theta}{\int_{\theta_1}^{\theta_2} \hat{S}_h(\theta)d\theta}.
\]

We can also evaluate the fraction of total variance explained by the shock of interest at each frequency, i.e.

\[
\hat{c}_h(\theta) = \frac{\hat{b}_{ih}(e^{-j\theta})\hat{b}_{ih}(e^{j\theta})}{\hat{S}_h(\theta)}.
\]

We stress that the above formulas provide a variance decomposition for the variable itself. In this respect, its interpretation is more direct than the one of the standard variance decomposition, which refers to the variance of the forecast errors.\(^{11}\)

\(^{11}\)The relation linking the variance decomposition proposed here to the standard forecast error variance decomposition is not simple. However, it is easily seen that the spectral variance decomposition for the whole interval \([0 \pi]\) is equivalent to the forecast error variance decomposition at horizon infinity.
3.3.2 Nonrecoverable shocks

In the case of nonrecoverability we can only estimate $\gamma(L)\sigma^2_z = \alpha b_i(L)$ according to Equation (18). Hence we can get an estimate of

$$\alpha^2 c_{h}(\theta_1, \theta_2) = \frac{\sigma^4_z \int_{\theta_1}^{\theta_2} \gamma_h(e^{-j\theta})\gamma_h(e^{j\theta}) d\theta}{\int_{\theta_1}^{\theta_2} S_h(\theta) d\theta}.$$ (31)

Since α cannot be estimated, we cannot perform the variance decomposition. However, the upper and lower bounds for α^2 provided in subsection 3.2.1 provide respectively lower and upper bounds for $c_h(\theta_1, \theta_2)$. Precisely, we can estimate the lower bound as

$$\hat{c}_h(\theta_1, \theta_2) = \hat{\sigma}^2_z \int_{\theta_1}^{\theta_2} \hat{\gamma}_h(e^{-j\theta})\hat{\gamma}_h(e^{j\theta}) d\theta$$ (32)

and the upper bound as

$$\hat{c}_h(\theta_1, \theta_2) = \hat{\sigma}^4_z \int_{\theta_1}^{\theta_2} \hat{S}_h(\theta) d\theta$$ (33)

where $\theta_f = f(2\pi/T), f = 1, \ldots, T$. Finally, the lower and upper bounds for the frequency-by-frequency decomposition of equation (30) can be computed as

$$\hat{c}_h(\theta) = \frac{\hat{\sigma}^2_z \hat{\gamma}_h(e^{-j\theta})\hat{\gamma}_h(e^{j\theta})}{\hat{S}_h(\theta)}$$ (34)

$$\hat{c}_h(\theta) = \frac{\hat{\sigma}^4_z \hat{\gamma}_h(e^{-j\theta})\hat{\gamma}_h(e^{j\theta})}{\hat{\alpha}^2 \hat{S}_h(\theta)},$$ (35)

where $\theta_f = f(2\pi/T), f = 1, \ldots, T$.

3.4 Testing for recoverability and fundamentalness

In this subsection we propose a test for recoverability and a test for fundamentalness.

3.4.1 Recoverability test

In the proof of Proposition 8 we have seen that, if u_{it} is recoverable, then the projection in (25), $\delta'(F)\varepsilon_t$, is equal to αu_{it} and therefore is a white noise process. By contrast, if recoverability does not hold, $s_{it} \neq 0$ and the projection is not equal to αu_{it}. Being a Moving Average of
present and future VAR residuals, the projection will in general be autocorrelated.

Hence, to check whether the shock is recoverable or not, following a suggestion of Plagborg-Møller and Wolf (2022), we propose to test for zero serial correlation of the projection $\delta(F)\varepsilon_t$.\(^{12}\) Precisely, we propose to perform the OLS regression of z_t onto the present and future values of $\hat{\varepsilon}_t$, until a maximum lead r, to get an estimate of $\delta(F)$. Then apply the Ljung-Box Q-test to the estimated projection $\hat{\delta}(F)\hat{\varepsilon}_t$. The null hypothesis is recoverability (serial uncorrelation) and the alternative is nonrecoverability (serial correlation). In the following section we present a Monte Carlo exercise in which the autocorrelation test has a reasonably good power in rejecting recoverability when it is false.

If recoverability is rejected, we have two options: (1) estimate the relative impulse response functions and the upper and lower bounds for variance decomposition; (2) amend the VAR specification by adding variables (or use a FAVAR model in place of the VAR) and perform the test with the novel VAR specification.

It is worth noticing that the above test is valid under the maintained hypothesis that equation (13) is fulfilled. If it is not, the lags of u_{it} may appear in equation (14) and the test may reject serial uncorrelation even if the shock is recoverable. Hence the serial uncorrelation test is indeed a joint test about recoverability and instrument validity.

If recoverability is not rejected, we can estimate the ‘absolute’ response function, the unit variance shock and the variance decomposition as explained above.

3.4.2 Fundamentalness test

If u_{it} is fundamental with respect to y_t we see from Proposition 9 that in equation (25) $\delta_k = 0$ for all positive k and $\delta(F)$ reduces to $\delta_0 = \delta$. Hence, we can test for the null of fundamentalness against the alternative of nonfundamentalness by estimating (25) by OLS as explained above and perform a standard F-test for the joint significance of the coefficients of the leads. Notice that the test is valid even if recoverability does not hold; hence, in principle we can test directly for fundamentalness without testing for recoverability.\(^{13}\)

Remark 8. (Estimating the degree of fundamentalness) If fundamentalness does not hold, but recoverability does, we can estimate consistently the degree of fundamentalness R^2_f (see Remark 4). From Proposition 8 we see that the fraction of the variance of u_{it} explained by

\(^{12}\)In the approach of Plagborg-Møller and Wolf (2022), the practical implementation of the test is left for future research.

\(^{13}\)However, the recoverability test can provide a useful check in that, if recoverability is rejected, fundamentalness is rejected as well.
the current VAR residuals is $R^2_f = \delta_0'\Sigma\delta_0 / \sum_{k=0}^{\infty} \delta_k'\Sigma\delta_k$. Hence we can estimate R^2_f as

$\hat{R}^2_f = \hat{\delta}_0'\hat{\Sigma}\hat{\delta}_0 / \sum_{k=0}^{r} \hat{\delta}_k'\hat{\Sigma}\hat{\delta}_k$.

