
warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/174718

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
mailto:wrap@warwick.ac.uk

Unprovability of strong complexity lower bounds in bounded arithmetic

Jiatu Li*

Institute for Interdisciplinary Information Sciences
Tsinghua University

Igor C. Oliveira†

Department of Computer Science
University of Warwick

March 26, 2023

Abstract

While there has been progress in establishing the unprovability of complexity statements in lower fragments
of bounded arithmetic, understanding the limits of Jeřábek’s theory APC1 [Jeř07a] and of higher levels of
Buss’s hierarchy Si2 [Bus86] has been a more elusive task. Even in the more restricted setting of Cook’s theory
PV [Coo75], known results often rely on a less natural formalization that encodes a complexity statement using
a collection of sentences instead of a single sentence. This is done to reduce the quantifier complexity of the
resulting sentences so that standard witnessing results can be invoked.

In this work, we establish unprovability results for stronger theories and for sentences of higher quantifier
complexity. In particular, we unconditionally show that APC1 cannot prove strong complexity lower bounds
separating the third level of the polynomial hierarchy. In more detail, we consider non-uniform average-case
separations, and establish that APC1 cannot prove a sentence stating that

∀n ≥ n0 ∃ fn ∈ Π3-SIZE[nd] that is (1/n)-far from every Σ3-SIZE[2n
δ

] circuit.

This is a consequence of a much more general result showing that, for every i ≥ 1, strong separations for
Πi-SIZE[poly(n)] versus Σi-SIZE[2n

Ω(1)

] cannot be proved in the theory Ti
PV consisting of all true ∀Σb

i−1-
sentences in the language of Cook’s theory PV.

Our argument employs a convenient game-theoretic witnessing result that can be applied to sentences of
arbitrary quantifier complexity. We combine it with extensions of a technique introduced by Krajı́ček [Kra11]
that was recently employed by Pich and Santhanam [PS21] to establish the unprovability of lower bounds in
PV (i.e., the case i = 1 above, but under a weaker formalization) and in a fragment of APC1.

*Email: lijt19@mails.tsinghua.edu.cn
†Email: igor.oliveira@warwick.ac.uk

1

mailto:lijt19@mails.tsinghua.edu.cn
mailto:igor.oliveira@warwick.ac.uk

Contents
1 Introduction 3

1.1 Results . 5
1.2 Techniques . 7
1.3 Organization . 11

2 Preliminaries 12
2.1 Complexity theory . 12
2.2 Logic and bounded arithmetic . 13
2.3 Total search problems and the polynomial hierarchy . 15
2.4 The Nisan-Wigderson generator . 16
2.5 Hardness amplification in the polynomial hierarchy . 17
2.6 Herbrand’s Theorem and the KPT Witnessing Theorem . 17
2.7 A universal theory for Ti

PV . 19

3 Witnessing Theorems for General Formulas 21
3.1 A game-theoretic witnessing theorem . 21
3.2 A special case: Falsifiers with oblivious strategies . 23

4 Warm-up: Krajı́cek’s Technique and the Pich-Santhanam Result 25
4.1 Formalization of complexity lower bounds . 25
4.2 Proof of Theorem 4.1 . 26
4.3 Extensions of the technique and unprovability of weaker lower bounds 37

5 Unprovability of Strong Complexity Lower Bounds in Bounded Arithmetic 38
5.1 Unprovability of lower bounds in expressive theories . 38

5.1.1 Witnessing for Πi vs Σi lower bounds . 39
5.1.2 Proof of Theorem 5.1 . 41
5.1.3 Relaxing the average-case complexity parameter . 45

5.2 Unprovability of lower bound sentences of higher quantifier complexity 46
5.2.1 Witnessing lemma for lower bound sentences . 47
5.2.2 Proof of Theorem 5.8 . 48
5.2.3 Relaxing the average-case complexity parameter . 53

A Provability in Ti
PV 58

A.1 Sentences with sharply bounded quantifiers . 58
A.2 Strength of Ti

PV and the hierarchy of total functions . 60
A.3 Strength of Ti

PV and the polynomial hierarchy . 61
A.4 On the provability of NP * (i.o.)P . 62

B Proofs of the Witnessing Theorems 64
B.1 Proof of Theorem 3.1 via Herbrand’s Theorem . 64
B.2 Oblivious falsifiers: Self-contained proof of Theorem 3.2 via Herbrandization 68

C Proof of Hardness Amplification in PH 71

D A Universal Theory for Ti
PV 78

E The Counting Lemma: Existence of a Good Restriction 81

2

1 Introduction

Establishing unconditional lower bounds on the complexity of computations is one of the primary goals
of the theory of computational complexity. While the field has seen progress in the setting of restricted
computational devices, such as constant-depth Boolean circuits (e.g., [Ajt83, FSS84, Hås86, Raz87, Smo87,
Wil14]) and monotone Boolean circuits (e.g., [Raz85, And85, AB87]), proving super-linear circuit size lower
bounds against general (unrestricted) circuits (see, e.g., [FGHK16, LY22]) and separating complexity classes
remain longstanding challenges.

Several barrier results have been proposed to explain why techniques that have been successful in certain
settings cannot lead to stronger results. The most well known of them are relativization [BGS75], natu-
ral proofs [RR97], and algebrization [AW09] (see also [FLY22, CHO+22] for recent examples). While
knowledge of these results provides a practical way to check if some approaches are likely to fail, each
of these barriers is formulated in an ad-hoc way and is limited in scope. For instance, the natural proofs
barrier does not consider a standard notion of “proof” and can be circumvented using simple reductions
(see, e.g., [AK10, OS18, CJW19, CHO+22]). In general, the aforementioned barriers don’t really tell if we
simply haven’t been clever enough to design a better lower bound technique, or if there is a deeper, more
fundamental reason for the difficulty of establishing complexity lower bounds and separations.

This motivates the development of a more principled approach to investigate the difficulty of analysing
computations and, perhaps more importantly, the intriguing possibility that strong complexity lower bounds
might be unprovable from certain mathematical axioms. In order to implement this plan, the first step is to
try to understand which logical theories are able to formalise a significant number of results in algorithms
and complexity theory. There has been a long and highly successful line of research showing that certain
fragments of Peano Arithmetic collectively known as Bounded Arithmetic offer a robust class of theories for
the formalization of both basic and advanced results in these areas.

Remark 1.1 (Bounded Arithmetic). Theories of bounded arithmetic aim to capture mathematical proofs that ma-
nipulate concepts from a given complexity class (e.g., a proof by induction whose inductive hypothesis can be
checked in polynomial time). Notable examples include Cook’s theory PV [Coo75], which formalises polynomial-
time reasoning, Jeřábek’s theory APC1 [Jeř07a], which formalises probabilistic polynomial-time reasoning, and
Buss’s theories Si2 and Ti

2, which correspond to the levels of the polynomial-time hierarchy [Bus86].
The correspondence between these theories and the complexity classes is reflected in several ways. For

instance, certain witnessing results show that every provably total function in a given theory TC (i.e., when
∀x ∃!y ϕ(x, y) is provable, for certain formulas ϕ) is computable within the corresponding complexity class
C (i.e., the function y = f(x) is in C). There are also close relationships between theories of bounded arithmetic
and propositional proof systems, e.g., propositional translations between proofs of certain sentences in PV and S12
and polynomial-size proofs in the extended Frege proof system (see, e.g, [Bey09] and references therein).

Weaker theories corresponding to more fine-grained complexity classes such as TC0 and NC1 and the mathe-
matical theorems provable in each of them have also received considerable attention. For instance, key properties
of the elementary integer arithmetic operations can be established in theory VTC0 [Jer22], expander graphs can be
constructed and analyzed in theory VNC1 [BKKK20], and several results from linear algebra can be formalised in
theory VNC2 [TC21]. We refer to Cook and Nguyen [CN10] and Krajı́ček [Kra95, Kra19] for more information
about bounded arithmetic and the logical foundations of complexity theory.

Complexity Lower Bounds in Bounded Arithmetic. The study and formalization of complexity lower
bounds proofs in bounded arithmetic dates back to Razborov [Raz95b, Raz95a]. We refer to Pich [Pic15a]
and to Müller and Pich [MP20] for a comprehensive survey of the area. In particular, the latter paper identifies
Jeřábek’s theory APC1 [Jeř07a] for probabilistic reasoning as a suitable theory for the formalization of
several existing circuit lower bounds. (Informally, APC1 is defined as the extension of Cook’s theory PV

3

[Coo75] with the dual weak pigeonhole principle for polynomial-time functions.) For instance, APC1 can
prove super-polynomial lower bounds against bounded-depth circuits and against monotone circuits [MP20],
establish the PCP Theorem [Pic15b] (also provable in PV), and formalize randomized matching algorithms
[LC11].

Given the expressive power of PV and its extensions, unconditionally showing that these theories can-
not prove a given result is a non-trivial task. Remarkably, in a recent work, Pich and Santhanam [PS21]
employed a technique introduced by Krajı́ček [Kra11] and further elaborated in [Pic15a] to establish that
PV cannot show strong complexity lower bounds separating NP and coNP. More precisely, for each fixed
non-deterministic polynomial-time machine M , they showed that PV cannot prove an average-case lower
bound for L(M) against co-nondeterministic circuits of size 2n

o(1)
.

In the same work, [PS21] showed that this unprovability result extends to a certain fragment of APC1

(see [PS21] for the details and for additional results). They left open the status of the provability of strong
complexity lower bounds in APC1. This theory has also been identified in other papers (e.g., [CKKO21])
as an important test case for unconditional unprovability results. This is unsurprising, given the number of
advanced results from algorithms and complexity that can be formulated and proved in APC1 and its mild
extensions (see [Oja04, CN10, Lê14, Pic14, MP20] for many additional examples).

Witnessing Theorems and Quantifier Complexity. The approach of [PS21] crucially relies on the KPT
Witnessing Theorem [KPT91], a result that can be used to extract computational information from a proof
of a sentence with a small number of quantifier alternations. This and similar results (e.g., Herbrand’s
Theorem and Buss’s Witnessing Theorem) have been extremely useful tools in unprovability results (see,
e.g., [CK07, Kra21, CKKO21]). In order to apply the usual formulation of these witnessing theorems, it is
crucial to consider sentences with up to four blocks of quantifiers. In particular, for this reason, the machine
M in the aforementioned result from [PS21] is quantified outside of the sentence (i.e., in the meta-theory). A
similar challenge is faced in other papers that consider the unprovability of complexity statements in bounded
arithmetic (see, e.g., [KO17] and the subsequent papers [BM20, BKO20]).

Our Contributions. We obtain (unconditional) unprovability results for stronger theories and for sentences
of higher quantifier complexity. We can summarize our main contributions as follows.

(i) Building on previous works [Kra11, Pic15a, PS21], we establish the unprovability of strong complex-
ity lower bounds in APC1 and in more expressive theories of bounded arithmetic. The lower bound
sentences showed unprovable refers to separations between the levels of the polynomial hierarchy,
where we consider a non-uniform setting and an average-case lower bound against sub-exponential
size circuits.

(ii) We consider a more natural (and of higher quantifier complexity) formalization of complexity lower
bounds compared with [Kra11, Pic15a, PS21]. To achieve this, we employ a convenient game-theoretic
witnessing theorem that allows us to extract computational information from proofs of sentences with
an arbitrary number of quantifiers. While extensions of the KPT Witnessing Theorem for formulas
with more quantifiers have found applications in bounded arithmetic [Pud92, Pud06, BKT14], to our
knowledge this is the first time that such a result is used for the unprovability of complexity bounds.

In the next section, we discuss our results in detail.

4

1.1 Results

Before formally stating our main unprovability result, we introduce the theories TiPV and their common
language (vocabulary) LPV.

Theory TiPV and Language LPV. We let LPV contain the constant symbols 0 and 1, and a function symbol
f for every function in FP, the class of polynomial-time computable functions.1 In particular, LPV contains
function symbols for the length function |x|, addition +, etc. LPV contains the equality predicate = as
its only relation symbol. Note that one can define any polynomial-time computable predicate through its
characteristic function, equality, and the constant symbol 1.

For each integer i ≥ 1, we let TiPV denote the theory of all true (with respect to the standard model N)
∀Σb

i−1-sentences over the language LPV.2 In particular, the theory T1
PV (which is called TPV in [PS21]) is

strictly stronger than Cook’s theory PV.3 We provide some examples of sentences provable in TiPV after
stating our main result.

Formalization of Lower Bounds. In order to consider the provability of a strong complexity lower bound
separating the i-th level of the (non-uniform) polynomial hierarchy, we introduce a sentence LBi(s1, s2,m, n0)
stating that, for every input length n ≥ n0, there is a Πi-circuit C of size ≤ s1(n) such that, for every Σi-
circuit D of size ≤ s2(n), we have

Pr
x∼{0,1}n

[
C(x) = D(x)

]
≤ 1− m(n)

2n
.

Here a Πi-circuitC (similarly for Σi circuits) is simply a standard deterministic Boolean circuitC(x, z1, . . . , zi),
where we define that

C(x) = 1 if and only if ∀z1 ∃z2 . . . Qizi C(x, z1, . . . , zi) = 1 .

Formally, let Σi-SIZE[s(n)] and Πi-SIZE[s(n)] refer to Σi-circuits and Πi-circuits of size s(n), respec-
tively. Let LBi(s1, s2,m, n0) denote the following LPV-sentence:

∀n ∈ LogLog with n ≥ n0 ∃C ∈ Πi-SIZE[s1(n)] ∀D ∈ Σi-SIZE[s2(n)]

∃m = m(n) distinct n-bit strings x1, . . . , xm s.t. Error(C,D, xi) for all i ∈ [m],

where Error(C,D, x) means that the circuits C and D do not agree on the input x. For the reader that is not
familiar with bounded arithmetic, the notation n ∈ LogLog essentially means that all bounded quantifiers
refer to objects of length up to poly(2n). As in [PS21], this makes the unprovability result stronger. Many
existing circuit lower bound proofs can be formalized in APC1 without ever quantifying over objects of
length larger than poly(n) [MP20].

It’s easy to see that Error(C,D, x) is the disjunction of a Σb
i -formula (stating that C(x) = 0∧D(x) = 1)

and a Πb
i -formula (stating that C(x) = 1 ∧D(x) = 0). We note that, already for i = 1, LBi(s1, s2,m, n0)

1For the reader familiar with bounded arithmetic, we note that in our setup considering polynomial-time functions is equivalent
to considering polynomial-time algorithms. See Section 2.2 for more details.

2This is a standard class of sentences in bounded arithmetic. Informally, it means that the sentence starts with a block of universal
quantifiers, followed by i − 1 blocks of bounded quantifiers, i.e., ∀x ≤ t or ∃x ≤ t for some term t. The formal definition will
be given in Section 2.2. (For the specialist, we note that allowing sharply bounded quantifiers would not change our unprovability
results.)

3We use PV to refer to its first-order formalization [Coo75, KPT91], also denoted by PV1 by some authors.

5

is a ∀Σb
4-sentence. In particular, widely used witnessing results such as the KPT Theorem [KPT91] (see

Section 2.6 for a review) cannot be directly applied to it.

Main Unprovability Result. Next, we state our main theorem on the unprovability of complexity lower
bounds in TiPV and its corollary for APC1.

Theorem 1.2 (Main Theorem). For every i ≥ 1, n0 ∈ N, δ ∈ Q ∩ (0, 1), and d ≥ 1,

TiPV 0 LBi(s1, s2,m, n0) ,

where s1(n) = nd, s2(n) = 2n
δ
, and m = 2n/n.

Theorem 1.2 extends the result of [PS21] in two directions. Firstly, it establishes the unprovability of
strong complexity lower bounds in theories believed to be much stronger than T1

PV. Secondly, [PS21] con-
sidered a weaker formalization that instead of quantifying over the circuit C (inside the sentence) considers
a collection of sentences {LB1

M}M , one for each uniform non-deterministic machine M (quantified over
outside the theory).

Example 1.3 (The Strength of Theory Ti
PV). These theories are quite strong already at small values of i, say i = 3.

Below we give some examples (see Appendix A for a related discussion).

(i) Fermat’s Little Theorem, which states that if ap 6≡ a (mod p) then there is 1 < d < p such that d | p,
is a true ∀Σb

1-sentence in LPV and consequently an axiom of T2
PV. It is unprovable in T1

PV (therefore also
unprovable in PV) unless factoring is easy (see, e.g., [KP98, CN10]).

(ii) The Pigeonhole Principle, which states that for every circuit C : [n+ 1]→ [n] there exists x 6= y such that
C(x) = C(y), is also an axiom of T2

PV. It is not hard to show that even the weaker version of this principle
(in which the circuit C : [2n]→ [n]) is unprovable in T1

PV unless there is no (public-key) collision-resistant
hash functions (see, e.g., [Kra01, Bus08]).

(iii) The dual Pigeonhole Principle, which states that for every circuit C : [n]→ [n+ 1] there exists y ∈ [n+ 1]
such that for all x ∈ [n] we have C(x) 6= y, is in T3

PV. Even the weak version of this principle (in which
the circuit C : [n]→ [2n]) is unprovable in T1

PV unless EMPTY [Kor21] (also known as Range Avoidance
[RSW22]) can be solved in polynomial time with O(1) circuit-inversion oracle queries.

(iv) The induction principle for Σp
i -predicates is provable in Ti+2

PV , while even the induction principle for NP-
predicates is unprovable in T1

PV unless the polynomial-time hierarchy collapses [KPT91, Bus95, Zam96].

Since every axiom of APC1 is implied by a true ∀Σb
2-sentence over the language LPV in theory T3

PV

(see Section 2 for the definition of APC1), every sentence provable in APC1 is also provable in T3
PV. Con-

sequently, we get the following corollary to Theorem 1.2, which shows that APC1 cannot establish strong
complexity lower bounds separating the third level of the (non-uniform) polynomial hierarchy.

Corollary 1.4 (Unprovability of Strong Complexity Lower Bounds in APC1). For every n0 ∈ N, δ ∈
Q ∩ (0, 1), and d ≥ 1,

APC1 0 LB3(s1, s2,m, n0) ,

where s1(n) = nd, s2(n) = 2n
δ
, and m = 2n/n.

Corollary 1.4 establishes the first unconditional result showing the unprovability of strong complexity
lower bounds in APC1. Previously, [PS21] obtained an extension of their result to a fragment of APC1, but
left open the provability of the same collection of sentences in APC1. Our result is incomparable to theirs in

6

this case, since Corollary 1.4 refers to LB3 (the third level of the non-uniform polynomial hierarchy) instead
of {LB1

M}M .

Remark 1.5 (Relevance to the Logical Foundations of Complexity Theory). The hypothesis that P 6= PH
(which is equivalent to P 6= NP) can be interpreted as the statement that polynomial time computations cannot
simulate a finite number of bounded quantifier alternations. Our unconditional unprovability result, on the other
hand, establishes that Ti

PV, the strongest (sound) theory operating with ∀Σb
i−1 axioms over LPV, cannot strongly

separate the i-th level of the polynomial hierarchy.
If the lower bound stated by the LBi sentence is true, our result indicates the existence of a fundamental

limitation of this theory in reasoning about computations at the i-th level of the hierarchy and above. In contrast
to previous works, which were restricted to subtheories of APC1, a significant aspect of Theorem 1.2 is showing
that this phenomenon is not caused by a potential weakness of the theory at hand.

1.2 Techniques

In order to prove Theorem 1.2, we formulate a game-theoretic witnessing theorem that can be applied to
sentences of high quantifier complexity, such as LBi(s1, s2,m, n0). Our general framework is similar to an
extension of the KPT Witnessing Theorem considered by Buss, Kołodziejczyk, and Thapen [BKT14].

