References: |
[1] J. Baik, P. Deift, and K. Johansson. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc., 12(4):1119–1178, 1999. MR1682248 [2] Y. Baryshnikov. GUEs and queues. Probab. Theory Related Fields, 119(2):256–274, 2001. MR1818248 [3] A. Borodin and P. L. Ferrari. Anisotropic growth of random surfaces in 2+ 1 dimensions. arXiv:0804.3035. [4] A. Borodin and P. L. Ferrari. Large time asymptotics of growth models on space-like paths. I. PushASEP. Electron. J. Probab., 13:no. 50, 1380–1418, 2008. MR2438811 [5] A. Borodin, P. L. Ferrari, M. Prähofer, T. Sasamoto, and J. Warren. Maximum of Dyson Brownian motion and non-colliding systems with a boundary. arXiv:0905.3989. [6] A. Borodin, P. L. Ferrari, and T. Sasamoto. Large time asymptotics of growth models on space-like paths. II. PNG and parallel TASEP. Comm. Math. Phys., 283(2):417–449, 2008. MR2430639 [7] M. Defosseux. Orbit measures and interlaced determinantal point processes. C. R. Math. Acad. Sci. Paris, 346(13-14):783–788, 2008. MR2427082 [8] A. Dieker and J. Warren. On the Largest-Eigenvalue Process For Generalized Wishart Random Matrices. arXiv:0812.1504. [9] M. Fulmek and C. Krattenthaler. Lattice path proofs for determinantal formulas for symplectic and orthogonal characters. J. Combin. Theory Ser. A, 77(1):3–50, 1997. MR1426737 [10] W. Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR1464693 [11] Y. V. Fyodorov. Introduction to the random matrix theory: Gaussian unitary ensemble and beyond. In Recent perspectives in random matrix theory and number theory, volume 322 of London Math. Soc. Lecture Note Ser., pages 31–78. Cambridge Univ. Press, Cambridge, 2005. MR2166458 [12] K. Johansson. A multi-dimensional Markov chain and the Meixner ensemble. arXiv:0707.0098. [13] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys., 209(2):437–476, 2000. MR1737991 [14] K. Johansson. Non-intersecting paths, random tilings and random matrices. Probab. Theory Related Fields, 123(2):225–280, 2002. MR1900323 [15] K. Johansson. Discrete polynuclear growth and determinantal processes. Comm. Math. Phys., 242(1-2):277–329, 2003. MR2018275 [16] K. Johansson. Random Matrices and determinantal processes. In Lecture Notes of the Les Houches Summer School 2005. Elselvier, 2005. [17] W. König, N. O’Connell, and S. Roch. Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles. Electron. J. Probab., 7:no. 5, 24 pp. (electronic), 2002. MR1887625 [18] M. Maliakas. On odd symplectic Schur functions. J. Algebra, 211(2):640–646, 1999. MR1666663 [19] E. Nordenstam. On the shuffling algorithm for domino tilings. arXiv:0802.2592. [20] N. O’Connell. Conditioned random walks and the RSK correspondence. J. Phys. A, 36(12):3049–3066, 2003. Random matrix theory. MR1986407 [21] N. O’Connell and M. Yor. A representation for non-colliding random walks. Electron. Comm. Probab., 7:1–12 (electronic), 2002. MR1887169 [22] M. Prähofer and H. Spohn. Scale invariance of the PNG droplet and the Airy process. J. Statist. Phys., 108(5-6):1071–1106, 2002. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. MR1933446 [23] R. A. Proctor. Odd symplectic groups. Invent. Math., 92(2):307–332, 1988. MR0936084 [24] L. C. G. Rogers and J. W. Pitman. Markov functions. Ann. Probab., 9(4):573–582, 1981. MR0624684 [25] T. Sasamoto. Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques. J. Stat. Mech. Theory Exp., (7):P07007, 31 pp. (electronic), 2007. MR2335692 [26] S. Sundaram. Tableaux in the representation theory of the classical Lie groups. In Invariant theory and tableaux (Minneapolis, MN, 1988), volume 19 of IMA Vol. Math. Appl., pages 191– 225. Springer, New York, 1990. MR1035496 [27] B. Tóth and B. Vet˝o. Skorohod-reflection of Brownian paths and BES3. Acta Sci. Math. (Szeged), 73(3-4):781–788, 2007. MR2380076 [28] C. A. Tracy and H. Widom. Level-spacing distributions and the Airy kernel. Comm. Math. Phys., 159(1):151–174, 1994. MR1257246 [29] J.Warren. Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab., 12:no. 19, 573–590 (electronic), 2007. MR2299928 |