Stock and Watson (2018) and Plagborg-Møller and Wolf (2022) also propose invertibility tests based on the proxy. The latter paper, in particular, proposes to test whether the proxy Granger causes the VAR variables.\(^\text{14}\) By using Sims’ theorem, it can be shown that their method is asymptotically equivalent to ours. It would be interesting to compare the small sample performances of all these tests; this however is left for further research. In the following section we present a Monte Carlo exercise showing that the proposed F-test has a good performance in small samples.

If fundamentalness is not rejected, we can estimate the ‘absolute’ response function, the unit variance shock and the variance decomposition as explained in the previous subsections.

3.5 Inference

For inference purposes, we suggest the following bootstrap procedure. For simplicity, we assume that the sample size T is the same for z_t and y_t. The generalisation to the case of different time spans is straightforward.

First, draw with reintroduction $T - (p + r)$ integers $i(t)$, $t = 1, \ldots, T - (p + r)$, uniformly distributed between 1 and $T - (p + r)$, and construct the artificial sequences of shocks $\epsilon^1_t = \hat{\epsilon}_{i(t)}$ and $v^1_t = \hat{v}_{i(t)}$, $t = p + 1, \ldots, T - r$, \hat{v}_t being the estimated residual of regression (25). Set the final conditions $\epsilon^1_t = \hat{\epsilon}_t$ for $t = T - r + 1, \ldots, T$. Repeat the procedure H times to get the sequences ϵ^h_t, $t = p + 1, \ldots, T$ and v^h_t, $t = p + 1, \ldots, T - r$, for $h = 1, \ldots, H$.

Second, compute y^h_t, $h = 1, \ldots, H$, according to the VAR equation (4). Precisely, set the initial conditions $y^h_t = y_t$, $t = 1, \ldots, p$, for all h. Then compute

$$y^h_t = -\sum_{k=1}^{p} \hat{A}_k y^h_{t-k} + \epsilon^h_t$$

for $t = p + 1, \ldots, T$. As for the proxy, set the initial and final conditions $z^h_t = z_t$, $t = 1, \ldots, p$.

\(^\text{14}\)Fundamentalness test based on Granger causality have been previously proposed, in the context of standard VAR identification, in Giannone and Reichlin (2006) and Forni and Gambetti (2014).
and \(t = T - r + 1, \ldots, T \), for all \(h \). Then compute

\[
z^h_t = \sum_{k=0}^{r} \delta_k^h \varepsilon_{t+k}^h + \upsilon_t^h
\]

for \(t = p + 1, \ldots, T - r \).

Finally, repeat the estimation procedure for any one of the artificial data sets \(y_t^h, \ldots, y_T^h \), \(h = 1, \ldots, H \) to get the sequences of absolute IRFs \(b^h_t(L), h = 1, \ldots, H \), or the corresponding sequence of relative IRFs. Compute the confidence band as usual, by taking appropriate percentiles of the distribution of \(b^h_{ik} \), for each lag \(k \).

4 The proposed procedure

On the basis of the above considerations and results, we propose the following estimation and testing procedure.

1. As a first step, regress the available proxy \(\tilde{z}_t \) onto the first \(m \) lags (notice that \(m \) is not necessarily equal to \(p \)) of \(\tilde{z}_t \) itself and a set of regressors \(x_t \) — which can in principle be different from \(y_t \) — to get an estimate of the residual \(z_t \), say \(\hat{z}_t \). If the \(F \)-test does not reject the null that the coefficients of past \(\tilde{z}_t \)'s are all zero, i.e. \(H_0 : \beta(L) = 0 \), step 1 is unnecessary and can be skipped.

2. Estimate a \(\text{VAR}(p) \) with OLS to obtain \(\hat{A}(L), \hat{C}(L) = \hat{A}(L)^{-1}, \hat{\varepsilon}_t \) and \(\hat{\Sigma}_\varepsilon \).

3. Regress with OLS the proxy \(\hat{z}_t \) on the current value and the first \(r \) leads of the Wold residuals:

\[
\hat{z}_t = \sum_{k=0}^{r} \delta_k \hat{\varepsilon}_{t+k} + \hat{\upsilon}_t = \hat{\delta}(F)\hat{\varepsilon}_t + \hat{\upsilon}_t.
\]

Save the fitted value of the above regression, let us call it \(\hat{\eta}_t \). Test for invertibility by performing the \(F \)-test for the null \(H_0 : \delta_1 = \delta_2 = \cdots = \delta_r = 0 \) against the alternative that at least one of the coefficients is non-zero.

4. Case 1: invertibility is not rejected. In this case estimate (25) without the leads of \(\varepsilon_t \) to get an estimate of \(\delta \) and estimate the unit-variance shock according to (28). To estimate the corresponding IRFs, apply the standard procedure, i.e. estimate (15) without the lags of \(z_t \) to get \(\hat{\psi} \) and estimate the IRFs according to (27). Estimate the variance decomposition according to equation (29) or (30).
4’. Case 2: invertibility is rejected. In this case perform the recoverability test by testing for the null of serial uncorrelation of the fitted value $\hat{\eta}_t$ by using the Ljung-Box Q-test.

5. Case 1: recoverability is not rejected. In this case estimate the unit-variance shock according to (26) and the corresponding IRFs according to (24). Estimate the variance decomposition according to equation (29) or (30). Historical decomposition can be performed in the standard way.

5’. Case 2: recoverability is rejected. In this case, either amend the VAR specification and repeat steps 2-4, or estimate (15) with a maximum lead r and the ‘relative’ IRFs according to (19). Estimate lower and upper bounds according to (21) and (22) and the corresponding variance contributions according to (32) and (33) or (34) and (35).

Notice that the regression in step 3 (or 4) is necessarily a truncated version of the infinite-lead (infinite-lag) regression of equation (25) (or 15). However the approximation works since the coefficients tend to shrink the further you go into the future (or the past).

Let us stress that the above ‘external proxy’ procedure is more flexible than the ‘internal proxy’ method, recently re-proposed in Plagborg-Møller and Wolf (2021), and the VARX method, proposed in Paul (2020). This is mainly because the sample span of the proxy can be different from the sample span of the VAR (or the VARX). Moreover, with respect to the VAR method, our method is more flexible because the number of lags m and the regressors x_t used in step 1 of the above procedure are not necessarily equal to the number of lags p and the regressors y_t used in the VAR. In particular, if the regression in step 1 is not significant, or the coefficient in the lags of the proxy are not significant, the proxy can be used without treatment ($m = 0$): an option that we do not have when including the proxy into the VAR model. Finally, notice that the number of lags r used in the regression of the VAR residuals ε_t onto the current and lagged proxy can be different from p – the number of lags used in the VAR.