A Game-Theoretic Witnessing Theorem for General Formulas. For a language (vocabulary) L, let ϕ(x)
be a bounded L-formula defined as

ϕ(x) , ∃y1 ≤ t1(x) ∀x1 ≤ s1(x, y1) ∃y2 ≤ t2(x, y1, x1) . . . ∀xk−1 ≤ sk−1(x, y1, x1, . . . , yk−1)

∃yk ≤ tk(x, y1, x1, . . . , yk−1, xk−1) ∀xk ≤ sk(x, y1, x1, . . . , yk) φ(x, x1, . . . , xk, y1, . . . , yk),

where φ(x, ~x, ~y) is a quantifier-free L-formula. We would like to extract computational information from
the provability of ∀xϕ(x) in a theory T . We achieve this by showing that the provability of this sentence is
equivalent to the existence of a winning strategy in a certain game. Moreover, the winning strategy will be
computable using terms of L. Consequently, if the interpretation of each term in a given modelM of T has
limited computational complexity, we obtain a computationally bounded winning strategy. For simplicity,
we discuss the game only informally below, deferring the formal details to Section 3.

We consider an interactive game between two players, the truthifier (associated with existential quan-
tifiers in ϕ) and the falsifier (associated with universal quantifiers in ϕ). A board is defined as a pair
(M, n0), where M is a structure over L such that M � T , and n0 ∈ M is an element of its do-
main. The evaluation game for the formula ϕ(x) on the board (M, n0) is played as follows: in the i-th
round of the game (1 ≤ i ≤ k), the truthifier firstly chooses an assignment mi ∈ M for yi such that
mi ≤ ti(n0,m1, n1 . . . ,mi−1, ni−1), then the falsifier chooses an assignment ni ∈ M for xi such that
ni ≤ si(n0,m1, n1, . . . ,mi). The truthifier wins if and only if φ(x/n0, ~x/~n, ~y/~m) holds inM. (Note that
when playing on a board (M, n0) we set x in ϕ(x) to n0.)

We will also consider a more general game called the tree exploration game. In more detail, we allow
the truthifier and falsifier to simultaneously play different evaluation games over the same board (M, n0).
The truthifier has a positional advantage over the falsifier: it can decide where to make the next move, i.e.,
by either

(i) making the next move in one of the current games; or

(ii) starting a new evaluation game over the board (M, n0); or

7

1

2

(4, ·)

(a) The truthifier adds a
child (2) from the root and
a label 4.

1

2

(4, 2)

(b) The falsifier’s response
is 2. Node (2) is not a win-
ning node.

1

2 3

(4, 2) (5, ·)

(c) The truthifier adds a
child (3) from the root and
a label 5.

1

2 3

(4, 2) (5, 3)

(d) Clearly a winning node
is reached regardless of the
falsifier’s move.

Figure 1: A transcript of the tree exploration game for ϕ(x) = ∃y ≤ 2x ∀z < y (y ≥ x∧(z = 1∨z - y))
(“there is a prime number within [x, 2x]”) on the board (N, 3). The truthifier wins by reaching node (3).

(iii) playing differently some earlier play, which creates a new game from that position but maintains the
existing game plays.

The falsifier must respond to the move of the truthifier in the corresponding evaluation game. Note that
the next assignment selected by each player now depends on previous plays in all concurrent games. The
truthifier wins the tree exploration game if there is a node u in the current partial game tree that is a winning
node for the truthifier, that is, the concatenation of the pairs of elements labelling the edges on the root-to-
u path forms a winning transcript of the truthifier in the evaluation game of ϕ(x) on the board (M, n0).
The tree exploration game of ϕ(x) is defined as the tree exploration game starting from a partial game tree
containing only the root node. See Figure 1 for an example of a transcript of the tree exploration game.

An L-strategy of the truthifier in the tree exploration game is described by a sequence of L-terms, where
each term describes the next move of the truthifier. Finally, a length-` L-strategy is said to be a universal
winning strategy if the truthifier wins within ` moves against all strategies (not necessarily L-strategies) of
the falsifier on any board (M, n0). (The “universality” of the strategy comes from the fact that it succeeds
over any board (M, n0) and against any strategy of the falsifier. Moreover, the location of the next move of
the truthifier in the game tree will be independent of the board and of the strategy of the falsifier.)

Recall that a theory T is said to be a universal theory if every axiom of T is of the form ∀~z ψ(~z), where
ψ(~z) is a formula free of quantifiers. We show that the provability of the sentence ∀xϕ(x) in a universal
theory T with a certain closure property is equivalent to the existence of a universal winning L-strategy of
length O(1) for the truthifier in the tree exploration game of ϕ(x).

Theorem 1.6 (Game-Theoretic Witnessing Theorem). Let T be a universal bounded theory with vocabulary
L that is closed under if-then-else (see Definition 2.2). Let ϕ be a bounded L-formula of the form

ϕ(x) , ∃y1 ≤ t1(x) ∀x1 ≤ s1(x, y1) ∃y2 ≤ t2(x, y1, x1) . . . ∀xk−1 ≤ sk−1(x, y1, x1, . . . , yk−1)

∃yk ≤ tk(x, y1, x1, . . . , yk−1, xk−1) ∀xk ≤ sk(x, y1, x1, . . . , yk) φ(x, x1, . . . , xk, y1, . . . , yk),

where φ(x, ~x, ~y) is a quantifier-free L-formula. Then T ` ∀x ϕ(x) if and only if there is a universal winning
L-strategy of length O(1) for the truthifier in the corresponding tree exploration game of ϕ(x).

Beyond its applicability to sentences with an arbitrary number of quantifiers, we stress that two keys
aspects of Theorem 1.6 are that the winning strategy is computed by L-terms and that the truthifier wins in
constantly many rounds. (In practice, in order to use this result to obtain computational information from
a proof, one typically fixes a particular strategy of the falsifier, which depends on the context and intended
application.)

It is possible to show that Theorem 1.6 is a generalization of the KPT Witnessing Theorem [KPT91]:
If the formula ϕ(x) is an ∃∀-formula, the evaluation game for ϕ has only one round; this means that the

8

tree exploration game for ϕ is essentially a sequential repetition of the evaluation game (which is equivalent
to the Student-Teacher game given by KPT Witnessing Theorem; see Theorem 2.9 and [KPT91, Pic15a]).
Indeed, KPT witnessing can also be derived from a less general result that we present in Section 3.2 as a
corollary of Theorem 1.6 and that is sufficient for the proof of Theorem 1.2.

We discuss Theorem 1.6 in detail in Section 3 and Appendix B. In contrast to the model-theoretic ap-
proach of [BKT14], we establish Theorem 1.6 using techniques from proof theory. As we explain below, in
our main application we will actually work with a simplified and more convenient framework that might be
of independent interest.

Example 1.7. Why does the provability in a universal theory T correspond to the tree exploration game instead of
the simpler evaluation game? As a conceptual example, one may consider the well-known non-constructive proof
of the existence of two irrational numbers x, y such that xy is rational. By the Law of Excluded Middle (i.e., A
or ¬A), one can easily argue that either (x, y) = (

√
2,
√

2) or (x, y) = ((
√

2)
√
2,
√

2) will be the required pair
of irrational numbers. However, we cannot figure out which one of these two possibilities is the correct answer
from the structure of this proof. Nevertheless, we can convince any opponent that the original statement is true
by a two-round “tree exploration game”: we first propose (x, y) = ((

√
2)
√
2,
√

2) and, in case that the opponent
argues that (

√
2)
√
2 is rational, we propose (

√
2,
√

2) instead. Similarly, the truthifier’s strategy extracted from
the G3c-proof is not guaranteed to witness the existential quantifiers in one shot; it might need to interact with
the falsifier for constantly many rounds to produce a correct answer (and each current move of the truthifier can
depend on previous moves of both players).

Unprovability of Strong Complexity Lower Bounds. The proof of Theorem 1.2 extends the approach
of [PS21], which explores a technique from [Kra11, Pic15a]. The main challenge for us is that we must
consider the significantly more powerful theory TiPV and the (un)provability of a sentence LBi(s1, s2,m, n0)
with a larger number of quantifier alternations. In particular, while [PS21] considered the provability of a
strong complexity lower bound against a fixed machineM , the sentence LBi(s1, s2,m, n0) merely states that
there exists a strong separation between Πi circuits vs Σi circuits. This introduces an additional technical
difficulty that requires us to also revisit and extend the approach of [Kra11, Pic15a].

Suppose, toward a contradiction, that

TiPV ` LBi(s1, s2,m, n0) ,

where s1(n) = nd, s2(n) = 2n
δ
, and m = 2n/n. In other words, we assume that the theory TiPV proves that

for every n ≥ n0 there is a Πi-circuit Cn of size ≤ nd such that, for every Σi-circuit Dn of size ≤ 2n
δ
,

Pr
x∼{0,1}n

[
Cn(x) = Dn(x)

]
≤ 1− 1

n
.

The key idea behind the argument is that the proof of a strong complexity lower bound in bounded
arithmetic yields a corresponding complexity upper bound. We then argue that the lower bound and the
upper bound contradict each other. From this, the unprovability of the lower bound sentence follows.

In more detail, our high-level strategy is as follows:

(i) The provability of the average-case lower bound sentence LBi(s1, s2,m, n0) implies the provability
in TiPV of a worst-case lower bound for Πi-SIZE[nd] vs Σi-SIZE[2n

δ
]. The latter is formalized by a

sentence LBiwst(s1, s2, n0).

(ii) From any TiPV-proof of LBiwst(s1, s2, n0), we show how to extract a complexity upper bound for an
arbitrary Πi-circuit Em(x) over an input x of length m and of size at most poly(m). (This is done

9

outside the theory TiPV.) More precisely, we show that there is a deterministic circuit Bm with Σp
i−1-

oracle gates and of size ≤ 2m
o(1)

such that

Pr
x∼{0,1}m

[Em(x) = Bm(x)] ≥ 1/2 + 2−m
o(1)
.

(iii) We invoke a hardness amplification result for the (non-uniform) polynomial hierarchy to conclude
that, on any large enough input length n, every Πi-circuit Cn of size≤ nd agrees with some Σi-circuit
Dn of size ≤ 2n

δ
on more than a 1 − 1/n fraction of the inputs. (If this is not the case, we would be

able to use hardness amplification to contradict the previous item.)

Since TiPV is a sound theory, i.e., every theorem of TiPV is a true sentence, Item (iii) is in contradiction with
the complexity lower bound stated in LBi(s1, s2,m, n0). Consequently, TiPV does not prove this sentence.

Item (i) is trivial, since the provability of an average-case lower bound immediately yields the provability
of a worst-case lower bound against circuits of the same size. Item (iii) requires an extension of a hardness
amplification result of Healy, Vadhan, and Viola [HVV06] to higher levels of the polynomial hierarchy. We
verify that this is possible in Section 2.5 and Appendix C. The most challenging step of the proof is Item (ii),
which we discuss next.

General upper bounds from the provability of a complexity lower bound. In Item (ii) we aim to extract
computational information from a proof of LBiwst(s1, s2, n0) in TiPV. For this, we would like to invoke
our game-theoretic witnessing theorem (Theorem 1.6). Since this result can only be applied to a universal
theory, the first step is to introduce a convenient universal theory that is at least as powerful as TiPV. Using
standard techniques from logic and similarly to [KPT91], we construct a universal theory UTiPV with all the
necessary properties (see Theorem 2.18 in Section 2.7). While the axioms of UTiPV are structurally simpler
(i.e., universal sentences), the terms of UTiPV no longer correspond to polynomial-time functions. However,
a careful construction of UTiPV ensures that its terms (when interpreted over the standard model) correspond
to functions in FPΣpi−1 , which will be sufficient for our purposes. In addition to the (syntactic) simplification
of the axioms of TiPV, a benefit of UTiPV is that the worst-case lower bound sentence LBiwst(s1, s2, n0),
whose quantifier complexity grows with i, simplifies to a ∀Σb

4-sentence ULBiwst(s1, s2, n0) in the vocabulary
of UTiPV.

Since ULBiwst(s1, s2, n0) is also provable in the universal theory UTiPV, we can invoke the game-theoretic
witnessing theorem with T = UTiPV and on the formula ϕ(x) corresponding to ULBiwst(s1, s2, n0). (For this
overview, think of x as the input length n.) Consequently, there is a universal winning L(UTiPV)-strategy for
the truthifier (existential player) in the tree exploration game of ϕ(x). In particular, for every input length
n ≥ n0, the truthifier has a winning strategy computed by functions in FPΣpi−1 that succeeds within O(1)
plays in producing a Πi-circuit Cn of size ≤ nd that cannot be computed (in the worst case) by Σi-circuits
of size ≤ 2n

δ
.

The plan for the remainder of the proof is to fix a particular strategy of the falsifier, which will depend
on the circuit Em from Item (ii) that we would like to approximate, and to show that using the FPΣpi−1-
computable winning strategy of the truthifier we can obtain a good circuit Bm for Em.

Similarly, in the simpler context of the Student-Teacher game obtained from the KPT Witnessing The-
orem and for a worst-case lower bound sentence that refers to a fixed machine M , [Kra11, Pic15a, PS21]
showed that an average-case complexity upper bound follows from the provability of a worst-case lower
bound. We provide a simple example of how this can be done in Section 4, when we discuss Student-Teacher
games with a single round in the context of [PS21]. For games with more than one round, techniques from

10

pseudorandomness and a more elaborated strategy that employs the Nisan-Wigderson generator [NW94]
play an important role in the argument from [Kra11, Pic15a, PS21].

In our context, the following difficulties arise:

(1) We need to consider the considerably more complicated tree exploration game played between the
truthifier and the falsifier.

(2) The machineM becomes an arbitrary circuitC ′ that the falsifier proposes as a candidate hard function,
and different circuits can be proposed until the winning strategy of the truthifier succeeds in producing
a hard circuit Cn.

We are able to avoid a difficult analysis in Item (1) by considering a simpler setting of the tree exploration
game that is sufficient for our purposes. In more detail, when considering the strategy for the falsifier based
on the circuit Em that we would like to approximate, the play of the falsifier in the current node of the game
tree only depends on the partial play of the evaluation game corresponding to the moves of both players in
the root-to-node path of the tree exploration game. This simpler framework is developed in Section 3.2, and
we believe that it might find more applications in the investigation of the logical foundations of algorithms
and complexity theory.

Finally, in order to address Item (2), we show that it is possible to modify the use of the Nisan-Wigderson
generator in [Kra11, Pic15a] when defining the strategy of the falsifier so that even if the truthifier changes
the candidate hard circuit O(1) times when we execute its winning strategy, we are still able to obtain a
non-trivial complexity upper bound for Em. We refer to Section 5 for the technical details.

1.3 Organization

We intended to make the exposition accessible to a broad audience and in particular to someone that
might not be so familiar with bounded arithmetic. The remaining sections of the paper are organised as
follows:

– Section 2 fixes notation and presents some basic definitions and useful tools in logic and complexity.

– Section 3 formalizes the game-theoretic witnessing theorem (Theorem 1.6). We defer its proof to Ap-
pendix B. A simpler version that is sufficient for the proof of Theorem 1.2 is derived in Section 3.2.

– Section 4 provides an exposition of Krajı́ček’s technique [Kra11] (further elaborated in [Pic15a]) and of
the main unprovability result from Pich and Santhanam [PS21] in a language that will be more convenient
when discussing our proofs.

– Section 5 combines and extends results from the previous sections in order to establish Theorem 1.2.

– Appendix A discusses provability in the theories TiPV and relates their strength to certain computational
assumptions.

– Appendix B contains the proofs of the witnessing theorems. A proof of Theorem 1.6 using sequent cal-
culus appears in Appendix B.1. Appendix B.2 provides a self-contained proof of the witnessing theorem
presented in Section 3.2 using Herbrandization instead of sequent calculus.

– Appendices C, D, and E contain omitted proofs from Sections 2 and 5.

Acknowledgements. We would like to thank the anonymous STOC reviewers for their helpful comments

11

and for bringing to our attention the witnessing result presented in [BKT14, Section 2.3]. In addition, we
thank Ján Pich for answering questions about [PS21], Anupam Das for a discussion on extracting compu-
tational content from proofs, and Junhua Yu for comments on the game-theoretic witnessing argument. We
also thank Jan Krajı́ček for providing valuable feedback on different parts of the paper. Finally, we are grate-
ful to Marco Carmosino, Emil Jeřábek, Valentine Kabanets, Rahul Santhanam, Antonina Kolokolova, and
Lijie Chen for related discussions. This work received support from the Royal Society University Research
Fellowship URF\R1\191059, the EPSRC New Horizons Grant EP/V048201/1, and the Centre for Discrete
Mathematics and its Applications (DIMAP) at the University of Warwick.

2 Preliminaries

This section fixes notation and presents some basic definitions and useful tools in logic and complexity.

2.1 Complexity theory

Given a function t : N → N, we generalize the definition of each level of the polynomial hierarchy to
machines that run in time t(n) in the natural way. For a fixed i ≥ 1, we let Πi-TIME[t] denote the set of
languages L that admit a deterministic machine A running in time t(n) such that, for every x ∈ {0, 1}n,

x ∈ L ⇐⇒ ∀z1 ∈ {0, 1}≤t(n) ∃z2 ∈ {0, 1}≤t(n) . . . Qizi ∈ {0, 1}≤t(n) A(x, z1, . . . , zi) = 1.

The class Σi-TIME is defined in an analogous way. This generalises the classes Σp
i and Πp

i corresponding to
the i-th level of the polynomial hierarchy.

We consider (non-uniform) Boolean circuits over a standard set of gates of fan-in at most two, such as
{∧,∨,¬}. The size of a circuit is the number of gates in the circuit. We adopt this convention only for
concreteness, as our results are robust and do not depend on specific details of the circuit model. We let
SIZE[s] denote the set of languages that admit non-uniform Boolean circuits of size s(n).

We also consider circuits and corresponding circuit classes obtained by extending deterministic circuits
to circuits with a constant number of alternations. For a fixed i ≥ 1, we say that a language L ∈ Σi-SIZE[s]
if there is a sequence {Cn}n≥1 of deterministic Boolean circuits Cn of size s(n) such that, for every x ∈
{0, 1}n,

x ∈ L ⇐⇒ ∃z1 ∈ {0, 1}s(n) ∀z2 ∈ {0, 1}s(n) . . . Qizi ∈ {0, 1}s(n) Cn(x, z1, . . . , zi) = 1.

The class Πi-SIZE[s] is defined in an analogous way. For convenience, we might refer to Σ1-SIZE[s] as
NSIZE[s], i.e., the set of languages computed by non-deterministic circuits of size at most s(n). When
we write C(x) = 1 for a non-deterministic circuit C and input x, we implicitly refer to its acceptance
condition, i.e., that there is an input z such that C(x, z) = 1. We adopt the analogous convention for
co-nondeterministic circuits and for circuit classes with additional alternations.

We will also consider languages that are computed by circuits with oracle gates. For an oracle O, we
let SIZEO[s] denote the set of languages computed by circuits of size at most s that can also make use of
O-oracle gates.

Finally, for convenience we often abuse notation and associate the size of a Boolean circuit to its bit-
length, i.e., its description length under a reasonable encoding.

12

2.2 Logic and bounded arithmetic

We refer to [Bus97] for an introduction to bounded arithmetic and to the textbooks [Kra95, CN10] for a
comprehensive treatment. Below we review the relevant definitions and fix notation.

We use L(T) to denote the language (vocabulary) of a theory T .
For a structure M over a language L, we often write M = (D, I) to explicitly refer to its domain D

and interpretations I. As usual, theM-interpretation of a function symbol f ∈ L will be denoted by fM

(similarly for relations and constants). TheM-interpretation of an L-term t is also denoted by tM.
Given a formula ψ, we write ψ(y) to explicitly indicate that y may be a free variable in ψ. For a formula

ϕ(x) and a term t, we write ϕ(x/t) for substitution of the free variable x with t, or simply ϕ(t) if it is clear
from the context. Similarly, we use s(x) to denote a term s that may contain x as a free variable, and s(x/t)
to denote the substitution of the free variable x with t, or simply s(t) if it is clear.

The language LPV. In theoretical computer science one typically considers functions and predicates that
operate over binary strings. For the computational models considered in this paper, this is equivalent to oper-
ations on integers, by identifying each non-negative integer with its binary representation. For convenience,
we adopt the latter perspective when introducing the language (vocabulary) LPV of theories TiPV.

