Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Edge turbulence measurements in electron-heated Helically Symmetric Experiment plasmas

Tools
- Tools
+ Tools

Guttenfelder, W., Anderson, D. T., Anderson, F. S. B., Canik, J. M., Likin, K. M. and Talmadge, J. N. (2009) Edge turbulence measurements in electron-heated Helically Symmetric Experiment plasmas. Physics of Plasmas, Vol.16 (No.8). Article no. 082508. doi:10.1063/1.3205884 ISSN 1070-664X.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1063/1.3205884

Request Changes to record.

Abstract

This paper presents edge measurements utilizing Langmuir probes to characterize plasma turbulence in the Helically Symmetric Experiment (HSX) [F. S. B. Anderson et al., Fusion Technol. 27, 273 (1995)]. Normalized density and potential fluctuations exhibit strong intensities but are comparable to mixing length estimates using measured correlation lengths. The correlation lengths are isotropic with respect to radial and poloidal directions and follow local (gyro-Bohm) drift wave expectations. These observations are common to measurements in both the optimized quasihelically symmetric (QHS) configuration, as well as a configuration where the symmetry is degraded intentionally. The resulting turbulent particle flux in higher density QHS discharges is in good quantitative agreement with transport analysis using three-dimensional neutral gas simulations. The measured turbulence characteristics are compared to a quasilinear trapped electron mode (TEM) drift wave model [H. Nordman, J. Weiland, and A. Jarmen, Nucl. Fusion 30, 983 (1990)] that has been used to predict the anomalous transport in HSX. While quantitative differences exist (factors of 2-3), there is a general consistency between the turbulence measurements and the TEM drift wave model. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3205884]

Item Type: Journal Article
Subjects: Q Science > QC Physics
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Physics of Plasmas
Publisher: American Institute of Physics
ISSN: 1070-664X
Official Date: August 2009
Dates:
DateEvent
August 2009Published
Volume: Vol.16
Number: No.8
Number of Pages: 13
Page Range: Article no. 082508
DOI: 10.1063/1.3205884
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Funder: U.S. Department of Energy
Grant number: DE-FG02-93ER54222

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us