5 A simulated economy with fiscal foresight

In this section, we assess the small sample performance of the proposed estimates and tests in a series of Monte Carlo exercises.

15 The internal proxy method consists in including the proxy into the VAR model, ordered first, and identifying the shock as the first one in a Cholesky scheme; the VARX method consists in estimating a VARX with the proxy used as the exogenous variable.
5.1 Simulation 1: a recoverable shock

In our first simulation exercise we use the fiscal foresight model of Leeper et al. (2013) (LWY henceforth). The model is a simple Real Business Cycle model with log preferences, inelastic labor supply and two shocks: $u_{a,t}$, a technology shock, and $u_{\tau,t}$, a tax shock. A nonstandard feature of the model is the fact that the tax shocks are announced to the agents before being implemented, thus inducing fiscal foresight. The equilibrium capital accumulation is

$$k_t = \alpha k_{t-1} + a_t - \kappa \sum_{i=0}^{\infty} \theta^i E_t \tau_{t+i+1}$$ \quad (36)$$

where $0 < \alpha < 1$, $0 < \theta < 1$, $\kappa = (1 - \theta)\tau/(1 - \tau)$, τ being the steady state tax rate, $0 \leq \tau < 1$, and a_t, k_t and τ_t are the log deviations from the steady state of technology, capital and the tax rate, respectively. Technology and taxes are given by

$$a_t = u_{a,t}$$
$$\tau_t = u_{\tau,t-2},$$

where $u_{\tau,t}$ and $u_{a,t}$ are i.i.d. shocks. Solving for k_t we obtain the following equilibrium MA representation for capital and taxes:

$$\begin{pmatrix} \tau_t \\ k_t \end{pmatrix} = \begin{pmatrix} L^2 & 0 \\ -\kappa(L + \theta) & 1 - \alpha L \\ 1 - \alpha L & 1 - \alpha L \end{pmatrix} \begin{pmatrix} u_{\tau,t} \\ u_{a,t} \end{pmatrix} = B(L)u_t.$$ \quad (37)$$

The determinant of the above matrix vanishes for $L = 0$; hence the shocks are not fundamental. However, they are recoverable, since the system is square (see Remark 1). In particular, the tax shock is equal to taxes two periods ahead: $u_{\tau,t} = \tau_{t+2}$.

We generate 1000 different dataset with 240 time observations from model (37) using the parameterization in Leeper et al. (2013): $\alpha = 0.36$, $\theta = 0.2673$ and $\tau = 0.25$ and $u_t \sim N(0, I)$.

The proxy is generated according to the equation

$$\tilde{z}_t = u_{\tau,t} + 0.5z_{t-1} + 0.4k_{t-1} - 0.6\tau_{t-1} + v_t,$$

where $v_t \sim iid \mathcal{N}(0, 1)$, where the parameters are arbitrarily chosen. For each dataset, we test for invertibility and recoverability, and estimate the tax shock along with its response functions as explained in the previous section, by setting $p = m = 2$, $r = 0$ and $p = m = 2$, $r = 4$. Invertibility is correctly rejected in all cases. Recoverability is (wrongly) rejected at
the 5% level in 10% of the cases, showing that the test is somewhat oversized in small samples with this DGP.

Figure 1: Simulation 1: LWY fiscal foresight model (recoverable shock). Left panels: IRF estimation with $r = 0$ (standard method). Middle panels: IRF estimation with $r = 4$. Right panels: estimation of the variance contribution according to equation (30), expressed in percentage terms. Upper and middle panels: red dashed line, true response functions and variance decomposition; black solid line, mean of the 1000 estimated response function and variance decompositions; grey area, 16th to 84th percentiles. Lower panels: frequency distribution of the correlation coefficients between the estimated shock and the true shock. Estimation results are shown in Figure 1. The first column shows the estimates obtained with the standard method ($r = 0$). The upper and middle panels show the estimated response functions: the black solid line is the mean across the 1000 experiments; the grey area shows the estimates between the 16th and the 84th percentiles; the red dashed lines are the true IRFs. The bottom panel shows the frequency distribution of the correlation coefficients between the estimated shock and the true shock. As expected, the estimates are dramatically wrong, since $r = 0$ requires invertibility, which does not hold in this case.
The second column shows the estimates obtained with $r = 4$. Here the estimates are very good, both because black and red lines are almost perfectly overlapping, and because the grey area is not large, particularly for taxes. The correlations coefficients between the estimated shock and the true shock are very close to 1.

The third column shows the variance decomposition obtained according to equation (30), expressed in percentage terms. The estimates are fairly good, albeit somewhat less precise than those of the IRFs.

5.2 Simulation 2: a nonrecoverable shock

The second Monte Carlo exercise adopts the LWY model of the previous subsection, modified by adding a demand shock that affects taxes. Precisely, the data generating process is now

$$
\begin{pmatrix}
\tau_t \\
k_t
\end{pmatrix} = \begin{pmatrix}
L^2 & 0 & \frac{1}{1-\gamma L} \\
-k(L + \theta) & \frac{1}{1-\gamma L} & 0 \\
\frac{1}{1-\alpha L} & 0 & 0
\end{pmatrix} \begin{pmatrix}
u_{\tau,t} \\
u_{a,t} \\
u_{d,t}
\end{pmatrix} = B(L)u_t.
$$

We arbitrarily set $\gamma = 0.7$. Now the system is no longer square and the tax shock is no longer recoverable. As in the previous exercise, we generate 1000 different dataset with 240 time observations. As in the previous subsection, the proxy is generated according to the equation

$$
\tilde{z}_t = u_{\tau,t} + 0.5z_{t-1} + 0.4k_{t-1} - 0.6\tau_{t-1} + v_t,
$$

where $v_t \sim iid \mathcal{N}(0, 1)$. For all estimates we set $p = m = 2$ and $r = 4$.

First, we test for recoverability and fundamentalness. Invertibility is correctly rejected in all cases; recoverability is correctly rejected in 85.5% of the cases. Then we estimate the relative IRFs of the tax shock. Since $b_{11}(0) = 0$, the normalisation in equation (19) cannot be used, so that we normalise by dividing by $\hat{\gamma}_{1,2}$, i.e. by imposing that the effect on taxes at lag 2 is equal to 1. In addition, we estimate upper and lower bounds for the absolute IRFs, according to equations (22) and (21). Finally, we compute the lower and upper bounds for the variance decomposition according to equations (34) and (35).