Let N denote the set of non-negative integers. For a ∈ N, we let |a| = max{dlog2(a + 1)e, 1} denote
the length of the binary representation of a. For a constant k ≥ 1, we say that a function f : Nk → N is
computable in polynomial time if f(x1, . . . , xk) can be computed in time polynomial in |x1|, . . . , |xk|. Re-
call that FP denotes the set of polynomial time functions. While this definition refers to a particular model
of computation (Turing machines), Cobham [Cob65] proved that FP can be introduced in a machine inde-
pendent way as the closure of a set of base functions under composition and limited recursion on notation.
We briefly review this construction.4

Consider the following class F0 of base functions:

c(x) = 0, s0(x) = 2 · x, s1(x) = 2x+ 1, πi`(x1, . . . , x`) = xi, x#y = 2|x|·|y|

We say that a function f(~x, y) is defined from functions g(~x), h0(~x, y, z), h1(~x, y, z), and k(~x, y) by limited
recursion on notation if

f(~x, 0) = g(~x)

f(~x, s0(y)) = h0(~x, y, f(~x, y))

f(~x, s1(y)) = h1(~x, y, f(~x, y))

f(~x, y) ≤ k(~x, y)

for every sequence ~x and y of natural numbers. Let F be the least class of functions that contains F0 and
is closed under composition and limited recursion on notation. Cobham [Cob65] proved that f ∈ F if and
only if f ∈ FP.

We let LPV contain the constant symbols 0 and 1, and a function symbol f for every function in FP. In
particular, LPV contains function symbols for the length function |x|, ≤, +, etc.5

4This is not strictly needed in our presentation. We include it here because it provides more intuition about the language of
theories TiPV and the typical choice in bounded arithmetic of defining FP over non-negative integers instead of binary strings.

5It is also possible to include inLPV a function symbol for every polynomial time algorithm, where an algorithm can be described
from the base functions and operations allowed in Cobham’s characterisation. However, this is inessential in our context. The
theories TiPV will contain all true universal sentences, and polynomial time algorithms that compute the same function are provably
equivalent in these theories.

13

We use the standard notation n ∈ Log and n ∈ LogLog for ∃N n = |N | and ∃N n = ||N ||, respectively.
We define ∀n ∈ Log and ∀n ∈ LogLog as ∀N ∀n = |N | and ∀N ∀n = ||N ||, respectively.

Bounded formulas and theories Ti
PV. A bounded quantifier is a quantifier of the form Qx ≤ t, where

Q ∈ {∃,∀} and t is an LPV-term that does not involve x.6 An LPV-formula ψ is bounded if every quantifier
in ψ is bounded.

We will need to introduce a hierarchy of bounded formulas to define the theories TiPV. We let Σb
0 = Πb

0

be the set of quantifier-free LPV-formulas. We then recursively define sets Σb
i and Πb

i of formulas as follows.
For each i ≥ 1, Σb

i and Πb
i constitute the smallest class of LPV-formulas such that the following conditions

hold:

1. Σb
i−1 ∪Πb

i−1 ⊆ Σb
i ∩Πb

i ;

2. both Σb
i and Πb

i are closed under Boolean connectives ∧ and ∨;

3. if ψ(~x) ≡ ∃y ≤ t(~x) ϕ(~x, y) is a bounded formula and ϕ ∈ Σb
i , then ψ ∈ Σb

i ;

4. similarly, if ψ(~x) ≡ ∀y ≤ t(~x) ϕ(~x, y) is a bounded formula and ϕ ∈ Πb
i , then ψ ∈ Πb

i ;

5. the negation ¬ψ of a formula ψ from Σb
i is in Πb

i and vice versa.

We note that these classes of sentences are often referred to as strict Σb
i and Πb

i formulas in the literature, as
we do not include sharply bounded quantifiers between bounded quantifiers.

For convenience, we sometimes describe formulas with the implication symbol→, implicitly assuming
that it is expressed using the Boolean connectives appearing above.

Note that to each LPV-formula φ(x1, . . . , xk) we can associate a language Lφ ⊆ {0, 1}∗ consisting of
binary encodings of all tuples (a1, . . . , ak) ∈ Nk such that N |= φ(a1, . . . , ak). It is known that φ ∈ Σb

i if
and only if Lφ ∈ Σp

i [Sto76, Wra76, KH82], where Σp
i denotes the i-th level of the polynomial hierarchy.

For j ≥ 0, we let ∀Σb
j denote the set of LPV-sentences of the form ∀~y ϕ(~y), where ϕ is a Σb

j-formula. We
sometimes write Σb

i(L), Πb
i(L), and ∀Σb

i(L) to emphasize the underlying language L of a class of formulas.
As expected, the intended model of theories TiPV is N, with the interpretation of each function symbol

f ∈ LPV as the corresponding polynomial time function. We will refer to (N, 0N,+N, . . .) as the standard
model.

Definition 2.1 (Theories TiPV). For each integer i ≥ 1, we let TiPV denote the theory of all true (with respect
to N) ∀Σb

i−1 sentences over the language LPV.

In particular, T1
PV is the theory of true universal sentences, and we might refer to T1

PV just as TPV.
Note that the definition of TiPV consists of only true Σb

i -sentences without sharply bounded quantifiers
as axioms. However, as we observe in Appendix A.1, this is inessential in our unprovability results, given
that the introduction of sharply bounded quantifiers would not make the theories TiPV any stronger.

In order to simplify the presentation of some results, we introduce the following definition.

Definition 2.2 (Closure under if-then-else). A theory T is closed under if-then-else if for every quantifier-
free formula ϕ(~x) and terms t1(~x) and t2(~x), there exists a term t(~x) such that

T `
(
t(~x) = t1(~x) ∧ ϕ(~x)

)
∨
(
t(~x) = t2(~x) ∧ ¬ϕ(~x)

)
.

6Bounded quantifiers can be expressed with the usual quantifiers from first-order logic. For instance, a formula ψ(y) of the form
∀x ≤ t(y) ϕ(x, y) is equivalent to ∀x (x ≤ t(y) → ϕ(x, y)). On the other hand, a formula of the form ∃x ≤ t(y) ϕ(x, y) is
equivalent to ∃x (x ≤ t(y) ∧ ϕ(x, y)).

14

We note that in such a theory the provability of a disjunction ψ(x, t1(x))∨ψ(x, t2(x))∨. . .∨ψ(x, tk(x))
yields the provability of ψ(x, t(x)), for a quantifier-free formula ψ(x, y). Typical theories of bounded arith-
metic (e.g., S1

2 and TiPV) are closed under if-then-else or admit a suitable extension that is closed under this
property.

Theory APC1. In order to formalize certain probabilistic methods and randomised algorithms, Jeřábek
[Jeř04, Jeř07a] (following [Kra01]) introduced the theory APC1 by extending PV with the dual Weak Pi-
geonhole Principle for PV functions, an axiom scheme postulating that there is no PV function f : [2n] →
[(1 + 1/n) · 2n] that is surjective.7 (The notation APC1 was proposed by [BKT14].) More formally, we
define dWPHP(f) for a function f (with extra parameters) as the sentence8

dWPHP(f) , ∀n ∈ Log ∀~z ∃y < (1 + 1/n) · 2n ∀x < 2n f(~z, x) 6= y. (1)

Let dWPHP(PV) , {dWPHP(f) | f ∈ LPV}. Then APC1 , PV + dWPHP(PV). (For a definition of
theory PV, see [Kra95] or the equivalent presentation from [Jeř06].) Jeřábek [Jeř04, Jeř05, Jeř07a] developed
a sophisticated (but intuitive) framework for approximate counting in APC1 built on an elegant formalisation
of the Nisan-Wigderson PRG [NW94] in this theory.

By counting the quantifier alternations in Equation (1), it is easy to see that dWPHP(f) is a ∀Σb
2-

sentence in LPV. As a result, APC1 is a subtheory of T3
PV. We note that our unprovability result for APC1

(Corollary 1.4) is quite robust and works with any non-trivial codomain size in the definition of dWPHP(f),
since this does not increase the quantifier complexity of the corresponding sentences.

2.3 Total search problems and the polynomial hierarchy

In this section, we define complexity classes and circuit classes associated with total search problems in
the polynomial hierarchy and explore their basic properties.

Recall that a relationR ⊆ {0, 1}∗×{0, 1}∗ is in TFNP and if there is a polynomial p(n) and a polynomial
time machine A such that

• For every x ∈ {0, 1}∗ there is y ∈ {0, 1}≤p(|x|) such that R(x, y) holds. Moreover, any such y is of
length at most p(|x|).

• For every pair (x, y) of strings x, y ∈ {0, 1}∗, (x, y) ∈ R if and only if A(x, y) = 1.

The next definition is a standard generalisation of this class.

Definition 2.3. For i ≥ 1, we say that a relation R ∈ TFΣp
i if there is a polynomial p(n) and a polynomial

time machine A such that the following conditions hold:

• For every x ∈ {0, 1}∗ there is y ∈ {0, 1}≤p(|x|) such that R(x, y) holds.

• For every pair (x, y) of strings x, y ∈ {0, 1}∗,

R(x, y) ⇐⇒ ∀z1 ∈ {0, 1}p(|x|) ∃z2 ∈ {0, 1}p(|x|) . . . Qi−1zi−1 ∈ {0, 1}p(|x|) A(x, y, z1, . . . , zi−1).

In other words, R ∈ Πp
i−1.

7The size of the codomain (with respect to the size of the domain) affects the power of the dual Weak Pigeonhole Principle. This
can be a subtle point, as the equivalence between dual Weak Pigeonhole Principles with different codomain sizes is not known to be
provable in PV (see [Jeř07b] for more details).

8Note that the additional parameter ~z is crucial in the definition of APC1. If we remove this parameter in the definition of
dWPHP, denoted by dWPHP′, the theory PV + dWPHP′(PV) will be a (possibly) weaker fragment of APC1 (see, e.g., [PS21]).

15

We will need the following simulation result.

Theorem 2.4. For every i ≥ 1 and s(n) ≥ n, SIZEΣpi−1 [s(n)] ⊆ Σi-SIZE[poly(s(n))].

Proof. The proof is similar to the well-known inclusion PΣpi−1 ⊆ Σp
i (see, e.g., [Pap94, Chapter 17]), and

we omit the details.

2.4 The Nisan-Wigderson generator

In this section, we review basic properties of the Nisan-Wigderson [NW94] pseudorandom generator and
fix notation. For an introduction to this generator and to computational pseudorandomness, see [Vad12].

Definition 2.5. A collection S = {S1, . . . , Sk} of sets Si is said to be an (m, `, a)-design if

• for every i ∈ [k], Si ⊆ [m];

• for every i ∈ [k], |Si| = `; and

• for every i 6= j ∈ [k], |Si ∩ Sj | ≤ a.9

The size of a design S is defined as the number of sets in S.

Lemma 2.6 (Explicit designs; see, e.g., [NW94, Vad12]). For every constant c ≥ 2 and every sufficiently
large n ∈ N, there exists an (nc, nc/2, n)-design Sc,n of size 2n. Moreover, for every fixed c, there is an
algorithm that, given a large enough n and an index i ∈ [2n], outputs the i-th set Si ∈ Sc,n in time poly(n).

Recall that, given an (m, `, a)-design S of size N and a function f : {0, 1}` → {0, 1}, the Nisan-
Wigderson generator (NW generator) maps a seed w ∈ {0, 1}m into the N -bit string

f(w|S1)f(w|S2) . . . f(w|SN),

where w|Si is the string of length ` obtained from w be selecting the bits indexed by Si ∈ S.
It will be convenient to view the NW generator as a Boolean function and to introduce additional notation.

For a large constant c ≥ 1, given a function h : {0, 1}nc/2 → {0, 1}, we will use the NW generator to define
a function NWh : {0, 1}nc × {0, 1}n → {0, 1}. More precisely,

• The seed length is nc.

• The corresponding design is described by a 2n × nc Boolean matrix A where each row has exactly
nc/2 entries set to 1, and the 1 entries in distinct rows overlap in at most n columns. As stated in
Lemma 2.6, designs with these parameters are known to exist. Given a pair (i, j) ∈ [2n] × [nc], the
(i, j)-entry of the corresponding design matrix can be explicitly computed by circuits of size poly(n)
[NW94].

• For a row index x ∈ {0, 1}n of A, we use Jx ⊆ [nc] to denote the set of nc/2 columns of the x-th row
of A set to 1.

• It will often be convenient to consider an nc-bit string w as a function in {0, 1}[nc] that maps [nc] to
{0, 1}. If S1, S2 ⊆ [nc] is a partition of [nc], a ∈ {0, 1}S1 , and u ∈ {0, 1}S2 , we let w = u∪ a denote
the corresponding nc-bit string obtained from a and u.10

9Designs are also called combinatorial designs by some authors. We will use both terms interchangeably.
10This notation is consistent with the standard set-theoretic definition of a function as a set of pairs.

16

• For x ∈ {0, 1}n and strings a ∈ {0, 1}nc−nc/2 and u ∈ {0, 1}nc/2 , we let rx(a, u) denote the string
w = u ∪ a of length nc obtained by viewing a ∈ {0, 1}[nc]\Jx and u ∈ {0, 1}Jx∗ .

• By fixing the seed w ∈ {0, 1}nc in the NW generator and the function h : {0, 1}nc/2 → {0, 1}, we
obtain a function NWh(w) : {0, 1}n → {0, 1} in the natural way. Similarly, we can obtain a family
{NWh(w)}w∈{0,1}nc of functions, one for each possible seed w.

2.5 Hardness amplification in the polynomial hierarchy

In order to relax the average-case complexity parameter in our unprovability results, we need a hardness
amplification theorem for the polynomial hierarchy. The result stated below can be seen as the “relativised”
version of [HVV06] (see also [PS21, Section 3.3]). For completeness, we sketch their proof and explain how
to adapt the result to our purpose in Appendix C.

Theorem 2.7. There is a constant γ > 0 and ` = `(n) = poly(n) such that the following holds for every
i ≥ 1. Let s1, s2 : N→ N be non-decreasing functions, where s2(n) = nω(1), and suppose there is a function
fn : {0, 1}n → {0, 1} computable by Σi-SIZE[s1(n)] circuits (resp. Πi-SIZE[s1(n)] circuits) such that each
Σp
i−1-oracle circuit An of size at most s2(n) satisfies

Pr
x∈{0,1}n

[fn(x) = An(x)] ≤ 1− 1

n
.

Then there exist a function h` : {0, 1}` → {0, 1} computable by Σi-SIZE[poly(`) · s1(`)] circuits (resp.
Πi-SIZE[poly(`) · s1(`γ)] circuits) such that each Σp

i−1-oracle circuit B` of size at most s2(`γ)γ satisfies

Pr
y∈{0,1}`

[h`(y) = B`(y)] ≤ 1

2
+

1

s2(`γ)γ
.

2.6 Herbrand’s Theorem and the KPT Witnessing Theorem

In this section, we review standard witnessing theorems previously used to show unprovability results
in bounded arithmetic (see, e.g., [CKKO21, PS21]). In all results, we consider a universal theory T with
vocabulary L.11 (As a concrete example, one can take T = PV and L = LPV.)

Two quantifiers (∀∃). The well-known Herbrand’s theorem is the simplest witnessing result and can be
applied to ∀∃-sentences (see, e.g., Section 2 of [Koh08]).

Theorem 2.8 (Herbrand’s Theorem). Let T be a universal theory with vocabulary L. If T ` ∀x ∃y ϕ(x, y)
for a quantifier-free L-formula ϕ, there exist a constant ` ≥ 1 and a sequence t1, t2, . . . , t` of L-terms such
that

T ` ∀x
(
ϕ(x, t1(x)) ∨ ϕ(x, t2(x)) ∨ · · · ∨ ϕ(x, t`(x))

)
.

In particular, if T is closed under if-then-else, then there is an L-term t such that T ` ∀x ϕ(x, t(x)).
11Recall that a theory T is universal if all its axioms are universal formulas, i.e., a formula of the form ∀~xϕ(~x), where ϕ is free

of quantifiers.

17

Three quantifiers (∀∃∀). The KPT Witnessing Theorem [KPT91] extends Herbrand’s Theorem by pro-
viding witnessing functions for the existential quantifier in a provable ∀∃∀-sentence.

Theorem 2.9 (KPT Witnessing [KPT91]). Let T be a universal theory with vocabulary L. Suppose that, for
a quantifier-free L-formula ϕ, T ` ∀x ∃y ∀z ϕ(x, y, z). Then there exist a constant ` ≥ 1 and a sequence
t1, . . . , t` of L-terms such that

T ` ∀x ∀~z
(
ϕ(x, t1(x), z1) ∨ ϕ(x, t2(x, z1), z2) ∨ · · · ∨ ϕ(x, t`(x, z1, . . . , z`−1), z`)

)
.

KPT witnessing has a well-known computational interpretation as an interactive game between a student
and a teacher (see, e.g., [Pic15a]). In the first round, the student is given an arbitrary input x, and computes
according to the term t1(x). This computation provides a candidate object y1. The teacher then replies with
an arbitrary “counterexample” z1 such that ¬ϕ(x, y1, z1) holds, whenever such z1 exists. Note that the next
move of the student takes into account previously presented counterexamples, i.e., the term t2 depends on
both x and z1. According to Theorem 2.9, the game ends in at most ` rounds, and the student is guaranteed
to succeed, i.e., to output y such that ϕ(x, y, z) holds for every z.

Example 2.10. An example of the interactive game is the proof of the existence of two irrational numbers x, y
such that xy is rational (see Example 1.7), formalized (in some appropriate theory for real numbers) as:

∃x, y ∈ R ∃p, q ∈ Z ∀p′, q′ ∈ Z ψ(x, y, p, q, p′, q′), where

ψ(x, y, p, q, p′, q′) , xy = p/q ∧ x 6= p′/q′ ∧ y 6= p′/q′

The student wants to learn x, y, p, q such that ψ(x, y, p, q, p′, q′) holds for every p′, q′, with the help of a teacher
that finds counterexamples p′, q′ making ψ(x, y, p, q, p′, q′) false. The student’s strategy (say, extracted from the
proof using KPT witnessing) is that:

• In the first round, try x = (
√

2)
√
2, y =

√
2, p = 2, q = 1, and ask for a counterexample p′, q′ from the

teacher if it failed.

• Since y 6= p′/q′, the student knows that x = p′/q′. The student can then propose in the second round that
x =
√

2, y =
√

2, p = p′, q = q′.

Four quantifiers (∀∃∀∃). It is also known that one can prove a witnessing theorem for ∀∃∀∃-sentences
using the standard model-theoretical proof of the KPT witnessing theorem.

Theorem 2.11 (KPT Witnessing for ∀∃∀∃-Sentences [KPT91]). Let T be a universal theory with vocabulary
L. Let ϕ be a quantifier-free L-formula, and suppose that T ` ∀x ∃y ∀z ∃w ϕ(x, y, z, w). Then there is an
` ≥ 1 and a finite sequence t1, . . . , t` of L-terms such that

T ` ∀x, z1, . . . , zk
(
ψ(z, t1(z), z1) ∨ ψ(x, t2(x, z1), z2) ∨ · · · ∨ ψ(x, t`(z1, . . . , z`−1), z`)

)
,

where ψ(x, y, z) , ∃w ϕ(x, y, z, w).

Five or more quantifiers? Unlike the case of four quantifiers, there is no obvious direct generalization of
the KPT witnessing theorem to five or more quantifiers. The intuitive reason is that there is more than one
universal quantifier within the outermost existential quantifier that we would like to witness, so the interaction
pattern of the student and the teacher, which can provide counterexamples for all but the outermost universal
quantifier, becomes much more complicated. This can be mitigated with the use of Herbrandization, as done
in Appendix B.2, but the corresponding witnessing results become significantly more involved.

18

2.7 A universal theory for TiPV

There are two immediate issues when trying to show the unprovability of the lower bound sentence
LBi in TiPV. Firstly, LBi contains more quantifier alternations than a typical witnessing theorem can handle
(see Section 3). Secondly, TiPV is not a universal theory if i > 1, which violates a common assumption in
these results. To address the latter, the first step of our argument is to turn TiPV into a universal theory by
introducing Skolem functions. In turn, this will allow us to reduce the quantifier complexity of LBi so that
the techniques developed in Section 3 can be applied (see Section 5.2).