In the left panels of Figure 2, one can observe that the estimates of the relative IRFs are consistently very close to the true relative IRFs.\(^{16}\) In the middle panes are reported the estimated upper and lower bounds for the IRFs. The black solid lines are the average upper bounds; the blue solid lines are the average lower bounds; as before, the red dashed lines

\(^{16}\)Here we do not report results for the shock, since the shock cannot be estimated consistently.
are the true IRFs and the shaded areas are bounded by the 16th and the 84th percentile of the IRFs distribution. Similarly, in the right panels are reported the upper and lower bounds for the explained variance, decomposed by frequency, expressed in percentage terms (equations (34)-(35)). The basic message is that upper and lower bounds provide some valuable information about the importance of the shock for the two variables.

5.3 Simulation 3: fundamentalness test

The goal of our third experiment is to evaluate the small-sample performance of the fundamentalness test. In this simulation the DGP for \(y_t \) is the ARMA(1,1) model

\[
(I - AL) \begin{pmatrix} y_{1t} \\ y_{2t} \\ y_{3t} \end{pmatrix} = (I - BL) \begin{pmatrix} u_{1t} \\ u_{2t} \\ u_{3t} \end{pmatrix},
\]
where \(A \) and \(B \) are generated as follows. First, we produce a \(3 \times 3 \) matrix with random entries, uniformly distributed in the interval \((0, 1)\). Next we divide all entries by the maximum eigenvalue. Finally, to generate \(A \) we multiply by 0.5, whereas to generate \(B \) we multiply by \(\beta \), with \(\beta = 0.8, 1.1, 1.2, 1.3, 1.4, 1.5 \). Hence the maximum eigenvalue of \(A \) is 0.5, whereas the maximum eigenvalue of \(B \) is \(\beta \), implying that \(I - AL \) is invertible, whereas \(I - BL \) is invertible only when \(\beta = 0.8 \). For the other values of \(\beta \) it is not, and the larger is \(\beta \) the larger is the departure from invertibility. The shocks are again \(u_t \sim iid \mathcal{N}(0, I_3) \). The proxy is generated as in Simulations 1 and 2.

Again, we generate 1000 dataset with \(T = 240 \) for each value of \(\beta \), and estimate the shock \(u_{1t} \) as described in the previous section, using \(p = m = 6 \) and \(r = 1, 2, 3, 4, 5 \). Then we test for fundamentalness as explained in the previous section.

<table>
<thead>
<tr>
<th>(r)</th>
<th>(\beta = 0.8)</th>
<th>(\beta = 1.1)</th>
<th>(\beta = 1.2)</th>
<th>(\beta = 1.3)</th>
<th>(\beta = 1.4)</th>
<th>(\beta = 1.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.1</td>
<td>36.9</td>
<td>68.3</td>
<td>87.2</td>
<td>95.9</td>
<td>98.3</td>
</tr>
<tr>
<td>2</td>
<td>6.5</td>
<td>48.9</td>
<td>79.2</td>
<td>94.4</td>
<td>98.9</td>
<td>99.5</td>
</tr>
<tr>
<td>3</td>
<td>7.1</td>
<td>52.4</td>
<td>82.8</td>
<td>96.1</td>
<td>99.5</td>
<td>99.7</td>
</tr>
<tr>
<td>4</td>
<td>8.1</td>
<td>53.0</td>
<td>83.8</td>
<td>96.0</td>
<td>98.8</td>
<td>99.7</td>
</tr>
<tr>
<td>5</td>
<td>7.9</td>
<td>53.5</td>
<td>84.6</td>
<td>95.4</td>
<td>98.7</td>
<td>99.7</td>
</tr>
</tbody>
</table>

Table 1: Results of Simulation 3. Percentage of rejection of the fundamentalness test over 1000 replications for different values of the parameter governing invertibility.

Table 1 shows the percentage of rejections obtained at the 5% level with each \(r, \beta \) configuration. In the first column we have \(\beta = 0.8 \), so that and we have invertibility. Hence the percentage of rejections shows the empirical size of the test, which is reasonably close to the theoretical value (5%), even if there is some evidence that the test is oversized for this DGP. In the other columns we do not have invertibility; hence the percentage of rejections shows the power of the test. With \(\beta = 1.1 \) the model is close to invertibility, so that the power is relatively low; but with \(\beta = 1.2 \) the test exhibits a reasonably good power, which becomes excellent for \(\beta = 1.3, 1.4, 1.5 \).

5.4 Simulation 4: recoverability test

In our last Monte Carlo exercise, we evaluate the performance of the recoverability test. The DGP is given by the ‘short’ model
\[
\begin{pmatrix}
y_{1t} \\
y_{2t}
\end{pmatrix} = B(L)u_t = \begin{pmatrix}
\sum_{j=0}^{4} \psi_j L^j \\
1 - \psi_5 L \\
\psi_6 L \\
1 - \psi_7 L
\end{pmatrix} \begin{pmatrix}
0 & \beta \\
1 + \psi_8 L \\
1 - \psi_7 L
\end{pmatrix} \begin{pmatrix}
u_{1t} \\
u_{2t} \\
u_{3t}
\end{pmatrix}.
\]

The shocks are \(u_t \sim iid \mathcal{N}(0, I_2) \). We set \(\psi_0 = 0.1, \psi_1 = 0.3, \psi_2 = 0.5, \psi_3 = 1, \psi_4 = -0.3, \psi_5 = 0.7, \psi_6 = 1, \psi_7 = 0.8, \psi_8 = 0.5 \). Moreover, we set \(\beta = \sqrt{(\sigma_1^2 + \sigma_2^2)\theta/(1-\theta)} \), where \(\sigma_1^2 \) and \(\sigma_2^2 \) are the variances of the components of \(y_{1t} \) and \(y_{2t} \), respectively, driven by \(u_{1t} \) and \(u_{2t} \).

In this way, the parameter \(\theta \) is the fraction of the total variance of the variables explained by the shock \(u_{3t} \), so that the larger is \(\theta \) the larger is the deviation of the model from recoverability. We set \(\theta = 0, 0.2, 0.4, 0.6, 0.8 \) and test for serial correlation of \(\hat{u}_{1t} \) using the Liung-Box Q-test with maximum lag 6, 12, 18, and 24.

Table 2 shows the percentage of rejections over 1000 experiments. In the first column we have \(\theta = \beta = 0 \), so that the model is square and we have recoverability (see Remark 1). Hence the percentage of rejections shows the empirical size of the test, which is somewhat undersized for this DGP (the theoretical size is 5%). In the other columns we do not have recoverability; hence the percentage of rejections shows the power of the test. Of course, with small values of \(\theta \) the power is relatively low; but with \(\theta \geq 0.4 \) we have a fairly good power of the test, especially when the maximum lag is set to 6.

<table>
<thead>
<tr>
<th>Recoverability parameter</th>
<th>(\theta = 0)</th>
<th>(\theta = 0.2)</th>
<th>(\theta = 0.4)</th>
<th>(\theta = 0.6)</th>
<th>(\theta = 0.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>max lag = 6</td>
<td>2.9</td>
<td>68.1</td>
<td>77.2</td>
<td>86.9</td>
<td>93.6</td>
</tr>
<tr>
<td>max lag = 12</td>
<td>2.9</td>
<td>51.6</td>
<td>65.5</td>
<td>80.7</td>
<td>88.3</td>
</tr>
<tr>
<td>max lag = 18</td>
<td>3.7</td>
<td>47.9</td>
<td>59.7</td>
<td>73.7</td>
<td>83.1</td>
</tr>
<tr>
<td>max lag = 24</td>
<td>4.0</td>
<td>45.5</td>
<td>56.6</td>
<td>69.4</td>
<td>80.7</td>
</tr>
</tbody>
</table>

Table 2: Results of Simulation 4. Percentage of rejection of the recoverability test over 1000 replications for different values of the parameter governing recoverability.

6 The effects of monetary policy shocks

We apply our proposed IV methodology to the identification of monetary policy shocks. We first show that the monetary policy shocks identified with standard high-frequency surprises at the short end of the yield curve are likely to be nonfundamental but recoverable, in a few routinely used VAR specifications. We then show that, a standard IV procedure that assumes invertibility delivers price and output puzzles. Conversely, when using our suggested
procedure for noninvertible shocks, we get results in line with the textbook effects of monetary policy.

6.1 Data, VAR specification, instruments

Our baseline VAR specification includes three variables at monthly frequency: the 1-year government bond rate (1YB), industrial production (IP) in growth rates and CPI inflation (Specification I). We also present results for two additional specifications, one including Gilchrist and Zakrajšek (2012)’s excess bond premium (EBP) (Specification II); the other including EBP along with the mortgage spread (MS) and the commercial paper spread (CPS) (Specification III). We use 1YB as the policy indicator variable.¹⁷

Our benchmark sample spans the period 1983:1-2008:12. In a robustness exercise, we consider three additional time samples: 1987:8-2008:12, 1979:7-2008:12, and 1979:7-2019:6.¹⁸ The trending variables, CPI and IP, are taken in differences since these variables are unlikely to be cointegrated. In a robustness exercise, we consider a VAR specification with all the trending variables in levels.

The instrument for monetary policy shocks consists of the Gürkaynak et al. (2005)’s intra-daily monetary policy surprises triggered by Federal Open Market Committee (FOMC) decisions in the three month ahead monthly Fed Funds futures (FF4), as proposed of Gertler and Karadi (2015) (GK from now on). The use of this instrument provides scope for testing our approach to noninvertibility since, as discussed in Gertler and Karadi (2015), surprises in futures with a three month maturity are likely to capture both conventional monetary policy shocks, and shocks to forward guidance about the path rate at short horizon. We ‘clean’ the instrument by regressing it onto its own lags and the lags of the three variables of Specification I, using 6 lags.¹⁹ The instrument turns out to be relevant, with a measure of relevance \hat{IR} between 0.4 and 0.6 depending on the specification adopted.

¹⁷We use monthly data taken from the FRED-MD data set of McCracken and Ng (2015). Specifically, we use industrial production (FRED mnemonic INDPRO, IP from now on), taken in log differences, the CPI index (FRED mnemonic CPIAUCSL), taken in log differences, and the 1-year government bond rate (FRED mnemonic GS1, 1YB from now on). In addition, we use the excess bond premium (EBP), the mortgage spread (MS) and the commercial paper spread (CPS) taken from the replication files of Gilchrist and Zakrajšek (2012).

¹⁸The samples starting in 1983:1 and 1987:8 are chosen in line with Sims and Zha (2006). Moreover, 1979:7 is the beginning of Volcker’s mandate; 1987:8 is the beginning of Greenspan’s mandate; 2008:12 is the first month in which the 1-year bond rate falls below 1%, so that cutting our sample to 2008:12 excludes the zero lower bound period.

¹⁹The regression is significant at the 5% level and the residual is serially uncorrelated according to the Ljung-Box Q-test.
6.2 Fundamentalness and recoverability

<table>
<thead>
<tr>
<th>Number of leads r</th>
<th>r = 4</th>
<th>r = 5</th>
<th>r = 6</th>
<th>r = 7</th>
<th>r = 8</th>
<th>r = 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p = 6)</td>
<td>0.008</td>
<td>0.028</td>
<td>0.002</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>(p = 9)</td>
<td>0.016</td>
<td>0.051</td>
<td>0.003</td>
<td>0.003</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>(p = 12)</td>
<td>0.011</td>
<td>0.045</td>
<td>0.003</td>
<td>0.002</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Specification II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p = 6)</td>
<td>0.080</td>
<td>0.195</td>
<td>0.027</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>(p = 9)</td>
<td>0.180</td>
<td>0.351</td>
<td>0.034</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>(p = 12)</td>
<td>0.221</td>
<td>0.457</td>
<td>0.059</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Specification III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p = 6)</td>
<td>0.060</td>
<td>0.184</td>
<td>0.089</td>
<td>0.003</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>(p = 9)</td>
<td>0.184</td>
<td>0.362</td>
<td>0.220</td>
<td>0.020</td>
<td>0.002</td>
<td>0.003</td>
</tr>
<tr>
<td>(p = 12)</td>
<td>0.215</td>
<td>0.353</td>
<td>0.250</td>
<td>0.060</td>
<td>0.031</td>
<td>0.027</td>
</tr>
</tbody>
</table>

Table 3: \(P \)-values for the fundamentalness test, for different values of \(p \) and \(r \). Specification I includes the 1-year bond rate (1YB), industrial production growth (IP) and CPI inflation (CPI). Specification II includes 1YB, IP, CPI and the excess bond premium (EBP). Specification III includes 1YB, IP, CPI, EBP, the mortgage spread and the commercial paper spread. The proxy is the one of Gertler and Karadi (2015).