Theory UiPV and LanguageLiPV. Let i ≥ 1. For each (Πb
i−1∪Σb

i−1)-formula α(~z) overLPV, we introduce
a function symbol fα interpreted (in the standard model) as the Boolean-valued function

fNα (~z) =

{
1 if αN(~z) holds;
0 otherwise.

Furthermore, when i ≥ 2, for each Σb
i−1-formula β(~x, y) and term t in LPV, we introduce a function symbol

gβ,t that is interpreted (in the standard model) as the function12

gNβ,t(~x) =

{
smallest y ∈ N s.t. βN(~x, y) if ∃y ≤ tN(~x) βN(~x, y);

0 otherwise.

Denote by LiPV the language of LPV supplemented with the new function symbols. Let UiPV be the theory
consisting of all universal true sentences (over the standard model) in LiPV.

Correctness of the extension UiPV. Now we show that UiPV is an extension of TiPV, that is, every sentence
provable in TiPV is also provable in UiPV. We state two useful lemmas (see Appendix D for proofs).

Lemma 2.12 (Defining Axioms of gβ,t). Let i ≥ 2, β(~x, y) be any Σb
i−1-formula in LPV, and t be any term

in LPV. Then UiPV ` ∀~x ((∃y ≤ t(~x) fβ(~x, y) = 1)↔ fβ(~x, gβ,t(~x)) = 1).

Lemma 2.13 (Defining Axioms of fα). For every i ≥ 1 and (Πb
i−1 ∪ Σb

i−1)-formula α(~z) in the language
LPV, UiPV ` ∀~z (α(~z)↔ fα(~z) = 1).

Theorem 2.14. For every i ≥ 1 and LPV-sentence ϕ, if TiPV ` ϕ, then UiPV ` ϕ.

Proof. To prove this lemma, it is sufficient to show that for every ϕ ∈ TiPV, UiPV ` ϕ. Let ϕ = ∀~x α(~x) be
an axiom of TiPV, where α(~x) is a Σb

i−1-formula. By Lemma 2.13, we only need to show that UiPV proves
∀~x fα(~x) = 1. This follows directly from the fact that ∀~x fα(~x) = 1 is a true universal sentence in the
standard model.

Complexity of the function symbols in LiPV. As we discussed in Section 1.2, we will extract a KPT-style
student-teacher game from the provability of the lower bound sentence in the universal theory UiPV. In this
step, the complexity of the student is determined by the complexity of the standard interpretations of the
function symbols in the language LiPV, which consists of both the polynomial-time computable functions
(i.e. the symbols in LPV) and the new function symbols fα and gβ,t. Now we determine the complexity of
the functions fα and Skolem functions gβ,t.

12If the reader is somewhat uncomfortable with the possibility that the smallest y satisfying the condition below might be 0, we
stress that this is not going to be an issue in our construction – see, e.g., the statement of Lemma 2.12.

19

Lemma 2.15. Let i ≥ 1. For every function symbol fα in LiPV, fNα : N → {0, 1} is the characteristic
function of a language in Πp

i−1 ∪ Σp
i−1.

Proof. Recall that each fα is introduced for a (Πb
i−1 ∪Σb

i−1)-formula α(~z) with language LPV such that fNα
is the characteristic function of αN, i.e., for every ~m ∈ ~N, fNα (~m) = 1 if and only if αN(~m) holds. Since α
is a bounded formula and the initial function symbols and relation symbols, when interpreted in the standard
model, are polynomial-time computable, it is not hard to see that αN ∈ Πp

i−1 ∪ Σp
i−1.

Lemma 2.16. Let i ≥ 2. For every function symbol gβ,t in LiPV, gNβ,t ∈ FPΣpi−1 .

Proof. Recall that gβ,t is introduced for every Σb
i−1-formula β and term t in the language LPV, and that

gNβ,t(~x) finds the minimum y∗ such that βN(~x, y∗) holds if there is y ≤ t(~x) such that βN(~x, y) holds, or
outputs 0 otherwise. Note that using a Σp

i−1 oracle we can decide for 0 ≤ l ≤ r ≤ t(~x) whether there exists
y ∈ [l, r] such that βN(~x, y) holds. So we can perform a binary search over [0, t(~x)] to find the minimum
y∗ such that βN(~x, y∗) holds or detect that no such element exists. This is an FPΣpi−1 computation for every
i ≥ 2.

Theorem 2.17. Let i ≥ 1. For every LiPV-term t(x1, . . . , x`), we have tN(x1, . . . , x`) ∈ FPΣpi−1 .

Proof. This directly follows from Lemma 2.15 and Lemma 2.16.

Theory UiPV has almost all properties needed for the proof of our results, except that it is not necessarily
closed under if-then-else (Definition 2.2). This is desirable as it simplifies the statement of our witnessing
result and its proof. For this reason, we further modify UiPV to guarantee this property.

Theory UTiPV and Language LiUT. Let i ≥ 1, and consider the language LiPV introduced before. We
extend LiPV as follows. For every k ≥ 1 and function f : Nk → N in FPΣpi−1 , we introduce a new function
symbol fUT. Then, we let

LiUT , LiPV ∪ {fUT | f ∈ FPΣpi−1}.

Given LiUT, we define UTiPV as the theory of all universal sentences in LiUT that are true in the standard
model.

Theorem 2.18 (Main Properties of UTiPV). For every i ≥ 1, the theory UTiPV satisfies the following proper-
ties:

(i) UTiPV is a universal theory.

(ii) Every LiPV-sentence provable in UiPV is also provable in UTiPV.

(iii) Every LPV-sentence provable in TiPV is also provable in UTiPV.

(iv) Let t be an arbitrary LiUT-term, and consider its interpretation tN : Nk → N over the standard model.
Then tN ∈ FPΣpi−1 .

(v) UTiPV is closed under if-then-else.

(vi) UTiPV is sound, i.e., every sentence provable in UTiPV is true over N.

The proof of the theorem is deferred to Appendix D.

20

3 Witnessing Theorems for General Formulas

In this section, we introduce a convenient witnessing theorem that works for sentences of arbitrarily high
quantifier complexity. As explained in Section 1, the result is used in the proof that strong complexity lower
bounds cannot be established in TiPV. While it is possible to obtain a general witnessing result that holds for
an arbitrary universal theory, due to our main applications we restrict our attention to theories of bounded
arithmetic.

3.1 A game-theoretic witnessing theorem

Let T be a universal bounded theory over the vocabulary L. Let ϕ(x) be a bounded L-formula defined
as

ϕ(x) , ∃y1 ≤ t1(x) ∀x1 ≤ s1(x, y1) ∃y2 ≤ t2(x, y1, x1) . . . ∀xk−1 ≤ sk−1(x, y1, x1, . . . , yk−1)

∃yk ≤ tk(x, y1, x1, . . . , yk−1, xk−1) ∀xk ≤ sk(x, y1, x1, . . . , yk) φ(x, x1, . . . , xk, y1, . . . , yk),

where φ(x, ~x, ~y) is a quantifier-free L-formula.

The Evaluation Game. We consider an interactive game between two players, the truthifier (associated
with existential quantifiers in ϕ) and the falsifier (associated with universal quantifiers in ϕ). A board is
defined as a pair (M, n0), where M is a structure over L such that M � T , and n0 ∈ M is an element
of its domain.13 The evaluation game for the formula ϕ(x) on the board (M, n0) is played as follows: in
the i-th round of the game (1 ≤ i ≤ k), the truthifier firstly chooses an assignment mi ∈ M for yi such
that mi ≤ ti(n0,m1, n1 . . . ,mi−1, ni−1), then the falsifier chooses an assignment ni ∈ M for xi such that
ni ≤ si(n0,m1, n1, . . . ,mi). The truthifier wins if and only if φ(x/n0, ~x/~n, ~y/~m) holds inM.

The transcript of a game given strategies τt for the truthifier and τf for the falsifier, denoted by
〈
τt : τf

〉
,

is a pair (~n, ~m) of sequences that records the moves for both players.14 A partial transcript is a prefix of a
transcript. A partial transcript is valid if all elements mi and ni respect the corresponding upper bounds (in
M) given by functions ti and si. A strategy τt for the truthifier is said to beat a strategy τf for the falsifier
(w.r.t. a given board and formula) if the truthifier wins in the transcript

〈
τt : τf

〉
. A strategy for a player is

defined in the natural way, i.e., as a function that produces the next assignment given a partial transcript of
the game. Equivalently, since we will consider games with only a fixed number of rounds, one can describe
a strategy as a finite sequence of functions of the form f : Mi →M, for appropriate values i ≤ 2k.

We will consider games that are played in a more general setting. Roughly speaking, we allow the
truthifier and falsifier to simultaneously play different evaluation games over the same board (M, n0). The
truthifier has a positional advantage over the falsifier: it can decide where to make the next move, i.e., by
either making the next move in one of the current games or starting a new game over the board (M, n0) or
playing differently some earlier play, which creates a new game from there but maintains the existing game
plays. The falsifier must respond to that move in the corresponding game. Crucially, the next assignment
selected by each player now depends on previous plays in all games. The formal details are provided next.

The Tree Exploration Game. A partial game tree T = (V,E, γ) (where (V,E) is a directed rooted tree and
γ : E →M×M) of the evaluation game for ϕ on the board (M, n0) is defined as a finite rooted tree where

13For a concrete example, think ofM = (N,≤N,+N,×N, . . .).
14For convenience, we might also write the transcript as (m1, n1, . . . ,mk, nk). The moves of each player will always be clear in

each context.

21

each edge e ∈ E(T) is labeled with a pair (m,n) of elements ofM and such that, for every node u ∈ V (T),
the concatenation of each pair of elements labelling the edges on the root-to-u path is a prefix of a valid
transcript of the evaluation game of ϕ(x) on the board (M, n0). More precisely, if the pairs labelling the
edges from the root to u are (m1, n1), (m2, n2), . . . , (mi, ni), then (m1, n1,m2, n2, . . . ,mi, ni) is a valid
partial transcript of the evaluation game, i.e., for all j ∈ [i],M � mj ≤ tj(n0,m1, n1, . . . ,mj−1, nj−1) and
M � nj ≤ sj(n0,m1, n1, . . . ,mj). Note that ifM is the standard model then a partial game tree of the
evaluation game is a finite upper part of the (exponential size) complete game tree of the evaluation game.

Let T be a partial game tree of ϕ and (M, n0) be a board. The tree exploration game starting from T
on (M, n0) is played as follows. In each round, first the truthifier chooses a node u from T (not necessarily
a leaf) and an element m ∈ M, then the falsifier chooses an element n ∈ M. This creates a child of u and
a corresponding directed edge labeled by (m,n). Note that when playing each round of the tree exploration
game both players should guarantee that the new partial game tree is always a valid partial game tree, i.e., m
and n should satisfy the corresponding inequalities. The size of a partial game tree T is given by |T (V)|.

The truthifier wins the tree exploration game if there is a node in the current partial game tree that is
a winning node for the truthifier, that is, the concatenation of the pairs of elements labelling the edges on
the root-to-u path forms a winning transcript of the truthifier in the evaluation game of ϕ(x) on the board
(M, n0). The tree exploration game of ϕ(x) is defined as the tree exploration game starting from a partial
game tree containing only the root node. We refer to Figure 1 for an example of the tree exploration game.

Recall that L is the vocabulary of the universal (bounded) theory T . The main result established in
this section shows the existence of a “computationally bounded” winning strategy for the truthifier from a
T -proof of ϕ, i.e., the strategy can be computed by L-terms. In addition, the strategy is universal, in the
sense that it is specified by L-terms that are independent of the board (M, n0). Finally, the location of each
play of the truthifier in the partial game tree is fixed in advance and does not depend on the strategy of the
falsifier nor on the board (M, n0). (The elements selected by the truthifier depend on the previous plays of
the truthifier and falsifier.) This means that the trees in the sequence of partial game trees are fixed in advance.

L-Strategies for the Tree Exploration Game. An L-quasi-strategy of the truthifier of length ` ∈ N and
initial tree size d is a sequence τ = 〈p1, r1, p2, r2, . . . , p`, r`〉, where each pi is an L-term and each ri ∈ N
is such that 1 ≤ ri < d + i. Let (M, n0) be a board and T be a partial game tree on this board with
V (T) = {1, 2, . . . , d}. The strategy for the tree exploration game starting from the partial game tree T
induced by τ proceeds as follows:

• In the i-th move, the truthifier introduces a node numbered d+ i as a child of the node ri and chooses
the element vi , pMi (n0,Γ) ∈ M, where Γ is the sequence ofM-elements chosen by the players in
previous rounds (i.e., v1, . . . , vi−1 and the falsifier’s moves w1, . . . , wi−1).

Note that an arbitrary L-quasi-strategy might induce an invalid move vi = pMi (n0,Γ) that violates the
desired upper bound on vi, depending on the moves of the falsifier. We say that an L-quasi-strategy of the
truthifier is an L-strategy if for every board (M, n0) the resulting partial game trees are valid for every valid
strategy of the falsifier.

Finally, a length-` L-strategy is said to be a universal winning strategy if the truthifier wins within `
moves against all valid strategies (not necessarily L-strategies) of the falsifier on any board (M, n0). Note
that the falsifier’s strategy is a function of the board (M, n0), partial game tree T = (V,E, γ) (which
includes all moves from previous rounds), and the move of the truthifier in the current round.

Theorem 3.1 (Game-Theoretic Witnessing Theorem). Let T be a universal bounded theory with vocabulary

22

L that is closed under if-then-else. Let ϕ be a bounded L-formula of the form

ϕ(x) , ∃y1 ≤ t1(x) ∀x1 ≤ s1(x, y1) ∃y2 ≤ t2(x, y1, x1) . . . ∀xk−1 ≤ sk−1(x, y1, x1, . . . , yk−1)

∃yk ≤ tk(x, y1, x1, . . . , yk−1, xk−1) ∀xk ≤ sk(x, y1, x1, . . . , yk) φ(x, x1, . . . , xk, y1, . . . , yk),

where φ(x, ~x, ~y) is a quantifier-free L-formula. Then T ` ∀x ϕ(x) if and only if there is a universal winning
L-strategy of length O(1) for the truthifier in the corresponding tree exploration game of ϕ(x).

We defer the proof of Theorem 3.1 to Appendix B.

3.2 A special case: Falsifiers with oblivious strategies

In this section, we present a special case of game-theoretic witnessing (Theorem 3.1) that involves se-
quential invocations of the evaluation game played against an oblivious falsifier. This version is sufficient to
show the unprovability of strong circuit lower bounds in bounded arithmetic (Section 5.2).

We assume familiarity with the notation from Section 3.1. In particular, let T , L, and ϕ(x) be defined
as in Section 3.1. The main difference is that here we consider the evaluation game (as opposed to the tree
exploration game) in the presence of ancillary information for the truthifier, as explained next.

Strategies with Ancillary Information. LetM = (D, I) be a model for T . An L-strategy for the truthifier
with ancillary information in the evaluation game of ϕ(x) is a sequence τt = (p1, p2, . . . , pk) of k L-
terms, where pi , pi(n0,m1, n1, . . . ,mi−1, ni−1,~a) means given the ancillary information ~a (constantly
many elements from D), n0 ∈ D, and moves m1, n1, . . . ,mi−1, ni−1 ∈ D, the truthifier chooses mi =
pMi (n0,m1, n1, . . . ,mi−1, ni−1,~a) as the current move. For every ~a ∈ ~D, the strategy induced by τt given
~a as ancillary information is denoted by τt[~a]. In particular, if the L-strategy has no ancillary information,
the induced strategy is denoted by τt[∅]. Similarly to Section 3.1, the transcript of a game given strategies
τt for the truthifier (possibly with ancillary information) and τf for the falsifier, denoted by

〈
τt : τf

〉
, is a

pair (~n, ~m) of sequences that records the moves of both players.

Theorem 3.2 (Winning strategies against oblivious falsifiers). Let T be a universal theory over the language
L that is closed under if-then-else. Let ϕ(x) be the formula

ϕ(x) , ∃y1 ≤ t1(x) ∀x1 ≤ s1(x, y1) ∃y2 ≤ t2(x, y1, x1) . . . ∀xk−1 ≤ sk−1(x, y1, x1, . . . , yk−1)

∃yk ≤ tk(x, y1, x1, . . . , yk−1, xk−1) ∀xk ≤ sk(x, y1, x1, . . . , yk) φ(x, x1, . . . , xk, y1, . . . , yk),

where φ(x, ~x, ~y) is a quantifier-free L-formula. If T ` ∀x ϕ(x), then there is a constant ` ∈ N and L-
strategies τt1 , τ

t
2 , . . . , τ

t
` (with ancillary information) such that, for any board (M, n0) and evaluation game

of ϕ(x) on (M, n0), for every strategy τf of the falsifier:

• either τ̂t1 , τ
t
1 [∅] beats τf,

• or τ̂t2 , τ
t
2 [
〈
τ̂t1 : τf

〉
] beats τf,

• or τ̂t3 , τ
t
3 [
〈
τ̂t1 : τf

〉
,
〈
τ̂t2 : τf

〉
] beats τf,

• . . . ,

• or τ̂t` , τ
t
` [
〈
τ̂t1 : τf

〉
,
〈
τ̂t2 : τf

〉
, . . . ,

〈
τ̂t`−1 : τf

〉
] beats τf.

Before we establish this result, a few comments are in order. First, notice that the moves of the falsifier
only depend on the previous moves in the current game. On the other hand, the truthifier gets as ancillary

23

information the transcripts of all previous games, and succeeds in beating the strategy of the falsifier after
(sequentially) playing at most ` = O(1) games. Intuitively, the falsifier is oblivious, since its moves in the
current game do not depend on the moves from any previously completed or different game played in parallel,
as in the tree exploration game described in Section 3.1. Consequently, when extracting computational
information from proofs (where one defines appropriate strategies for the falsifier and considers the behaviour
of the truthifier), Theorem 3.2 is more limited than Theorem 3.1.

Proof of Theorem 3.2. Intuitively, as explained above, the meaning of the theorem is that the truthifier has a
winning strategy (with ancillary information) in ` sequential plays of the evaluation game when the falsifier’s
strategy is fixed. We will obtain such a strategy from a strategy for the truthifier that succeeds in the tree
exploration game. This is not entirely obvious, since there is a mismatch between the games: the next play
of the truthifier in the tree exploration game depends on all previous plays in the game tree, while in the
evaluation game there is no game tree and they play a sequence of evaluation games.

Let T ,L, and ϕ(x) be defined as above. By Theorem 3.1, there exists an ` = O(1) length L-term
winning strategy τ tree for the tree exploration game of ϕ(x). Let (M, n0) be a board. Consider the tree
exploration game when the falsifier plays with a fixed strategy of the evaluation game, that is, there exist
functions f1(x, y1), f2(x, y1, y2), . . . , fk(x, y1, y2, . . . , yk) such that:

• In the i-th step, if the truthifier adds a node v to the partial game tree as a child of u and chooses m as
the label and (m1, n1), (m2, n2), . . . , (md, nd) are the labels on the length-d path from the root to u,
then the falsifier’s move is fd+1(n0,m1,m2, . . . ,md,m).

We say that a falsifier’s strategy of this form in the tree exploration game is oblivious, i.e., the next move
of the falsifier only considers moves in the corresponding root-to-node path. Since τ tree is a winning strategy
for the tree exploration game, it beats all strategies of the falsifier, including oblivious strategies.

We would like to simulate τ tree, a strategy for the tree exploration game, in the context of Theorem 3.2,
where the evaluation game is played sequentially and the truthifier has ancillary information. The main idea
is to play each round in the tree exploration game as a new game in the evaluation game that simulates the
current root-to-node path. This guarantees when translating strategies that all the necessary information from
the tree exploration game appears in the transcript of previous plays (ancillary information) during the next
evaluation game. (If the root-to-node path at the end of a round in the tree exploration game is only a partial
play of the corresponding evaluation game, the truthifier simply outputs 0M in the current evaluation game
until a new game can be started.) In other words, when the truthifier adds a node v as the child of u, it can
“replay” the path from the root to v using the moves m1,m2, . . . ,md on the path, and the oblivious falsifier
will choose the moves n1, n2, . . . , nd as response. Therefore the truthifier can simulate the winning strategy
for the tree exploration game by sequentially playing the evaluation game ` times and beating the falsifier in
at least one of the games.