We start our analysis by applying our fundamentalness test (Table 3) to verify whether our specifications turns out to be fundamental or not when using our baseline instrument GK. The main takeaway is that the results obtained with the standard proxy-SVAR approach in the monetary policy literature should be taken with caution, since the VAR specification might be affected by nonfundamentalness. In fact, results in Table 3 show that, for \(r \geq 6 \), fundamentalness is rejected at the 1% level with Specifications I and II and is rejected either at the 5% level or the 10% level with Specification III. The degree of fundamentalness \(\hat{R}_f^2 \) is below 0.5 for all specification for \(r \geq 6 \). Similar results (not shown here) are obtained with the MPI instrument. We conclude that the inclusion of financial variables in the VAR may not be sufficient to solve fundamentalness problems.

Yet, the good news is that the shock is recoverable. The \(p \)-values of the Ljung-Box Q-test for serial correlation of the estimated monetary policy shock, for our three specifications, with different values of \(p \) and \(r \) (maximum lag 24) are in Table 4. The result is that recoverability cannot be rejected at the 5% level for most parameter configurations. Similar results (not shown here) are obtained with the MPI instrument.\(^{20}\) We conclude that, at least for our time

\(^{20}\)For the MPI instrument recoverability is obtained only with \(r \geq 6 \).
Table 4: P-values for the recoverability test, for different values of \(p \) and \(r \). Specification I includes the 1-year bond rate (1YB, industrial production growth (IP) and CPI inflation (CPI). Specification II includes 1YB, IP, CPI and the excess bond premium (EBP). Specification III includes 1YB, IP, CPI, EBP, the mortgage spread and the commercial paper spread. The proxy is the one of Gertler and Karadi (2015).

span, the monetary policy shock is recoverable, even with the three-variable Specification I, and that financial variables are not necessarily needed to find the policy shock.

6.3 The three-variable VAR

In this subsection we compare the impulse response functions obtained with the standard method with those obtained with our proposed method. We choose Specification I with the GK instrument as our benchmark. We set the number of lags in the VAR equal to 12 (\(p = 12 \)) and the number of leads of the VAR residuals included in the regression of the proxy equal to 6 (\(r = 6 \)). In a robustness exercise, we try different values of \(p \) and \(r \).\(^{21}\)

The basic insight delivered by our exercise is that by incorrectly assuming invertibility without testing one can get dramatically misleading results. On the contrary, when the proposed procedure is applied, the estimation delivers results in line with textbook effects of monetary policy, even with a small VAR, and not including the EBP or other financial variables.

The results from the baseline model are reported in Figure 3. All responses are normalised

\(^{21}\)For simplicity, here we do not make any attempt at cleaning the instrument from the information effects recently discussed in the literature (see for example Jarocinski and Karadi, 2020 and Miranda-Agrippino and Ricco, 2021). This is left for future research.
to have an impact effect of 100 basis on the 1-year bond rate. The top panels show the estimated impulse response functions obtained with $r = 0$, i.e. the standard proxy SVAR procedure. The response of 1YB is hump-shaped and very persistent (the zero line is not reached after 3 years). Both prices and industrial production significantly increase after a tightening shock, so that we have both a large price puzzle and a large real activity puzzle.

The bottom panels show the result obtained with our proposed procedure with $r = 6$. Results are completely different and much more plausible. The reaction of the policy variable is much less persistent: after the significant impact effect it reaches the zero line in about 4 months and further on it is no longer significant. Both inflation and output puzzles disappear: prices and industrial production reduce significantly after an impact effect which is very close to zero. The effects on real activity are no longer significant after about one year, showing that the effects of monetary policy on real activity are transitory, in line with the consensus.

In the appendix, Section B, we report several robustness checks. The overall conclusion is that the above results are reasonably robust.

6.4 Medium-size VAR specifications

In this subsection we show results for Specification II, including EBP, and Specification III, including EBP, the mortgage spread and the commercial paper spread. We set $p = 12$, $r = 0$ and $r = 6$ as in the previous subsection. We compare the results with Specifications I and II.
Our main conclusion is that, when changing the VAR specification, results obtained with the standard method change dramatically. On the other hand, when using our proposed method, results are reasonably robust.

Figure 4: IRFs for Specification III (1YB, CPI inflation, IP growth, EBP, MS CPS). The instrument is GK. Red line: point estimates; blue line: point estimates for Specification II; black line: point estimates for Specification I. Top panels: estimated response functions with $p = 12$, $r = 0$ (standard method). Bottom panels: estimated response functions with our proposed method, $p = 12$, $r = 6$. Pink shaded area: 68% confidence bands for Specification III.

In the top panels, Figure 4 reports the case $r = 0$ (standard method). The red lines are the point estimates for Specification III; the pink shaded areas are the confidence bands. The black lines are the point estimates for Specification I; the blue lines are the point estimates for Specification II. Results appear to be very sensitive to the set of variables included in the VAR. In Specification II, the effects on prices and real activity are essentially zero. In Specification III, the sign of the IRFs of prices and industrial production are negative, and the puzzles of Specification I disappear. Still, the effects are quantitatively small, especially for prices, and not significant.

The bottom panels report results for our method with $r = 6$. The IRFs of the first three variables are similar to those obtained with Specifications I and II. The reaction of prices is large and significant. The reaction of IP is barely significant, since the confidence bands are very large, however the point estimates consistently show a sizeable reduction of about 3-5 percentage points of production after one year, depending on the VAR specification.
6.5 Variance decomposition

In this subsection we show the variance decomposition of CPI inflation and industrial production growth obtained with our VAR specifications \((p = 12, r = 6) \). We report results for waves of periodicity 2-18 months (short run), 18-96 month (business cycle) and 2+ months (overall variance). The result is that monetary policy has sizeable effects on both prices and real economic activity.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Waves of periodicity</th>
<th>2 - 18 months</th>
<th>18 - 96 months</th>
<th>2+ months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPI inflation</td>
<td>19.2</td>
<td>27.6</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13.5—29.1)</td>
<td>(12.8—64.2)</td>
<td>(16.2—35.1)</td>
<td></td>
</tr>
<tr>
<td>IP growth</td>
<td>27.7</td>
<td>33.8</td>
<td>28.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(19.1—36.4)</td>
<td>(13.1—55.4)</td>
<td>(20.0—37.6)</td>
<td></td>
</tr>
<tr>
<td>Specification II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPI inflation</td>
<td>12.3</td>
<td>12.9</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10.4—23.1)</td>
<td>(9.7—45.1)</td>
<td>(13.4—26.8)</td>
<td></td>
</tr>
<tr>
<td>IP growth</td>
<td>20.3</td>
<td>29.5</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15.8—28.2)</td>
<td>(11.4—51.5)</td>
<td>(16.7—31.3)</td>
<td></td>
</tr>
<tr>
<td>Specification III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPI inflation</td>
<td>12.5</td>
<td>10.3</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10.2—19.5)</td>
<td>(6.9—34.2)</td>
<td>(11.2—21.5)</td>
<td></td>
</tr>
<tr>
<td>IP growth</td>
<td>16.1</td>
<td>5.2</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(12.2—22.2)</td>
<td>(4.2—22.0)</td>
<td>(11.2—20.7)</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Percentage of variance accounted for by the monetary policy shock, for waves of periodicity 2-18 months (short run), 18-96 months (business cycle), 2+ months (overall variance). 68% confidence bands in brackets.