We now describe in more detail the translation of an L-term universal winning strategy in the tree ex-
ploration game into L-strategies (with ancillary information) for the evaluation game. Consider the strategy
τ tree = 〈p1, r1, p2, r2, . . . , p`, r`〉, where ` is a constant. Recall that the location of each play of the truthifier
in the tree exploration game is fixed, and that r1, . . . , r` describe the nodes to which a new child is added in
each play. For each i ∈ [`], we define an L-term strategy for the evaluation game τ evali as follows:

• Let ri be the node of the game tree that is extended during the i-th play of the tree exploration game.
Suppose this node is at the di-th level of the tree, and let pi1 , . . . , pidi be the L-terms corresponding to
the moves of the truthifier in the root-to-ri path, including the current move.

• Define the following L-strategy τ evali of the evaluation game: (1) parse the ancillary information as a

24

sequence Γ of transcripts derived from playing strategies τ eval1 , . . . , τ evali−1 with the ancillary information
described in the statement of the theorem; (2) in the j-th step (during the i-th evaluation game), where
j ∈ [k], if j ≤ di play according to pij using that all plays from previous rounds of the tree exploration
game are available in the transcript Γ. Otherwise, choose 0M (i.e., the j-th term defining the strategy
is the constant term 0).

From the discussion above, the correctness of the translation is clear: if the strategies τ eval1 , τ eval2 , . . . , τ eval`

cannot beat a fixed falsifier strategy τf in ` sequential plays of the evaluation game, we can use the oblivious
strategy defined by τf in the tree exploration game to show that the truthifier does not win the tree exploration
game withing ` moves.

Remark 3.3. Instead of viewing Theorem 3.2 as a special case of the game-theoretic witnessing theorem that
employs the tree exploration game (Theorem 3.1), we can also establish the result in a more direct way using a
technique known as the no-counterexample interpretation. We present a self-contained proof in Appendix B.2.

4 Warm-up: Krajı́cek’s Technique and the Pich-Santhanam Result

In this section, we provide a detailed exposition of the unprovability result from Santhanam and Pich
[PS21], which relies on a technique introduced by Krajı́cek [Kra11] and further investigated by Pich [Pic15a].
Their result (intuitively) means that strong average-case circuit lower bounds against co-nondeterministic
circuits are not provable in TPV. Concretely, for every L ∈ NTIME[2n

o(1)
], δ ∈ (0, 1)∩Q, and n0 ∈ N, TPV

cannot prove that:

For every n > n0 and every co-nondeterminisetic circuit C : {0, 1}n → {0, 1}1 of size 2n
δ
,

C(x) = L(x) on at most 1
2 + 1

2nδ
fraction of x ∈ {0, 1}n.

Since our unprovability results are obtained by extending the original ideas of Pich and Santhanam [PS21]
and Krajı́cek [Kra11] in combination with our new witnessing theorem, this section might be particularly
helpful for a reader that is unfamiliar with these methods.

4.1 Formalization of complexity lower bounds

While the unprovability result of [PS21] is robust to some details of the formalization, we will make
a few comments here about the way it is done. First, we can represent any natural number a ∈ N by an
L(PV)-term, e.g., a = 1 + 1 + . . .+ 1, where +: N2 → N is the L(PV) function symbol for addition, and
1 is a constant symbol in L(PV).15 From this, we can introduce representations for other finite objects. For
instance, a natural number can represent the code of a Turing machine M , while a pair of natural numbers
can represent a rational number δ ∈ Q. In some cases, we will quantify over all such objects in the meta-
language, e.g., if M is a Turing machine (in the usual sense), then we can consider a L(PV)-sentence φM
that refers to machine M via its representation as a natural number.

For a nondeterministic Turing machine M , a constant n0 ∈ N, and functions s,m : N → N, we write
LB(M, s,m, n0) to denote an L(PV)-sentence stating that, for every input length n ≥ n0 and for every
co-nondeterminstic circuit Dn(x, z) of size ≤ s(n), there are at least m = m(n) distinct input strings
x1, . . . , xm ∈ {0, 1}n such that M(xi) 6= Dn(xi) for each 1 ≤ i ≤ m.16 A bit more formally, this

15Of course, one can consider more efficient encodings (e.g., dyadic notation), but this will not make a difference in our argument.
16Here and throughout the exposition, we use that M(x) = 1 if and only if there exists y such thatM(x, y) = 1 (asM computes

nondeterministically), while Dn(x) = 1 if and only if for every z we have Dn(x, z) = 1 (since D is a co-nondeterministic circuit).

25

sentence can be expressed in L(PV) in the following way, where we assume that M on input length n runs
in time ≤ t(n) for some efficiently computable time bound t(n) ≤ N(n) = 2n and that s(n) and m(n) are
efficiently computable and bounded by N = 2n:

LB(M, s,m, n0) , ∀v ∀N = |v| ∀n = |N | such that n ≥ n0 (in other words, n ∈ LogLog)

∀ co-nondet. circuit Dn of size ≤ s(n)

∃m = m(n) distinct n-bit strings x1, . . . , xm s.t. ErrorM,Dn(xi) for all i ∈ [m],

where we let ErrorM,Dn(x) denote the following L(PV)-formula:

ErrorM,Dn(x) ≡
[
∃y ∃z M(x, y) = 1 ∧ Dn(x, z) = 0

]
∨
[
∀y′ M(x, y′) = 0 ∧ ∀z′ Dn(x, z′) = 1

]
,

with the length of y, y′ and z, z′ bounded by the running time of M and the size of Dn, respectively.
The definition above can be made formal by the use of explicit L(PV)-function symbols that evaluate

circuits and machines on a given input and that perform other necessary checks, e.g., deciding when a
given object represents a circuit of size at most s(n). All this can be done without increasing the quantifier
complexity of the resulting sentence, since n ∈ LogLog and polynomial-time computations over N = 2n-
bit strings are feasible. For the same reason, the quantification over i ∈ [m] does not increase quantifier
complexity, using that m(n) ≤ N . Indeed, in the sentence it is enough to existentially quantify over m(n)
strings xi and over m(n) strings yi, zi followed by a universal quantification over m(n) strings y′i, z′i, and
the remaining error conditions can be expressed using a single L(PV)-function symbol that gets as input the
encoding of each collection of strings (formally, each family of m strings is a single object, and the strings
are decoded from it). Overall, we get that LB(M, s,m, n0) is a ∀Σb

2-L(PV) sentence.

Theorem 4.1 (TPV doesn’t prove strong a.e. average-case co-nondeterministic lower bounds for NP). For
every n0 ∈ N and δ ∈ Q ∩ (0, 1), if M is a nondeterministic machine whose running time is bounded by
some constructive function t(n) = 2n

o(1)
, then

TPV 0 LB(M, s,m, n0),

where s(n) = 2n
δ

and m(n) = 2n/2− 2n/2n
δ
.

In particular, for every language L ∈ NP and δ > 0 it is consistent with TPV that there are infinitely
many input lengths n and a co-nondeterministic circuit Dn of size ≤ 2n

δ
such that

Pr
x∼{0,1}n

[L(x) = Dn(x)] ≥ 1/2 + 2−n
δ
.

A strengthening of Theorem 4.1 is discussed in Section 4.3.

4.2 Proof of Theorem 4.1

Let n0, δ, M , t(n), s(n), and m(n) be as in the statement of Theorem 4.1. Arguing as in [PS21], we
assume towards a contradiction that

TPV ` LB(M, s,m, n0).

Let L ⊆ {0, 1}∗ be the language defined by M . We argue as follows.

26

(i) From the provability of this almost-everywhere average-case lower bound against co-nondeterministic
circuits, it follows by the soundness of TPV that (in the standard model) for every sequence {En}n≥1

of deterministic circuits En of size ≤ 2n
δ
, if n ≥ n0 then

Pr
x∼{0,1}n

[L(x) = En(x)] ≤ 1/2 + 2−n
δ
.

(ii) From the provability of the sentence LB(M, s,m, n0) it trivially follows that TPV proves a sentence
LBwst(M, s, n0) which states a worst-case lower bound for M against co-nondeterministic circuits
of the same size. We then show that the provability of LBwst(M, s, n0) in TPV implies that, in the
standard model, for every fixed k ≥ 1 and for every large enough n, there is a deterministic circuit A
defined over nk input variables and of size 2O(n) such that

Pr
w∼{0,1}nk

[L(w) = A(w)] ≥ 1/2 + 2−O(n).

Taking k > 1/δ contradicts Item (i) above.

Note that the only remaining step is to show that:

(?) The provability of a worst-case lower bound against co-nondeterministic circuits allows us
to non-trivially approximate L using deterministic circuits of bounded size.

Before proceeding with the proof of this result, we describe the aforementioned worst-case lower bound
sentence in a convenient way.

LBwst(M, s, n0) ≡ ∀n ∈ LogLog with n ≥ n0, ∀ co-nondet. circuit D of size ≤ s(n)

∃x ∈ {0, 1}n ∃y ∈ {0, 1}t(n) ∃z ∈ {0, 1}s(n) such that Error(x, y, z),

where here Error(x, y, z) denotes the following L(PV)-formula:

Error(x, y, z) ≡
[
M(x, y) = 1 ∧ D(x, z) = 0

]
∨
[
∀y′ M(x, y′) = 0 ∧ ∀z′ D(x, z′) = 1

]
, (2)

where the lengths of y′ and z′ are bounded as before. Observe that LBwst(M, s, n0) is also a ∀Σb
2-L(PV)

sentence.
It is easy to see that, under any reasonable formalization, if m(n) ≥ 1 then TPV derives the worst-

case lower bound sentence LBwst(M, s, n0) from the average-case lower bound sentence LB(M, s,m, n0).
Consequently, it is sufficient for us to prove the following lemma, which formalizes statement (?).

Lemma 4.2 (Non-trivial correlation from the provability of a worst-case lower bound). Let n0 ∈ N, δ ∈
Q ∩ (0, 1), M be a nondeterministic machine whose running time is bounded by some constructive function
t(n) = 2n

o(1)
, and s(n) = 2n

δ
. If

TPV ` LBwst(M, s, n0),

then for every k ≥ 1 and sufficiently large n, there is a deterministic circuit B : {0, 1}nk → {0, 1} of size
2O(n) such that

Pr
w∼{0,1}nk

[L(w) = B(w)] ≥ 1/2 + 2−O(n),

where L is the language decided by M .

Lemma 4.2 and its proof have appeared in [Kra11, Pic15a]. We provide next a detailed exposition of this
technique.

27

4.2.1 A simpler case: ` = 1 in the KPT student-teacher protocol

Note that we can apply Theorem 2.9 to sentence LBwst and theory TPV, since TPV is a universal theory
and it is not difficult to see that LBwst can be written in the form required by Theorem 2.9. Since L(PV)-
terms correspond to polynomial-time computable functions, the corresponding student computes in time
polynomial in the length of its input. Using that n ∈ LogLog in sentence LBwst, we obtain uniform algorithms
f1, . . . , f` that compute in time 2O(n) and satisfy the conclusion of Theorem 2.9. Note that we cannot control
the constant `. In this section, we discuss the simpler case when we get ` = 1 in the application of Theorem
2.9 to TPV ` LBwst(M, s, n0).

Omitting auxiliary variables in the input to f1 and highlighting the relevant parameters,17 f1(n,D) re-
ceives n and an arbitrary co-nondeterministic circuit D of size ≤ s(n) = 2n

δ
, and outputs a triple (x, y, z)

such that Error(x, y, z) holds. Assuming that n ≥ n0 and ` = 1 in the KPT Witnessing, it follows that this
triple witnesses that D(x) 6= M(x) over the standard model N. In other words, x ∈ {0, 1}n, y ∈ {0, 1}t(n)

for t(n) = 2n
o(1)

, z ∈ {0, 1}s(n), and the following holds:[
M(x, y) = 1 ∧ D(x, z) = 0

]
∨
[
∀y′ M(x, y′) = 0 ∧ ∀z′ D(x, z′) = 1

]
.

To prove Lemma 4.2 when ` = 1, let k ≥ 1, and assume that n is sufficiently large. We will use f1 to
construct a deterministic circuit B defined over nk input variables and of size 2O(n) such that

Pr
w∼{0,1}nk

[L(w) = B(w)] ≥ 1/2 + 2−O(n),

where L is the language computed by the nondeterministic machine M . As a key point, note that we can
invoke f1(n,D) on any co-nondeterministic circuitD(x, ·) over n input variables and of size≤ 2n

δ
. In order

to construct the deterministic circuit B, we will also use that f1(n,D) = (x, y, z) computes in time 2O(n)

and therefore can be simulated by a circuit of size 2O(n). For the ` = 1 case, we will not need the output
strings y and z during the construction of A. From now on, we simplify notation and write f1(D) = x to
denote the relevant input and output of f1 for this case.

Let Cnk(w, z) be a Boolean circuit that computes as M on inputs of length nk, where z corresponds
to the nondeterministic input. Since M runs in time at most 2n

o(1)
, Cnk has size at most 2n

δ
when n is

sufficiently large. We partition its first input as w = x‖w′, where |x| = n and |w′| = nk − n. Now
for a fixed string w′ ∈ {0, 1}nk−n, consider the circuit Dw′(x, z) , ¬Cnk(x‖w′, z). Viewing Dw′ as a
co-nondeterministic circuit, we get that

Dw′(x) = 1 ⇐⇒ ∀z Dw′(x, z) = 1 ⇐⇒ ∀z Cnk(x‖w′, z) = 0 ⇐⇒ x‖w′ /∈ L(M). (3)

Intuitively, if we “learn” the output bit ofDw′(x) for some pair (w′, x), we also “learn” if the input string
x‖w′ is in L(M). As a consequence, the collection {Dw′(x)}w′ of co-nondeterministic circuitsDw′ (defined
over n input bits) captures the computation of L on inputs of length nk.

As each Dw′ has size at most 2n
δ
, we can invoke f1 on them. Since f1(Dw′) finds mistakes with respect

to the nondeterministic computation of M , we know that Dw′(x
∗) 6= M(x∗) for x∗ , f1(Dw′). Since there

are only 2n possibilities for the output of f1, the following holds.
17The condition n ∈ LogLog means that n is the length of N , while N is the length of some universally quantified variable v.

For this reason, formally, v is an input to f1, and not n. However, over N we will run f1 on a fixed input v, such as 1N , where
N = 2n. For this reason, n is the parameter that controls the length of the remaining inputs.

28

Fact 4.3. There is a string x∗ ∈ {0, 1}n such that

Pr
w′∈{0,1}nk−n

[f1(Dw′) = x∗] ≥ 2−n.

Following our informal discussion from above, from the knowledge that f1(Dw′) = x∗ (and of a bit
encoding if x∗ ∈ L(M)) we “learn” how to compute L(M) on the input w = x∗‖w′. Since this will happen
with non-trivial probability over a random choice of w′ and x∗, this can be used to non-trivially approximate
L(M) over input length nk.

Formally, let b∗ ∈ {0, 1} be 1 if and only if M(x∗) = 1, i.e., if x∗ ∈ L(M). The string x∗ and the bit b∗

will be stored as non-uniform advice in the deterministic circuit B that we show to be correlated with L(M)
on input length nk. First, consider the following randomized circuit B′:

Input : The input w ∈ {0, 1}nk and a random r ∈ {0, 1}
Advice: x∗ ∈ {0, 1}n and b∗ ∈ {0, 1}

1 Let w = x‖w′ and compute f1(Dw′);
// Note that we can construct a description of Dw′ from w and Cnk.

2 If f1(Dw′) 6= x∗, return r;
3 If x 6= x∗, return r;
4 Otherwise, return b∗;

Algorithm 1: Randomized Circuit B′ for L(M)

Note that B′ can be computed with 2O(n) gates, since f1 runs in time 2O(n). Next, we show that the
randomized circuit B′ non-trivially correlates with L(M) on inputs of length nk. After that, fixing the
random bit b in B′ yields the desired deterministic circuit A.

Fact 4.4. If B′ reaches Line 4 on an input string w, then B′(w, b) = M(w), i.e., B′ correctly decides L(M)
on input w.

Proof. Under the assumption that B′ reaches Line 4 on an input string w, it follows that w = x∗‖w′ and
f1(Dw′) = x∗. Moreover, observe that the random bit b does not affect the output of B′ in this case. We
have

B′(w, r) = 1⇐⇒ b∗ = 1

⇐⇒M(x∗) = 1 (by the definition of b∗)

⇐⇒ Dw′(x
∗) = 0 (using that f1 finds a mistake)

⇐⇒ w = x∗‖w′ ∈ L(M) (by Equation 3)

⇐⇒M(w) = 1. (since M computes L(M))

In other words, B′(w, r) = M(w).

In addition, by Fact 4.3,

p , Pr
r,w

[B′ reaches Line 4] = Pr
x,w′

[x = x∗ ∧ f1(Dw′) = x∗] ≥ 2−n · 2−n.

On the other hand, when B′ does not reach Line 4 it outputs a random bit that is independent of the input
string w. Therefore, using Fact 4.4 and the lower bound on p,

Pr
r,w

[B′(w, r) = M(w)] ≥ p · 1 + (1− p) · 1/2 = 1/2 + p/2 ≥ 1/2 + 2−2n+1 = 1/2 + 2−O(n).

29

Fixing the random bit r in the best way maintains this advantage and completes the proof of Lemma 4.2
when ` = 1.

Remark 4.5. The same argument can be used to approximate any nondeterministic circuit of size 2n
kδ

defined
over nk bits by a deterministic circuit of size 2O(n), instead of just for L(M) ∩ {0, 1}nk . In other words, by
connecting Dw′ to the computation of the appropriate co-nondeterminisetic circuit, “learning” output bits of Dw′

via f1 translates into a non-trivial approximation (using exactly the same strategy). This will also hold when
analysing the case ` > 1. In particular, from TPV ` LBwst(M, s, n0) we are able to non-trivially approximate any
language in NSIZE[2n

o(1)

] and not just L(M).

4.2.2 The case ` = 2 via the Nisan-Wigderson generator

In this section, we consider the case where the disjunction obtained from KPT Witnessing (Theorem 2.9)
has size ` = 2. This essentially covers all difficulties in the general case. Before handling ` = 2, it is
instructive to highlight some key points of the proof when ` = 1:

(i) We implicitly relied on the ability of certifying when an input x is a mistake. More precisely, when
` = 1, if f1(Dw′) = (x, y, z), we have the guarantee that Dw′(x) 6= M(x). This is because there is a
single round in the corresponding Student-Teacher protocol.

(ii) By an averaging argument, we fixed a good string x∗ ∈ {0, 1}n (Fact 4.3), which eventually allowed
us to compute M(x∗w′) on a non-trivial fraction of w′, by storing x∗ and the corresponding bit b∗ =
M(x∗).

(iii) This was accomplished by considering a family {Dw′(x)}w′ of co-nondeterministic circuits over n-bit
inputs that compute according to a circuit defined over input length nk that is related to the language
we would like to approximate.

(iv) On an input w ∈ {0, 1}nk with w = x‖w′ for which the witnessing provided by f1(Dw′) was incon-
sistent with the actual input part x (we can easily detect this), we output a random bit.

Note that this approach no longer works when ` > 1: the first term obtained from KPT Witnessing might
not succeed in finding a mistake. For this reason, we cannot assume in Item (i) that if f1(Dw′) = (x, y, z)
then Dw′(x) 6= M(x).

Let f1 be the first term in the KPT disjunction when ` > 1. Note that we can still fix a popular candidate
mistake x∗ ∈ {0, 1}n, as in Fact 4.3. Recall that f1(Dw′) = (xw′ , yw′ , zw′) (we did not have to use yw′
and zw′ in the argument for ` = 1). We can check whether xw′ = x∗, as before, and we would like to use
yw′ and zw′ together with some hard-coded information to decide if x∗ = xw′ is indeed a mistake for Dw′ .
While both yw′ , zw′ ∈ {0, 1}≤2n , there are 2Ω(nk) possible strings w′. Unfortunately, it is unclear how to
store enough information in the non-uniform circuit B′ to certify that a mistake has been found by f1 while
maintaining a circuit size bound of 2O(n).

To reduce the amount of advice needed in B′ and address this difficulty, the solution [Kra11, Pic15a] is
to employ a more sophisticated family {Dw′}w′ of circuits constructed via the Nisan-Wigderson generator
[NW94].

For a nondeterministic machine M that decides a language L(M), we use the notation {NW
L(M)

(w)}w
to denote the collection of functions obtained from the Nisan-Wigderson generator when instantiated with
the Boolean function h that corresponds to the negation of L(M) over inputs of length nc/2.

Fact 4.6. Let M be a nondeterministic machine that runs in time 2m
o(1)

on inputs of length m. For any

30

constant c ≥ 1 and every large enough n, each function in {NW
L(M)

(w)}w can be computed by a co-

nondeterministic circuit Dw(x) of size at most 2n
δ
.

The case ` = 1 via the NW generator. Before handling the case ` = 2, we sketch the proof of the case
` = 1 using the collection {Dw}w∈{0,1}nc obtained from the nondeterministic machine M and the NW
generator, with parameters as above.

Consider the function f1(Dw) = (x, y, z) obtained by applying Theorem 2.9, and assume that ` = 1.
Again, we will not inspect y and z when ` = 1. Recall that f1(Dw) computes in time 2O(n). We show how
to decide L(M) on inputs of length nc/2 by a deterministic circuit of size 2O(n) that agrees with L(M) with
probability ≥ 1/2 + 2−O(n) over a uniformly random input string.

Similarly to Fact 4.3, by a standard averaging argument we can establish the following fact.

Fact 4.7. There is a string x∗ ∈ {0, 1}n such that

Pr
w∈{0,1}nc

[f1(Dw) = x∗] ≥ 2−n.

Recall that Jx∗ denotes the subset of [nc] of size nc/2 corresponding to the x∗-row of the design in
our NW generator; for a ∈ {0, 1}nc−nc/2 and u ∈ {0, 1}nc , rx(a, u) denotes the “concatenated” string
a ∪ u obtained by viewing a ∈ {0, 1}[nc]\Jx and u ∈ {0, 1}Jx . By another averaging argument, we get the
following consequence.

Fact 4.8. There is a string a ∈ {0, 1}[nc]\Jx∗ of length nc − nc/2 such that

Pr
u∼{0,1}Jx∗

w,u∪a

[f1(Dw) = x∗] ≥ 2−n.

We can view Dw = NW
L(M)

(w) as a co-nondeterministic circuit for computing L(M) over inputs of

length nc/2 derived from the seed w:

Dw(x) = 1 ⇐⇒ w|Jx ∈ L(M).

Given the previous discussion, we are interested in seeds w ∈ {0, 1}n2c
of the form w = a ∪ u, where

a ∈ {0, 1}[nc]\Jx∗ is fixed, u ∈ {0, 1}Jx∗ , and f1(Dw) = x∗. We know that a non-trivial fraction of strings
u will satisfy this condition. Since f1 witnesses mistakes with respect to L(M) over inputs of length n (note
that Dw is a conondeterministic circuit over n-bit inputs), whenever f1(Dw) = x∗ we are guaranteed that

Dw(x∗) = 1 ⇐⇒ M(x∗) = 0,

which implies that M(x∗) = 0 if and only if w|Jx∗ /∈ L(M). Now x∗ is fixed, so the equality M(x∗) = 0
does not depend on other conditions. For instance, if M(x∗) = 0, we can conclude that on any input string
u ∈ {0, 1}nc/2 , if for w = a ∪ u we have f1(Dw) = x∗, then u = w|Jx∗ is not in L(M). Consequently,
this allows us to correctly compute L(M) on any such input u ∼ {0, 1}nc/2 , which constitute a non-trivial
fraction of inputs. Moreover, we can check whether an input u satisfies f1(Dw) = x∗ using a deterministic
circuit of size 2O(n).

Formally, consider the fixed strings x∗ ∈ {0, 1}n and a ∈ {0, 1}[nc]\Jx∗ from above, and let b∗ ,
M(x∗) ∈ {0, 1}. We hardcode x∗, a, and b∗ in the randomised circuit B(u) described below:

31

Input : The input u ∈ {0, 1}nc/2 and a random r ∈ {0, 1}
Advice: x∗ ∈ {0, 1}n and b∗ ∈ {0, 1}

1 Let w = rx∗(a, u);
2 Let x = f1(Dw);
3 If x 6= x∗, output the random bit r;
4 Otherwise, return b∗;

Algorithm 2: Randomised Circuit B for L(M)

Given the aforementioned discussion, it is easy to see that

Pr
u,r

[B(u, r) = M(u)] ≥ p · 1 + (1− p) · 1/2 = 1/2 + p/2 ≥ 1/2 + 2−n+1,

where p is the probability in the LHS of Fact 4.8. Consequently, by an averaging argument over the random
bit r, there is a deterministic circuit of size 2O(n) that computes L(M) on inputs of length nc/2 with the same
advantage.

The case ` = 2 via the NW generator. Recall that

Error(x, y, z) ≡
[
M(x, y) = 1 ∧ D(x, z) = 0

]
∨
[
∀y′ M(x, y′) = 0 ∧ ∀z′ D(x, z′) = 1

]
.

We now have a function f1(D) = (x, y, z) that attempts to produce a triple (x, y, z) satisfying Error(x, y, z),
and a function f2(D, y′, z′) which given a pair y′, z′ for which[

M(x, y) = 0 ∨ D(x, z) = 1
]
∧
[
M(x, y′) = 1 ∨ D(x, z′) = 0

]
(4)

is able to produce an input x′ such that D(x′) 6= M(x′).
Again, we consider the family {Dw}w∈{0,1}nc of conondeterministic circuitsDw of size≤ 2n

δ
that com-

pute NW
L(M)

(w) : {0, 1}n → {0, 1} for a fixed seed w, with parameters as described above. In particular,

this generator is instantiated with respect to the Boolean function h corresponding to L(M) over inputs of
length nc/2, for a fixed but arbitrarily large constant c ≥ 1.

By an averaging argument, the following claim holds.

Fact 4.9. There is a string x1 ∈ {0, 1}n such that

Pr
w∈{0,1}nc

[f1(Dw) = x1] ≥ 2−n.

Fix this x1. We define the sets Smist
x1 ⊆ Sx1 ⊆ {0, 1}n

c
as follows:

Sx1 ,
{
w ∈ {0, 1}nc | f1(Dw) = x1

}
,

Smist
x1 ,

{
w ∈ Sx1 | Dw(x1) 6= M(x1)

}
,

and consider the density of Smist
x1 with respect to its superset Sx1 .

32

Case 1. |Smist
x1 | > (2/3)·|Sx1 |. We can essentially proceed as in the case of ` = 1, with the exception that one

needs to be careful when invoking an analogue of Fact 4.8. This is because fixing a string a ∈ {0, 1}[nc]\Jx1
might keep the density of Sx1 at least 2−n but could significantly decrease the relative density of the set Smist

x1
after the restriction.

To handle this, we introduce the following notation. For m ≥ 1, a set S ⊆ {0, 1}[m], and a string
a ∈ {0, 1}I , where I ⊆ [m], we define the restriction of S with respect to a as the set

S �a, {w ∈ S | w|I = a}.

Under the assumption that |Smist
x1 | > (2/3) · |Sx1 |, it is possible to show by a counting argument (see,

e.g., Lemma E.1) that there exists a string a ∈ {0, 1}[nc]\Jx1 such that

p ,
|Sx1 �a |
2n

c/2
≥ 1

n
· 2−n and

|Smist
x1 �a |
|Sx1 �a |

≥ 2

3
− 1

n
. (5)

While it is not clear how to decide in size 2O(n) if a string w ∈ Smist
x1 �a, we can check whether w ∈ Sx1 �a.

Since Smist
x1 is dense in Sx1 �a, this is enough to adapt the original strategy used for ` = 1.

Formally, fix strings x1 ∈ {0, 1}n and a ∈ {0, 1}[nc]\Jx1 as above, and let b1 , M(x1) ∈ {0, 1}. We
hardcode x1, a, and b1 in the randomised circuit B1(u, r) described below.

Input : The input u ∈ {0, 1}nc/2 and a random r ∈ {0, 1}
Advice: x1 ∈ {0, 1}n, a ∈ {0, 1}nc−nc/2 , and b1 ∈ {0, 1}

1 Let w = rx1(a, u);
2 Let x = f1(Dw);
3 If x 6= x1, output the random bit r;
4 Otherwise, output the fixed bit b1 = M(x1);

Algorithm 3: Randomized Circuit B1 for L(M) when |Smist
x1 | > (2/3) · |Sx1 |.

Clearly, B1 is computed by a randomised circuit of size 2O(n). To analyse its success probability, first
note that if u is such that w = rx1(a, u) /∈ Sx1 �a, then B1(u) = M(u) with probability 1/2. On the other
hand, for those u such that w = rx1(a, u) ∈ Sx1 �a, at least a 2/3 − 1/n fraction of them are in Smist

x1 �a, in
which case B1(u) is correct. Since Sx1 �a has density at least 1/n · 2−n, it follows that

Pr
u,r

[B1(u, r) = M(u)] = (1− p) · 1

2
+ p ·

(
2

3
− 1

n

)
=

1

2
+ p ·

(
1

6
− 1

n

)
=

1

2
+ Ω

(
2−n

n

)
,

which is 1/2 + 2−O(n). Fixing the random bit r in the best way yields the desired deterministic circuit.

Case 2. |Smist
x1 | < (2/3) · |Sx1 |. In this case, the mistakes of at least a 1/3 fraction of the circuits Dw for

w ∈ Sx1 must be witnessed by f2. To make sure the output of f2(Dw, y
′, z′) is indeed a string x2 for which

M(x2) 6= Dw(x2), we must provide a pair y′, z′ such that[
M(x1, y1) = 0 ∨ Dw(x1, z1) = 1

]
∧
[
M(x1, y

′) = 1 ∨ Dw(x1, z
′) = 0

]
, (6)

where f1(Dw) = (x1, y1, z1). We consider the Teacher that to each w ∈ Sx1 \ Smist
x1 and corresponding

(y1, z1) assign the lexicographic first pair (y′w, z
′
w) for which Equation (6) holds. Note that such a pair

always exists, since in this case for x1 = f1(Dw) we have M(x1) = Dw(x1).
By an averaging argument, the following claim holds.

33

Fact 4.10. Under this fixed Teacher, there is a string x2 ∈ {0, 1}n such that the set

Sx1,x2 , {w ∈ Sx1 | Dw(x1) = M(x1) ∧ f2(Dw, y
′
w, z

′
w) = x2}

has density at least (1/3) · 2−2n in {0, 1}nc .

Note that, by construction, if w ∈ Sx1,x2 then for x2 = f2(Dw, y
′
w, z

′
w) we have Dw(x2) 6= M(x2).

Note that x1 6= x2 because otherwise we have Sx1,x2 = ∅.18 Moreover, the set Sx1,x2 has enough density
for our purposes. However, for this to be useful we must verify that a given circuit Dw satisfies w ∈ Sx1,x2
using a deterministic circuit of size 2O(n).

By another averaging argument, we have the following result.

Fact 4.11. There is a string a ∈ {0, 1}[nc]\Jx2 such that

|Sx1,x2 �a |
2n

c/2
≥ 1

3
· 2−2n.

Fix this string a ∈ {0, 1}[nc]\Jx2 together with the strings x1 and x2. We will assume that the following
computation is possible in order to complete the proof, returning to it later on:

(∇) There is a deterministic circuit E(w) of size 2O(n) as follows: Given a w ∈ Sx1 of the form a∪u such
that Dw(x1) = M(x1), it outputs the lexicographic first pair (y′w, z

′
w) for which Equation (6) holds,

where (x1, y1, z1) = f1(Dw).19

Consider strings x1, x2 ∈ {0, 1}n and a ∈ {0, 1}[nc]\Jx2 as above, and let b2 , M(x2) ∈ {0, 1}. We
hardcode this information in the randomised circuit B2(u) described below, which includes the circuit E(w)
from (∇) as a subroutine:

Input : The input u ∈ {0, 1}nc/2 and a random r ∈ {0, 1}
Advice: x1, x2 ∈ {0, 1}n, a ∈ {0, 1}nc−nc/2 , and b2 ∈ {0, 1}

1 Let w = rx2(a, u);
2 Let (x, y1, z1) = f1(Dw);
3 If x 6= x1, output the random bit r;
4 Let (y′w, z

′
w) = E(w);

5 If the tuple (x1, y1, z1, y
′
w, z

′
w) satisfies Equation (6) and f2(Dw, y

′
w, z

′
w) = x2, output b2;

6 Otherwise output the random bit r.

Algorithm 4: Randomized Circuit B2 for L(M) when |Smist
x1 | ≤ (2/3) · |Sx1 |.

Note that, under assumption (∇), B2 can be computed by a randomised circuit of size 2O(n). Moreover,
it follows from our discussion and from the density of Sx1,x2 �a that

Pr
u,r

[B2(u, r) = M(u)] ≥ 1

2
+ Ω

(
2−2n

)
.

18Assume it is not the case, there is a w ∈ Sx1,x2 such that Dw(x2) 6= M(x2). However, we know that Dw(x1) = M(x1) by
the definition of Sx1,x2 , which is impossible when x1 = x2.

19Note that in this case f2(Dw, y
′
w, z

′
w) outputs a mistake of Dw, since Error(x1, y1, z1) does not hold and correct witnesses for

this are provided.

34

This yields a deterministic circuit with the same advantage.20

Proof of (∇). We will now use the main property of the combinatorial design behind the Nisan-Wigderson
generator: the sets Jx1 and Jx2 overlap in at most n coordinates. This will allow us to hardcode all relevant
pairs (y′w, z

′
w) using circuit size 2O(n).

To implement (∇), we are given a string w = a∪ u, where a ∈ {0, 1}[nc]\Jx2 is fixed and u ∈ {0, 1}Jx2 ,
such that the following conditions hold:

• Let (x, y1, z1) = f1(Dw), then x = x1.

• Dw(x1) = M(x1).

Our goal is to output the lexicographic first pair (y′w, z
′
w) such that:[

M(x1, y1) = 0 ∨ Dw(x1, z1) = 1
]
∧
[
M(x1, y

′) = 1 ∨ Dw(x1, z
′) = 0

]
.

Note that such pair must exist since we assume that Dw(x1) = M(x1).
Recall that Dw(x1) = NW

L(M)
(w, x1). The crucial observation that leads to the use of NW generator

is that the desired pair (y′w, z
′
w) only depends on w|Jx1 , which contains at most n bits of the input u ∈

{0, 1}nc/2 . This is because w = a ∪ u is a concatenation of a fixed a ∈ {0, 1}[nc]\Jx2 and u viewed as
u ∈ {0, 1}Jx2 , which means that

w|Jx1 = (a ∪ u)|Jx1 = a|Jx1 ∪ u|Jx1 ,

where a|Jx1 is fixed and u|Jx1 only consists of the indices within Jx1 ∩ Jx2 of size at most n.
As E(w) depends on at most n bits of the input u ∈ {0, 1}nc , we can implement it as a circuit that store

all the answers for all 2n possibilities, which requires at most poly(2n) = 2O(n) gates. Concretely, the circuit
works as follows: Given w ∈ {0, 1}nc , we firstly obtain u ∈ {0, 1}Jx2 such that w = a ∪ u; let u′ = u|Jx1
be of length at most n, we look up the table to find the answer corresponding to u′.

Remark 4.12. As in Remark 4.5, we note that the argument can be easily adapted to approximate any Boolean
function g defined over nk bits computable by a nondeterministic circuit of size 2n

kδ

using a deterministic circuit
of size 2O(n), instead of for just L(M) ∩ {0, 1}nk . The provability of a circuit lower bound for a single language
L(M) provides non-trivial circuits for any such g.

Based on this, we can also prove that under the same assumption (i.e., the provability of worst-case circuit
lower bound in Ti

PV), for every constant ε ∈ (0, 1), s = s(m) = 2m
o(1)

, and sufficiently large m, any Boolean
function g : {0, 1}m → {0, 1} that can be computable by a nondeterminisetic circuit of size s can also be
approximated by a co-nondeterministic circuit D of size 2m

ε

, that is:

Pr
x∼{0,1}m

[
C(x) = D(x)

]
≥ 1

2
+

1

2mε .

This can be done by setting k = d20/εe, padding dammy inputs to g : {0, 1}m → {0, 1} to obtain g′ : {0, 1}m′ →
{0, 1}, where m′ = dm1/kek ≤ 2m for sufficiently large m, and applying the observation above to g′ with

20Note that we cannot really guarantee that Dw(x1) = M(x1) when invoking (∇), since this cannot be easily decided in
deterministic size 2O(n). This means that more inputs u than those leading to strings w ∈ Sx1,x2 �a might reach Line 5 and be
assigned output value b2. Nevertheless, B2 will be correct on any such input u, by virtue of the two checks performed in Line 5.
Put another way, the argument “covers” the inputs u leading to strings w ∈ Sx1,x2 �a.

35

n = dm1/ke.

4.2.3 Sketch of the general case

We now sketch how the argument presented in Section 4.2.2 can be generalised to the case that the
Student-Teacher protocol runs for ` ≥ 3 rounds. Recall that sets Sx1 , S

mist
x1 , Sx1,x2 in Section 4.2.2 are

defined as

Sx1 ,
{
w ∈ {0, 1}nc | f1(Dw) = x1

}
Smist
x1 ,

{
w ∈ Sx1 | Dw(x1) 6= M(x1)

}
Sx1,x2 , {w ∈ Sx1 \ Smist

x1 | f2(Dw, y
′
w, z

′
w) = x2}

In the general case, we will define a sequence of x1, x2, . . . , x` ∈ {0, 1}n as well as the sets

S1, S
mist
1 ⊆ S1, S2 ⊆ S1 \ Smist

1 , Smist
2 ⊆ S2, . . . , S` ⊆ S`−1 \ Smist

`−1 , S
mist
` ⊆ S`.

For instance, if ` = 3, we proceed as follows.

(i) We initially argue as in Section 4.2.2 with ` = 2. In Case 1 (i.e., |Smist
x1 | > (2/3)·|Sx1 |), we can simply

apply the aforementioned circuit B1 to approximate L(M). However, we can no longer conclude in
its Case 2 (i.e., |Smist

x1 | < (2/3) · |Sx1 |) that x2 is a mistake of Dw for every w ∈ Sx1,x2 . To address
this, we define the set

Smist
x1,x2 , {w ∈ Sx1,x2 | Dw(x2) 6= M(x2)} ⊆ Sx1,x2

and consider its density in Sx1,x2 .

(ii) If |Smist
x1,x2 |/|Sx1,x2 | ≥ 2/3, we know that for at least a 2/3 fraction of w ∈ Sx1,x2 , x2 is a mistake of

Dw. As in Case 1 of Section 4.2.2, we apply Lemma E.1 (instead of a direct counting argument in
Fact 4.11) to find a “good” a ∈ {0, 1}[nc]\Jx2 such that Sx1,x2 �a /2

nc/2 ≥ Ω(2−2n) and the density of
Smist
x1,x2 �a in Sx1,x2 �a is at least 2/3− 1/100. By plugging in this a into the circuit B2, we will achieve

agreement ≥ 1/2 + Ω(2−2n) with L(M).