Table 5 reports the point estimates and the 68% confidence bands (in brackets) for the percentage of variance explained by the monetary policy shock. The estimates of the short-run volatility contributions range from 12.3% to 19.2% for inflation and from 16.1% to 27.7% for industrial production growth. As for the overall variance, the estimates range from 12.5% to 20.8% for inflation and from 13.0% to 28.3% for industrial production.

Focusing on Specification III, which provides the smallest estimates, we see that the monetary policy shocks explains 12.5% of the overall variance of inflation and 13% of the overall variance of production, with the 68% confidence bands ranging between a minimum of around 10% and a maximum of around 20% for both variables.

The above results are at odds with what found in Plagborg-Møller and Wolf (2022), where
the contribution of policy shocks to prices fluctuations is found to be very small. A possible explanation is that, as observed in subsection 3.3, the measure of variance contribution used in Plagborg-Møller and Wolf (2022) tends to under-weigh the variance contributions of structural shocks.

7 Concluding remarks

In this paper we propose a new estimation procedure for structural VARs with an external instrument. The procedure includes a test for invertibility and a test for recoverability, a method to estimate the relative impulse response functions when the shock is not recoverable and a method to estimate the absolute response functions and the shock itself when the shock is recoverable but not invertible. The procedure reduces to the standard method when the shock is invertible. Results reported in this paper indicate that all procedures work remarkably well under simulation, when the sample size is comparable with those typical of macroeconomic empirical analyses.

An application to monetary policy shocks, using the instrument of Gertler and Karadi, 2015, indicates that the policy shocks are not invertible in a few popular monetary policy VAR specifications. While the standard method produces puzzling results, our procedure delivers results in line with textbook effects. Finally, we find that the policy shock is recoverable, so that we can estimate its variance contributions. Variance decomposition shows that monetary policy has sizeable effects on both real activity and inflation, suggesting that monetary policy can be effective in controlling prices.
References

Appendix

A Examples

A.1 A square system

Consider the structural model

\[
\begin{pmatrix}
y_{1t} \\
y_{2t}
\end{pmatrix} = B(L)u_t = \begin{pmatrix} L & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u_{1t} \\ u_{2t} \end{pmatrix}.
\]

with \(u_t \sim WN(0, I_2) \). Here the system is square, i.e. \(n = q = 2 \). The model is noninvertible (toward the past) since \(\det B(z) = 0 \) for \(z = 0 \). Noninvertibility arises from the fact that \(u_{1t} \) has a delayed effect on \(y_{1t} \). However, by inverting the matrix on the right-hand side toward the future we get

\[
\begin{pmatrix} L^{-1} & 0 \\ -L^{-1} & 1 \end{pmatrix} \begin{pmatrix} y_{1t} \\ y_{2t} \end{pmatrix} = \begin{pmatrix} u_{1t} \\ u_{2t} \end{pmatrix}.
\]

Hence both shocks are recoverable with respect to \(y_t \) (see Remark 1). By projecting \(y_t \) onto its past values one can find the VAR(1) representation\(^{22}\)

\[
A(L) \begin{pmatrix} y_{1t} \\ y_{2t} \end{pmatrix} = \begin{pmatrix} 1 & -0.5L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_{1t} \\ y_{2t} \end{pmatrix} = \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix}.
\]

By inverting the VAR we get the MA(1) Wold representation

\[
\begin{pmatrix} y_{1t} \\ y_{2t} \end{pmatrix} = C(L)\varepsilon_t = \begin{pmatrix} 1 & 0.5L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{pmatrix},
\]

where \(\Sigma_\varepsilon = \begin{pmatrix} 0.5 & 0 \\ 0 & 2 \end{pmatrix} \). Hence

\[
\begin{align*}
u_{1t} &= y_{1,t+1} = \varepsilon_{1,t+1} + 0.5\varepsilon_{2t} \\ u_{2t} &= -y_{1,t+1} + y_{2t} = -\varepsilon_{1,t+1} + 0.5\varepsilon_{2t}
\end{align*}
\]

so that both \(u_{1t} \) and \(u_{2t} \) are linear combinations of the present and future values of \(\varepsilon_{1t} \) and

\(^{22}\)The projection of \(y_{2t} \) on \(y_{t-1} \) is zero, so \(\varepsilon_{2t} = y_{2t} \). The projection of \(y_{1t} \) onto \(y_{t-1} \) is \(\frac{\text{var}(u_{1,t-1})}{\text{var}(y_{2,t-1})} y_{2,t-1} = 0.5y_{2,t-1} \).
Now let us assume that
\[z_t = u_{1t} + w_t, \]
where \(w_t \) is orthogonal to \(u_t \) at all leads and lags and \(\sigma_w^2 = 1 \). By projecting the proxy onto the present and the future of \(\varepsilon_t \) we get \(\delta(L^{-1}) = (L^{-1} 0.5)' \). The implied standard deviation \(\alpha \) is 1. Hence \(\delta(L) = (L 0.5)' \). According to Proposition 8 we get \(u_{1t} = \delta'(L^{-1}) \varepsilon_t = (L^{-1} 0.5) \varepsilon_t \), which corresponds to equation (38).

Turning to the response functions, from (38) and the definition of \(z_t \) we get
\[
\begin{pmatrix}
\varepsilon_1 & \varepsilon_2 \\
\end{pmatrix}
= \begin{pmatrix}
0.5L & -0.5L \\
1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
u_{1t} \\
u_{2t} \\
\end{pmatrix} = \begin{pmatrix}
0.25L \\
0.5 \\
\end{pmatrix} z_t + \begin{pmatrix}
0.25z_{t-1} - 0.5w_{t-1} - 0.5u_{2t} \\
0.5z_t - w_t + u_{2t} \\
\end{pmatrix}.
\] (39)

It can be easily verified that the second term on the right side is orthogonal to \(z_t \) and its past history, so that (39) is the projection equation of \(\varepsilon_t \) onto \(z_t \) and its lags. Hence \(\psi(L) = (0.25L 0.5)' \). Applying formula (17) we get the first column of the matrix \(B(L) \):
\[
b_{1}(L)\alpha = b_{1}(L) = C(L)\psi(L)\sigma_{z}^{2} = \begin{pmatrix}
1 & 0.5L \\
0 & 1 \\
\end{pmatrix} \begin{pmatrix}
0.25L \\
0.5 \\
\end{pmatrix} 2 = \begin{pmatrix} 0.5L \\
1 \\
\end{pmatrix},
\]
which provides the response functions of interest.

A.2 Example 2: A ‘short’ system

Now let us modify the example above by adding a third structural shock affecting only \(y_{2t} \):
\[
\begin{pmatrix}
y_{1t} \\
y_{2t} \\
\end{pmatrix} = B(L)u_t = \begin{pmatrix}
L & 0 & 0 \\
1 & 1 & 1 \\
\end{pmatrix} \begin{pmatrix}
u_{1t} \\
u_{2t} \\
u_{3t} \\
\end{pmatrix}.
\]

with \(u_t \sim WN(0, I_3) \). Now the system is ‘short’, since \(n = 2 \) and \(q = 3 \). By projecting \(y_t \) onto its past values one can find the Wold representation, which is now\(^{23}\)
\[
\begin{pmatrix}
y_{1t} \\
y_{2t} \\
\end{pmatrix} = C(L)\varepsilon_t = \begin{pmatrix}
1 & L/3 \\
0 & 1 \\
\end{pmatrix} \begin{pmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t} \\
\end{pmatrix}.
\]

\(^{23}\)The projection of \(y_{2t} \) on \(y_{t-1} \) is zero, so \(\varepsilon_{2t} = y_{2t} \). The projection of \(y_{1t} \) onto \(y_{t-1} \) is \(\frac{Var(y_{1t-1})}{Var(y_{2t-1})} y_{2t-1} = y_{2,t-1}/3 = \varepsilon_{2,t-1}/3 \) and the innovation is \(\varepsilon_t = y_{1t} - \varepsilon_{2,t-1}/3 \).
where $\Sigma_\varepsilon = \begin{pmatrix} 2/3 & 0 \\ 0 & 3 \end{pmatrix}$. Since $q > n$, we cannot have global recoverability (see Remark 1). However, u_{1t} is still recoverable (whereas u_{2t} and u_{3t} are not), since

$$u_{1t} = y_{1,t+1} = \varepsilon_{1,t+1} + \varepsilon_{2t}/3. \quad (40)$$

Assuming again $z_t = u_{1t} + w_t$, when projecting z_t onto the present and future of ε_t we find $\delta(L^{-1}) = (L^{-1} \ 1/3)'$ and $\alpha = 1$. Hence $\delta(L) = (L \ 1/3)'$. According to (26) we get $u_{1t} = \delta'(L^{-1})\varepsilon_t = (L^{-1} \ 1/3)\varepsilon_t$, which corresponds to equation (40). The response functions can be found following the lines of Example 1.

Now let us assume that the shock of interest is u_{2t}, which is not recoverable, and we have the proxy $Z_t = u_{2t} + v_t$, where v_t is a unit-variance white noise process orthogonal to u_t at all leads and lags. Notice that $\sigma^2_Z = 2$. Combining the Wold representation and the structural representation we find

$$\varepsilon_t = C(L)^{-1}B(L)u_t = \begin{pmatrix} 2L/3 & -L/3 & -L/3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} u_{1t} \\ u_{2t} \\ u_{3t} \end{pmatrix}. \quad (41)$$

Hence the projection of ε_t onto the present and past of u_{2t} is $(-L/6 \ 1/2)'u_{2t}$. By replacing the regressor u_{2t} with Z_t the variance of the regressor is doubled whereas the covariances are the same, so that we have an attenuation bias equal to one half and the projection is $\psi(L)Z_t = (-L/6 \ 1/2)'Z_t$. Applying formula (17) we get

$$b_2(L)\alpha = C(L)\psi(L)\sigma^2_Z = \begin{pmatrix} 1 & L/3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -L/6 \\ 1/2 \end{pmatrix} 2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \quad (42)$$

We can then normalize by dividing by the impact effect of the shock on the second variable, which is 1, to get the correct relative IRFs.

B Empirics: robustness checks

B.1 Changing p, r and the instrument

In this subsection, we explore the robustness of our baseline VAR to changes of the number of lags p, the number of leads r of the VAR residuals used in the regression of the proxy and
Figure 5: Top panels: changing p. Black line: $p = 12$; blue line: $p = 7$; green line: $p = 8$; red line: $p = 10$. Middle panels: changing r. Black line: $r = 6$; blue line: $r = 5$; green line: $r = 7$; red line: $r = 8$. Bottom panels: changing the instrument. Black line: GK instrument; blue line MPI instrument. Grey areas: 68% confidence bands for the baseline specification.

to the use of a different instrument.

Figure 5, top panels, reports results for $p = 7$ (blue lines), $p = 8$ (red lines) and $p = 10$ (green lines), whereas $r = 6$ is kept fixed. The baseline IRFs $p = 12$ are the black solid lines; the shaded grey area is the 68% confidence region of the baseline. In the middle panels we show results obtained with $p = 12$ and different values of r, i.e. the benchmark specification ($r = 6$, black lines), $r = 5$ (blue lines), $r = 7$ (green lines), $r = 8$ (red lines). In the bottom panel we report the results obtained by using the MPI instrument (blue lines) in place of the GK instrument (black lines).

Our conclusion is that results are remarkably robust to these changes.

B.2 Using levels and changing the VAR specification and the time span

In this subsection, we explore the robustness of our baseline VAR to changes of the treatment of the variables, the VAR specification and the time span. The parameters are kept fixed to $p = 12$ and $r = 6$; the instrument is GK.

Results are reported in Figure 6. The top panels refer to the results obtained with CPI and IP in log-levels (blue lines). The effects on prices is similar to that of the benchmark, but the effect on IP is much smaller. The middle panels show the results obtained with different

Our overall conclusion is that results are reasonably robust to these important changes.