(iii) Otherwise, we assume that |Smist
x1,x2 |/|Sx1,x2 | ≥ 2/3. Let (x2, y2, z2) = f2(Dw, y

′
w, z

′
w). Similar to y′w

and z′w, for every w ∈ Sx1,x2 \ Smist
x1,x2 , we define (y′′w, z

′′
w) as the lexicographic first pair such that[

M(x2, y2) = 0 ∨ Dw(x2, z2) = 1
]
∧
[
M(x2, y

′) = 1 ∨ Dw(x1, z
′) = 0

]
,

that is, (y′′w, z
′′
w) is the output of the canonical Teacher in the second round of the Student-Teacher

protocol. Since Sx1,x2 has density at least Ω(2−2n), we can find a string x3 ∈ {0, 1}n such that the
following set

Sx1,x2,x3 , {w ∈ Sx1,x2 \ Smist
x1,x2 | f3(Dw, y

′
w, z

′
w, y

′′
w, z

′′
w) = x3},

has density at least Ω(2−3n). Since x3 must be a mistake of Dw when ` = 3 and w ∈ Sx1,x2,x3 , and
this set is sufficiently dense, we can obtain a deterministic circuit of size 2O(n) that achieves agreement
≥ 1/2 + Ω(2−3n) with L(M).

36

The argument can be generalised in the natural way, which allows us to obtain a circuit of size 2O(n)

that approximates L(M) with advantage ≥ 1/2 + Ω(2−`n) in the case of a disjunction of length ` in the
application of the KPT Witnessing (see Theorem 2.9). This deterministic circuit computes L(M) on inputs
of length nc/2, where c is an arbitrary constant.

Remark 4.13. Note that the approach breaks down in theories where the number of rounds in the Student-Teacher
game obtained from Theorem 2.9 is polynomial in the relevant parameter, as in the case of Buss’s theory S1

2 (see,
e.g., [Kra92]). In the latter case, one can get up to ` = poly(2n) rounds in the corresponding witnessing theorem,
and the advantage of the resulting deterministic circuit under a naive extension of the presented proof becomes
trivial.

4.3 Extensions of the technique and unprovability of weaker lower bounds

As noted in [PS21], one can use hardness amplification to weaken the average-case hardness in the
unprovability result (Theorem 4.1). By an adaptation of the proof of Theorem 4.1 via Remarks 4.5 and 4.12
and an application of Theorem 2.7, we can obtain the following unprovability result.

Theorem 4.14. For every n0 ∈ N and δ ∈ Q ∩ (0, 1), if M is a nondeterministic machine whose running
time is bounded by some constructive function t(n) = 2n

o(1)
, then21

TPV 0 LB(M, s,m, n0),

where s(n) = 2n
δ

and m(n) = 2n/n.

As a consequence, for every language L ∈ NTIME[2n
o(1)

] and δ > 0 it is consistent with TPV that there
are infinitely many input lengths n and a co-nondeterministic circuit Dn of size ≤ 2n

δ
such that

Pr
x∼{0,1}n

[L(x) = Dn(x)] ≥ 1− 1/n.

Proof of Theorem 4.14. Let n0, δ, M , s(n) = 2n
δ
, and m(n) = 2n/n be as above. Assume towards a

contradiction that
TPV ` LB(M, s,m, n0).

Let L , L(M) be the language defined by M . We argue as follows.

(i) Under the provability of an almost-everywhere average-case lower bound against conondeterministic
circuits, it follows by the soundness of TPV that (in the standard model) for every sequence {En}n≥1

of deterministic circuits En of size ≤ 2n
δ
, if n ≥ n0 then

Pr
x∼{0,1}n

[L(x) = En(x)] ≤ 1− 1/n.

(ii) From the provability of LB(M, s,m, n0), it follows that TPV proves the sentence LBwst(M, s, n0)
which states a worst-case lower bound for M against conondeterministic circuits of the same size.
By adapting the argument presented in Section 4.2 (see Remarks 4.5 and 4.12), the provability of
LBwst(M, s, n0) in TPV implies that, in the standard model, for every sequence {gn}n≥1 of functions

21The original statement in [PS21] is slightly weaker: they require the nondeterministic machine M to be in polynomial-time
instead of t(n) time. We obtain such quantitative improvement by explicitly computing the complexity overhead of the hardness
amplification in [HVV06] (see Theorem 2.7).

37

in NSIZE[2n
o(1)

], ε > 0, and large enough n, there is a deterministic circuit C ′ defined over n input
variables and of size 2n

ε
such that

Pr
x∼{0,1}n

[gn(x) = C ′(x)] ≥ 1/2 + 2−n
ε
. (7)

(iii) Let {fn}n≥1 be the sequence of functions in NTIME[2n
o(1)

] obtained from L, i.e., f(x) = 1 if and
only if x ∈ L. Note that this sequence satisfies the hypothesis of Theorem 2.7 for s1(n) = 2n

o(1)
and

s2(n) = 2n
δ

for sufficiently large n. Let {hm}m≥1 be the sequence of functions in NSIZE[2m
o(1)

]
obtained by an application of this result, we know that for sufficiently large n and any deterministic
circuit C of size (2m

γδ
)γ , it holds that

Pr
x∼{0,1}m

[hm(x) = C(x)] ≤ 1/2 + 2−γm
γδ
.

Now the hardness of hm according to Theorem 2.7 contradicts the upper bound provided in Equa-
tion (7), if we take ε = (1/2) · δ · γ and consider large enough input lengths.

This shows that TPV 0 LB(M, s,m, n0), as desired.

5 Unprovability of Strong Complexity Lower Bounds in Bounded Arith-
metic

In this section, we establish the unprovability of strong Σp
i -vs-Πp

i -style lower bounds in bounded arith-
metic. Our result generalises a previous unprovability result from [PS21] in two directions: (1) it holds for
stronger theories TiPV instead of only T1

PV; and (2) the lower bound sentence in our unprovability result is
more natural in the sense that the hard problem is quantified within the theory, instead of in the meta-theory.

Due to the complexity of the argument, we will first show in Section 5.1 how to generalise the unprov-
ability result in [PS21] to TiPV. Then in Section 5.2 we combine this extension with the new game-theoretic
witnessing theorem and with other ideas to obtain our main result, which has both features mentioned above.

5.1 Unprovability of lower bounds in expressive theories

For i ≥ 1, recall that TiPV is the theory consisting of all true (in the standard model) ∀Σb
i−1(PV) sen-

tences. For instance, T1
PV is the universal true theory of PV. We want to generalize the unprovability of

strong nondeterministic circuit lower bounds in T1
PV to TiPV for all i ≥ 1, stated as follows.22

Theorem 5.1. Fix i ≥ 1. Let t(n) = 2n
o(1)

be a constructive time bound, and M be a Πi-TIME[t(n)] ma-
chine and LBi(M, s,m, n0) be the LPV-sentence: for all n ∈ LogLog with n > n0 and C ∈ Σi-SIZE[s(n)],
there exist m distinct inputs x1, . . . , xm such that M(xj) 6= C(xj) for all j ∈ [m]. Then

TiPV 0 LBi(M, s,m, n0)

for s(n) = 2n
δ
, m(n) = 2n/2− 2n/2n

δ
, and δ ∈ Q ∩ (0, 1).

22While in Section 4 we considered a lower bound for a nondeterministic machine against co-nondeterministic circuits, it will be
more convenient for us in this section to phrase the statement as Πi-machines against Σi-circuits. Note that this is inconsequential,
as the results are equivalent via complementation.

38

To obtain the unprovability of strong complexity lower bounds, we rely on a witnessing theorem that
extracts computational information from a proof of the lower bound sentence LBi(M, s,m, n0). We discuss
the quantifier complexity of (the worst-case complexity analogue of) the LBi(M, s,m, n0) sentence in Sec-
tion 5.1.1. As its formalization results in a ∀Σb

i+1(PV) sentence, note that when i > 1 we can no longer
directly apply the KPT Witnessing Theorem, as in Section 4. (In addition, for i > 1 the theory TiPV is
not universal, which is needed when applying this result.) A key aspect of our argument is to introduce an
appropriate universal theory with the right abstractions and term complexity (see Section 2.7).

5.1.1 Witnessing for Πi vs Σi lower bounds

Let LBiwst(M, s, n0) be the following worst-case lower bound sentence in the language LPV:

For all n ∈ LogLog with n > n0 and circuit D ∈ Σi-SIZE[s(n)], there exists an input x of
length n, such that D(x) 6= M(x).

More formally, we have

LBiwst(M, s, n0) , ∀n ∈ LogLog with n > n0,∀ circuit D ∈ Σi-SIZE[s(n)]

∃x ∈ {0, 1}n such that Error(D,x),

where Error(D,x) is a sentence stating that M(x) 6= D(x). Since M is a Πi-machine and D is a Σi-
circuit, in the language LPV, the sentence φ1(D,x) , (M(x) = 1 ∧D(x) = 0) is in Πb

i and the sentence
φ2(D,x) , (M(x) = 0 ∧D(x) = 1) is in Σb

i .

Fact 5.2. Let m(n) ≥ 1. If TiPV ` LBi(M, s,m, n0) then TiPV ` LBiwst(M, s, n0).

Proof. This is immediate for any reasonable formalization of the sentence LBi(M, s,m, n0), since it states
an average-case lower bound (at least m(n) ≥ 1 mistakes) while LBiwst(M, s, n0) states a worst-case lower
bound (i.e. at least one mistake).

Assume that

φ1(D,x) , ∀y ∈ {0, 1}O(s(n)) φ′1(D,x, y),

φ2(D,x) , ∃z ∈ {0, 1}O(s(n)) φ′2(D,x, z),

for some Σb
i−1-formula φ′1 and Πb

i−1-formula φ′2, respectively. Note that the lengths of the strings y and z are
bounded by O(s(n)) since we obtain from them parts of the computation of the circuit D (of size s(n)) and
of the machine M (with running time 2n

o(1)
< s(n)). Then Error(D,x) , φ1(D,x) ∨ φ2(D,x) is logically

equivalent to the formula

Error′(D,x) , ∃z ∈ {0, 1}O(s(n)) ∀y ∈ {0, 1}O(s(n)) (φ′1(D,x, y) ∨ φ′2(D,x, z)).

Next, consider the universal theories UiPV and UTiPV introduced in Section 2.7.

Lemma 5.3. Let ULBiwst(M, s, n0) be a Πb
3-sentence in L(UiPV) defined as follows:

ULBiwst(M, s, n0) ,∀n ∈ LogLog with n ≥ n0, ∀ circuit D ∈ Σi-SIZE[s(n)]

∃x ∈ {0, 1}n ∃z ∈ {0, 1}O(s(n))

∀y ∈ {0, 1}O(s(n)) (fφ′1(D,x, y) = 1 ∨ fφ′2(D,x, z) = 1).

Then UiPV proves LBiwst(M, s, n0) ↔ ULBiwst(M, s, n0). Moreover, UTiPV proves LBiwst(M, s, n0) ↔
ULBiwst(M, s, n0).

39

Proof. By the discussion above, LBiwst(M, s, n0) is logically equivalent to

∀n ∈ LogLog with n ≥ n0, ∀ circuit D ∈ Σi-SIZE[s(n)]

∃x ∈ {0, 1}n ∃z ∈ {0, 1}O(s(n))

∀y ∈ {0, 1}O(s(n)) (φ′1(D,x, y) = 1 ∨ φ′2(D,x, z) = 1),

which is further equivalent to ULBiwst(M, s, n0) in UiPV by Lemma 2.13. The provability of the same sen-
tence in UTiPV follows from Theorem 2.18.

Note that the L(UiPV)-sentence ULBiwst(M, s, n0) has low quantifier complexity. By exploring the con-
nection between TiPV and the universal theory UTiPV, we can show the following witnessing result.

Lemma 5.4 (Witnessing lemma for LB(M, s,m, n0)). Let i ≥ 1, M be a Πi-TIME[2n
o(1)

] machine, δ ∈
(0, 1), n0 ≥ 1, s(n) = 2n

δ
, and m(n) = 2n/2− 2n/2n

δ
. If TiPV ` LBi(M, s,m, n0), then there exist ` ∈ N

and ` algorithms A1, A2, . . . , A` such that:

• Every Ai is computable in FPΣpi−1 over inputs of length of order N = 2n.

• For every i ∈ [`], the input of Ai consists of 1N , 1n for n = logN , an n-input circuit D ∈
Σi-SIZE[s(n)], and i − 1 strings y1, . . . , yi−1; the output of Ai is a pair (xi, zi) ∈ {0, 1}n ×
{0, 1}O(s(n)).23

• Let h : (n,D, x) 7→ y be the following function. Given n, a string x ∈ {0, 1}n, and a circuit
D ∈ Σi-SIZE[s(n)], output a y such that ¬φ′1(D,x, y) if such y ∈ {0, 1}O(s(n)) exists, or 0 otherwise.

• For all n > n0 and circuit D ∈ Σi-SIZE[s(n)], let

(x1, z1) , A1(1n, D) y1 , h(n,D, x1)

(x2, z2) , A2(1n, D, y1) y2 , h(n,D, x2)
...

...
(x`, z`) , A`(1n, D, y1, . . . , yi−1) y` , h(n,D, x`).

Then there is an index v ∈ [`] such that D(xv) 6= M(xv).

Proof. Let i,M, δ, n0, s(n),m(n) be defined as above. Assume that TiPV ` LBi(M, s,m, n0). Then, by
Fact 5.2, it follows that TiPV ` LBiwst(M, s,m, n0). Using Theorem 2.14 and Lemma 5.3, we get that
UTiPV ` ULBiwst(M, s,m, n0) .

Since ULBiwst(M, s,m, n0) is a ∀Σb
2-sentence and UTiPV is a universal theory, we can invoke the KPT

witnessing theorem (Theorem 2.9) to obtain constantly many LiPV-terms A1, A2, . . . , A` witnessing the ex-
istential quantifier given counter-examples to the innermost universal quantifier. By Theorem 2.17 and using
that n ∈ LogLog, each Ai is computable in FPΣpi−1 over an input of order N = 2n. Furthermore, since the
function h is a valid counter-example oracle for the innermost universal quantifier, it is easy to check that the
conclusion of the lemma follows from the guarantee provided by KPT witnessing.

23Formally, since n ∈ LogLog in our formalization, each Ai has access to an input α of length |α| = N = 2n. For convenience
of notation, when discussing A1, . . . , A` we often omit the input 1N and concentrate on n, which is the key parameter.

40

5.1.2 Proof of Theorem 5.1

Theorem (Theorem 5.1, restated). Fix i ≥ 1. Let M be a Πi-TIME[2n
o(1)

] machine and LBi(M, s,m, n0)
be the LPV-sentence: for all n ∈ LogLog with n > n0 and Σi-SIZE[s(n)]-circuit C, there exist m distinct
inputs x1, . . . , xm such that M(xj) 6= C(xj) for all j ∈ [m]. Then

TiPV 0 LBi(M, s,m, n0)

for s(n) = 2n
δ
, m(n) = 2n/2− 2n/2n

δ
, and δ ∈ Q ∩ (0, 1).

Proof. Suppose that TiPV ` LBi(M, s,m, n0) for some M ∈ Πi-TIME[2n
o(1)

], n0 ∈ N, s(n) = 2n
δ
,

m(n) = 2n/2 − 2n/2n
δ
, and δ ∈ Q ∩ (0, 1), there exist an ` ∈ N and ` algorithms A1, A2, . . . , A` as

described by Lemma 5.4. Similar to [PS21], we will utilize the algorithms Ai to show that M can be non-
trivially approximated by Σi-SIZE[2n

δ
] circuits for some n > n0, leading to a contradiction to the soundness

of TiPV.
Let c be a constant to be determined later, and NWf (w, x) be the Nisan-Wigderson generator with seed

length |w| = nc, output length 2n, “hard” function f : {0, 1}nc/2 → {0, 1} (therefore each subset in the
combinatorial design has size nc/2), |x| = n, and any two distinct subsets in the combinatorial design with
intersection of size at most n. For every seed w ∈ {0, 1}nc , let Dw : {0, 1}n → {0, 1} be a Σi-circuit
computing Dw(x) , NWM (w, x), which is of size at most 2n

o(c) ≤ 2n
δ

for sufficient large n. We will find
some w ∈ {0, 1}nc and use Dw as C in Lemma 5.4 to obtain a Σi-SIZE[2O(n)] circuit B approximating M
on input length nc/2, i.e., Pr

u∈{0,1}nc/2 [B(u) = M(u)] ≥ 1
2 + 2−O(n). Then by choosing c > 2/δ and

sufficiently large n, we can prove the theorem.

Case 1. Recall that in Lemma 5.4, A1 takes 1n and an n-input circuit D ∈ Σi-SIZE[s(n)] as input and
output a pair (x, y) ∈ {0, 1}n × {0, 1}O(s(n)). By an averaging argument, there is an x1 ∈ {0, 1}n such that
for a uniformly random w ∈ {0, 1}nc , with probability at least 2−n, A1(1n, Dw) outputs (x1, ·). Fix this x1

and let

S1 ,
{
w ∈ {0, 1}nc

∣∣∣ A1(1n, Dw) = (x1, ·))
}
,

Smist
1 ,

{
w ∈ S1

∣∣∣ Dw(x1) 6= M(x1)
}
.

By the definition of x1, we know that |Sx1 |/2n
c ≥ 2−n.

In Case 1 we assume that |Smist
1 | > (2/3) · |S1|, handling the other scenario in a subsequent case.

For any w ∈ {0, 1}nc , we know that Dw(x1) = NWM (w, x1) = M(w|Jx1), where Jx1 is the subset of
indices corresponding to the x1-th row of the combinatorial design. By Lemma E.1, there is an assignment
a ∈ {0, 1}[nc]\Jx1 for the indices outside of Jx1 such that |S1 �a |/2n

c/2 ≥ 2−O(n) and |Smist
1 �a |/|S1 �a

| ≥ 3/5. Fix an a ∈ {0, 1}nc\Jx1 as above. Let b1 , M(x1) ∈ {0, 1}. We define a randomized circuit
B1 : {0, 1}nc/2 × {0, 1} → {0, 1}, where the second input is regarded as a random bit, as follows (see
Algorithm 5 and recall the notation from Section 2.4).

We first analyse the complexity of B1. Let m = nc/2 = |u| be the input length. Since A1 is computable
in FPΣpi−1 , it is easy to see that B1 ∈ SIZEΣpi−1 [2O(n)]. By Theorem 2.4, we get that B1 ∈ Σi-SIZE[2O(n)].
So we only need to show that for an random bit r ∈ {0, 1}, B(x, r) approximates M(x) well.

41

Input : The input u ∈ {0, 1}nc/2 for M and a bit r ∈ {0, 1}
Advice: x1 ∈ {0, 1}n, a ∈ {0, 1}[nc]\Jx1 , and b1 = M(x1)

1 Let w = rx1(a, u) and (x, ·) = A1(1n, Dw);
2 If x 6= x1, return r;
3 Otherwise, return b1.

Algorithm 5: Randomized Circuit B1 for M

For any input u ∈ {0, 1}nc/2 such that u ∈ S1 �a, we know that

B(u, r) = M(u) ⇐⇒ M(x1) = M(u) (x = x1 by the definition of S1, B(u, r) = b1 = M(x1))

⇐⇒ M(x1) 6= Dw(x1) (Dw(x1) = NWM (w, x1) = M(w|Jx1) = M(u))

⇐⇒ u ∈ Smist
1 �a .

This means that B(u, r) and M agree on at least 3/5 of the inputs u ∈ S1 �a. In the other case, the circuit B
outputs the random bit r, therefore for some fixed bit r∗ ∈ {0, 1}, B1(u, r∗) and M(u) agree on at least 1/2

of the inputs u /∈ S1 �a. Since |S1 �a |/2n
c/2 ≥ 2−O(n), we obtain that

Pr
u∈{0,1}nc/2

[
B1(u, r∗) = M(u)

]
≥ 3

5
· |S1 �a |

2n
c/2

+
1

2
·
(

1− |S1 �a |
2n

c/2

)
=

1

2
+ 2−O(n).

Case 2. Assume that |Smist
1 | ≤ (2/3) · |S1| instead. For every w ∈ S1, we define y1(w) , h(n,Dw, x1)

to be the output of the counter-example oracle h in Lemma 5.4. Again by an averaging argument, there
is an x2 ∈ {0, 1}n such that for a uniformly random w ∈ S1 \ Smist

1 , with probablity at least 2−n,
A2(1n, Dw, y1(w)) = (x2, ·). Fix this x2. Let S2 an Smist

2 be the sets defined as follows:

S2 ,
{
w ∈ S1 \ Smist

1

∣∣∣ A2(1n, Dw, y1(w)) = (x2, ·)
}
,

Smist
2 , {w ∈ S2 | Dw(x2) 6= M(x2)}.

By the definition of x2 we know that |S2|/2n
c ≥ (1/3) · 2−O(n) = 2−O(n).

In this case, we further assume that |Smist
2 | > (2/3) · |S2|. By construction, for any w ∈ {0, 1}nc ,

Dw(x2) = M(w|Jx2). By Lemma E.1, there is an assignment a ∈ {0, 1}[nc]\Jx2 for the indices outside of

Jx2 such that |S2 �a |/2n
c/2 ≥ 2−O(n) and |Smist

2 �a |/|S2 �a | ≥ 3/5. Fix this a. We will need the following
subroutine to complete this case.

(∇) Given w ∈ S1 of the form a ∪ u (u ∈ {0, 1}Jx2), there is a deterministic circuit E(w) of size at most
2O(n) that outputs (y1(w), e1(w)), where y1(w) = h(n,Dw, x1) and e1(w) ∈ {0, 1} such that e1(w) = 1 if
and only if w ∈ Smist

1 .

Note that the circuit E(w) is used to simulate the counter-example oracle h in the first round of the
KPT-style game. Let b2 , M(x2). We construct a randomized circuit B2 as follows (see Algorithm 6),
discussing the claim (∇) later in the proof.

Let m = nc/2 = |u| be the input length. We first show that B2 : {0, 1}m × {0, 1} → {0, 1} can
be implemented by a Σi-circuit with size 2O(n). Both A1 and A2 are FPΣpi−1 algorithms with input length
poly(2n), so both of them can be implemented by SIZEΣpi−1 [2O(n)] circuits. By (∇) we also know that E(w)

42

Input : The input u ∈ {0, 1}nc/2 for M and random bit r ∈ {0, 1}
Advice: x1, x2 ∈ {0, 1}n, a ∈ {0, 1}[nc]\Jx2 as discussed, b2 = M(x2), and Γ to support the

subroutine (∇)
1 Let w = rx2(a, u) and (x̂1, ẑ1) = A1(1n, Dw);
2 If x̂1 6= x1, then return the random bit r; // after this step, w ∈ S1

3 Let (y1(w), e1(w)) = E(w) by (∇);
4 If e1(w) = 1, then return the random bit r; // after this step, w ∈ S1 \ Smist

1

5 Let (x̂2, ẑ2) = A2(1n, Dw, y1(w));
6 If x̂2 6= x2, then return the random bit r;
7 Otherwise, return b2. // reaching this line if and only if w ∈ S2

Algorithm 6: Randomized circuit B2 for M

can be implemented by a 2O(n)-size circuit. As a result, B2 ∈ SIZEΣpi−1 [2O(n)] ⊆ Σi-SIZE[2O(n)], where
the last inclusion follows from Theorem 2.4.

Now we prove the correctness of the algorithmB2. By construction, it is easy to verify that the algorithm
reaches the last line if and only if w = rx2(a, u) ∈ S2. Therefore B2 will output a random bit when w /∈ S2

(i.e., u /∈ S2 �a) and output b2 when w ∈ S2 (i.e., u ∈ S2 �a). In the former case, B2 agrees with M on 1/2
of the inputs for an r∗ ∈ {0, 1}, which will be hard-wired into the circuit. In the latter case, with probability
at least 3/5 over u ∈ {0, 1}nc/2 , u ∈ Smist

2 �a, which further means that

M(u) = M(w|Jx2) = Dw(x2) = M(x2) = b2 = B2(u, r).

Since |S2 �a |/2n
c/2 ≥ 2−O(n), we can conclude that B2(u, r∗) agrees with M(u) on 1

2 + 2−O(n) of the
inputs u ∈ {0, 1}nc/2 .

Case j ≥ 2. Using the technique for Case 2, we can in fact deal with all the remaining cases. Let j ∈
{2, 3, . . . , `}. We define the following notations recursively:

(i) yj−1(w) , h(n,Dw, xj−1).

(ii) xj ∈ {0, 1}n be the lexicographically first string such that for a uniformly random string w ∈ Sj−1 \
Smist
j−1 , with probability at least 2−n, Aj(1n, Dw, y1(w), . . . , yj−1(w)) = (xj , ·).

(iii) Define Sj and Smist
j as the sets

Sj ,
{
w ∈ Sj−1 \ Smist

j−1

∣∣∣ Aj(1n, Dw, y1(w), . . . , yj−1(w)) = (xj , ·)
}

Smist
j , {w ∈ Sj | Dw(xj) 6= M(xj)}.

In Case j ≥ 2 we assume that (1) |Smist
j | > (2/3) · |Sj |, and (2) for every i ∈ {1, 2, . . . , j − 1},

|Smist
i |/|Si| ≤ 2/3. Crucially, by the definition of each of these sets and the conclusion of Lemma 5.4, we

get that by reaching j = ` we necessarily have S` = Smist
` , so the case analysis is complete.

The following lemma will be needed later in the proof.

Lemma 5.5. For every 1 ≤ i < j, we have xi 6= xj .

43

Proof. Suppose that xi = xj for i < j. First, it follows from the construction that Sj∩Smist
i = ∅. Therefore,

for any w ∈ Smist
j ⊆ Sj , we have M(xi) = Dw(xi). On the other hand, by definition, for any w ∈ Smist

j ,
we have M(xj) 6= Dw(xj). Note that the assumption of Case j ≥ 2 implies that Smist

j is nonempty. Take
any w∗ ∈ Smist

j . Under the hypothesis that xi = xj , the previous claims yield that both M(xi) = Dw∗(xi)
and M(xi) 6= Dw∗(xi), which is contradictory.

Under assumptions (1) and (2), one can prove by induction that |Sj |/2n
c

= 2−O(n), therefore by Lemma
E.1, there is an assignment a ∈ {0, 1}[n

c]\Jxj such that |Sj �a |/2n
c/2 ≥ 2−O(n) and |Smist

j �a |/|Sj �a | ≥
3/5. Similarly to (∇) in Case 2, we need the following computation (∇ij) for every i ∈ {1, 2, . . . , j − 1}.

(∇ij) Given w ∈ Si of the form a ∪ u (u ∈ {0, 1}Jxj), there is a deterministic circuit Ei(w) of size at most
2O(n) that outputs (yi(w), ei(w)), where yi(w) = h(n,Dw, xi) and ei(w) ∈ {0, 1} such that ei(w) = 1 if
and only if w ∈ Smist

i .

Note that (∇1
2) is simply (∇) in Case 2. With these subroutines we can construct a randomized circuit

Bj that approximates M well as follows (see Algorithm 7).

Input : The input u ∈ {0, 1}nc/2 for M and random bit r ∈ {0, 1}
Advice: x1, . . . , xj ∈ {0, 1}n, a ∈ {0, 1}[n

c]\Jxj as discussed above, bj = M(xj), and Γ to support
the subroutines (∇ij)

1 Let w = rxj (a, u);
2 for i = 1, 2, . . . , j do
3 Let (x̂i, ẑi) = Ai(1

n, Dw, y1, . . . , yi−1);
4 If x̂i 6= xi, then return the random bit r;

// reaching this line iff w ∈ Si
5 if i < j then
6 Let (yi(w), ei(w)) = Ei(w) by (∇ij);
7 If e1(w) = 1, then return the random bit r;

// otherwise, x ∈ Si \ Smist
i

8 end
9 end
// reaching this line iff w ∈ Sj

10 return bj ;
Algorithm 7: Randomized circuit Bj for M

Now we analyze the complexity and correctness of the algorithm Bj .

(Complexity). Let m = nc/2 be the input length. Since every Ai is computable in FPΣpi−1 with input length
poly(2n, s(n)) = 2O(n), and every Ei is computable by a 2O(n)-size deterministic circuit, we know
that Bj ∈ SIZEΣpi−1 [2O(n)] ⊆ Σi-SIZE[2O(n)] (see Theorem 2.4).

(Correctness). The correctness of Bj is proved similarly to Case 2. As noted in the comments appearing
in the pseudo-code, for any w = rxj (a, u) with u ∈ {0, 1}nc/2 , we can prove by induction that the
algorithm reaches the end of the i-th iteration within the for-loop if and only if w ∈ Si\Smist

i for every
i ∈ {1, 2, . . . , j − 1}. Furthermore, on such inputs the algorithm reaches the last line if and only if
w ∈ Sj . This means that, for an appropriate fixed bit r∗ ∈ {0, 1}, on inputs of this form the algorithm

44

agrees withM on at least 1/2 of w /∈ Sj and on at least 3/5 of w ∈ Sj . Since |Sj �a |/2n
c/2

= 2−O(n),
Bj(·, r∗) achieves an advantage of 2−O(n) with M(·).

Implementation of (∇). To finish the proof, we need to upper bound the circuit complexity of the com-
putation Ei(w) in ∇ij for 1 ≤ i < j ≤ `, which is used to simulate the counter-example oracle h and to
check if w ∈ Smist

i , for w of the appropriate form. Let j ∈ {2, 3, . . . , `} and i ∈ {1, 2, . . . , j − 1}. Thanks
to Lemma 5.5, we know that xi 6= xj . Recall that Dw(x) , NWM (w, x), where w , rxj (a, u). Since any
two distinct subsets in the combinatorial design of the Nisan-Wigderson generator have intersection size at
most n, we get that |Jxi ∩ Jxj | ≤ n. Notice that for u ∈ {0, 1}nc/2 , h(n,Dw, xi) for w = rxj (a, u) only
depends on w|Jxi , which contains at most n bits of u. As a result, we can hard-wire the answers of all 2n

cases and construct a 2O(n) circuit to compute yi(w) = h(n,Dw, xi). The value ei(w) can be computed in
a similar way. Overall, we obtain that Ei(w) , (yi(w), ei(w)) can be computed on all relevant inputs by a
(non-uniform) deterministic circuit of size 2O(n).

Wrapping things up. By the case analysis above, for every c ≥ 2 and every sufficiently large n, there
always exists a Σi-SIZE[2O(n)] circuit B with input length m = nc/2 such that

Pr
u∈{0,1}m

[B(u) = M(u)] ≥ 1

2
+ 2−O(n).

By taking c ≥ 2/δ we get, that for infinitely many values of n, L(M) ∩ {0, 1}n can be approximated
with advantage at least 2−n

δ
by Σi-SIZE[2n

δ
] circuits. This leads to a contradiction, since under TiPV `

LBi(M, s,m, n0) and from the soundness of TiPV we obtain that, for sufficiently large n, M cannot be
approximated with advantage 2−n

δ
by Σi-SIZE[2n

δ
] circuits.

As pointed out in Remark 4.5 and Remark 4.12, we note that assuming the provability of worst-case
circuit lower bound, the approximation of the machine M ∈ Πi-TIME[2n

o(1)
] by deterministic Σp

i−1-oracle
circuits of small size also works for any sequence {fn}n≥1 of functions computable in Πi-SIZE[2n

o(1)
].

Concretely, instead of definingDw(x) , NWM (w, x), we defineDw(x) , NWf ′(w, x) for f ′(x) , ¬f(x),
and proceed the argument as above. By padding dammy input bits as in Remark 4.12, we obtain the following
corollary.

Corollary 5.6. Fix i ≥ 1. Let M be a Πi-TIME[2n
o(1)

] machine and LBiwst(M, s, n0) be the worst-case
lower bound sentence defined as above. Assume that for some δ ∈ (0, 1) ∩ Q and s(n) = 2n

δ
, TiPV proves

LBiw(M, s, n0). Then for every constant ε ∈ (0, 1), every sufficiently large n, and circuit C ∈ Πi-SIZE[2n
δ
],

there is a Σp
i−1-oracle circuit D of size 2n

ε
such that

Pr
x∼{0,1}n

[
C(x) = D(x)

]
≥ 1

2
+

1

2nε
.

5.1.3 Relaxing the average-case complexity parameter

Recall that in Section 4.3, we showed how to obtain the unprovability of circuit lower bounds with
a weaker average-case complexity parameter via hardness amplification. This will also be the case here,
since the hardness amplification in [HVV06] generalises to all levels in the polynomial hierarchy (see Theo-
rem 2.7).

45

Theorem 5.7. Fix i ≥ 1. Let M be a Πi-TIME[t(n)] machine for some constructive function t(n) = 2n
o(1)

and LBi(M, s,m, n0) be defined as in Theorem 5.1. Then for every constant δ ∈ Q ∩ (0, 1), s(n) , 2n
δ
,

m(n) , 2n/n, and n0 ∈ N, TiPV 0 LBi(M, s,m, n0).

Proof. Towards a contradiction, we assume that TiPV ` LBi(M, s,m, n0) and argue as follows.

(i) Under the provability of the almost-everywhere average-case lower bound LB(M, s,m, n0), we obtain
from the soundness of TiPV that (in the standard model) for every sequence {En}n≥1 of Σp

i−1-oracle
circuits of size ≤ 2n

δ
and n ≥ n0, we have

Pr
x∼{0,1}n

[M(x) = En(x)] ≤ 1− 1

n
.

(ii) From the provability of LB(M, s,m, n0), under reasonable formalization, we can also show that
LBiwst(M, s, n0) is provable in TiPV. We then get from Corollary 5.6 that for every ε ∈ (0, 1), ev-
ery sufficiently large n, and circuit C ∈ Πi-SIZE[2n

δ
], there is a Σp

i−1-oracle circuit D of size 2n
ε

such that
Pr

x∼{0,1}n
[C(x) = D(x)] ≥ 1

2
+

1

2nε
. (8)

(iii) Assume that n is sufficiently large and fn : {0, 1}n → {0, 1} is defined as f(x) = M(x). Note that
this function satisfies the hypothesis of Theorem 2.7 for s1(n) = 2n

o(1)
and s2(n) = 2n

δ
, hence we

can obtain a function h` : {0, 1}` → {0, 1} for some ` = O(n2) such that for every Σp
i−1-oracle

circuit D of size 2γ`
γδ

, it holds that

Pr
x∈{0,1}`

[h`(x) = D(x)] ≤ 1

2
+

1

2γ`γδ
.

By setting ε = (1/2) · δ · γ, this violates the upper bound in Equation (8) when n is sufficiently large.

As a result, we know that TiPV 0 LBi(M, s,m, n0) for every i ≥ 1.

5.2 Unprovability of lower bound sentences of higher quantifier complexity

In this section, we extend the unprovability results to sentences of higher quantifier complexity that
formalize separations between non-uniform circuit classes. Recall that Σi-SIZE[s(n)] and Πi-SIZE[s(n)]
refer to Σi-circuits and Πi-circuits of size s(n), respectively. Let LBi(s1, s2,m, n0) denote the following
LPV-sentence:

∀n ∈ LogLog with n ≥ n0 ∃C ∈ Πi-SIZE[s1(n)] ∀D ∈ Σi-SIZE[s2(n)]

∃m = m(n) distinct n-bit strings x1, . . . , xm s.t. Error(C,D, xi) for all i ∈ [m],

where Error(C,D, x) means that the circuits C and D do not agree on the input x. It’s easy to see
that Error(C,D, x) is a disjunction of a Σb

i -formula and a Πb
i -formula. Observe that, already for i = 1,

LBi(s1, s2,m, n0) is a ∀Σb
4-sentence.

Theorem 5.8. For every i ≥ 1, n0 ∈ N, δ ∈ Q ∩ (0, 1) and d ≥ 1, TiPV 0 LBi(s1, s2,m, n0), where
s1(n) = nd, s2(n) = 2n

δ
and m(n) = 2n/2− 2n/2n

δ
.

46

5.2.1 Witnessing lemma for lower bound sentences

Similar to the technique we used in the previous section, we need to apply the witnessing theorem to the
lower bound sentences. We define the worst-case version of this lower bound to be the following formula
LBiwst(s1, s2, n0).

∀n ∈ LogLog with n ≥ n0 ∃C ∈ Πi-SIZE[s1(n)] ∀D ∈ Σi-SIZE[s2(n)]

∃x ∈ {0, 1}n s.t. Error(C,D, x).

Let φ1(C,D, x) , (C(x) = 1 ∧D(x) = 0) be a Πb
i -formula and φ2(C,D, x) , (C(x) = 0 ∧D(x) = 1)

be a Σb
i -formula. Note that Error(C,D, x) , φ1(C,D, x) ∨ φ2(C,D, x). Assume that

φ1(C,D, x) , ∀y ∈ {0, 1}O(s(n))φ′1(C,D, x, y),

φ2(C,D, x) , ∃z ∈ {0, 1}O(s(n))φ′2(C,D, x, z),

where φ′1 is a Σb
i−1-formula and φ′2 is a Πb

i−1-formula. Note that the lengths of y and z are bounded by
O(s(n)) since they are parts of the computation of the circuits C and D.

Lemma 5.9. Let ULBiwst(s1, s2, n0) be a ∀Σb
4-sentence in L(UiPV) defined as follows:

ULBiwst(s1, s2, n0) , ∀n ∈ LogLog with n ≥ n0, ∃ circuit C ∈ Πi-SIZE[s1(n)]

∀ circuit D ∈ Σi-SIZE[s2(n)],

∃x ∈ {0, 1}n ∃z ∈ {0, 1}O(s(n)) ∀y ∈ {0, 1}O(s(n))(
fφ′1(C,D, x, y) = 1 ∨ fφ′2(C,D, x, z) = 1

)
.

Then UiPV proves LBiwst(s1, s2, n0) ↔ ULBiwst(s1, s2, n0). Moreover, UTiPV proves LBiwst(s1, s2, n0) ↔
ULBiwst(s1, s2, n0).

Proof. The provability in UiPV follows from the provability of the defining axioms for fα (see Lemma 2.13).
In turn, the provability in UTiPV follows from Theorem 2.18.

Lemma 5.10. Assume that TiPV ` LBi(s1, s2,m, n0). There is an integer ` ∈ N and FPΣpi−1 algorithms
P1, Q1, P2, Q2, . . . , P`, Q` such that the following condition holds.24

Let n > n0, g be a function that maps a Πi-SIZE[s1(n)]-circuit to a Σi-SIZE[s2(n)] circuit, and DC ,
g(C). Let h : (n,C,D, x) 7→ y be the function such that y is the lexicographic first string in {0, 1}O(s(n))

such that ¬φ′1(C,D, x, y) holds or 0 if such a string does not exist. Let

P1(1n) = C1 Q1(1n, DC1) = (x1, z1) h(n,C1, DC1 , x1) = y1

P2(1n, DC1 , y1) = C2 Q2(1n, DC1 , DC2 , y1) = (x2, z2) h(n,C2, DC2 , x2) = y2
...

...
...

P`(1
n, DC1...`−1

, y1...`−1) = C` Q`(1
n, DC1...`

, y1...`−1) = (x`, z`) h(n,C`, DC` , x`) = y` .

Then there is k ∈ [`] such that Error(Ck, DCk , xk) holds.
24As in the statement of Lemma 5.4, the input length of these algorithms is of order N = 2n, since in our formalisation

n ∈ LogLog. In order to be succinct, we simply write 1n as one of the inputs, since n is the key parameter for us.

47

Proof. Suppose that TiPV ` LBi(s1, s2,m, n0). Then we also have TiPV ` LBiwst(s1, s2, n0), which further
means by Theorem 2.14, Lemma 5.9, and Theorem 2.18 that UTiPV ` ULBiwst(s1, s2, n0). Recall that UTiPV
is a universal theory closed under if-then-else (see Theorem 2.18). By Theorem 3.2, there are an ` ∈ N and a
sequence of ` L-strategies τt1 , τ

t
2 , . . . , τ

t
` for the truthifier such that for any fixed strategy τf of the falsifier,

at least one of the strategies beats τf in ` sequential plays of the evaluation game with τt1 , τ
t
2 , . . . , τ

t
` vs τf.

In particular, consider the following strategy for the falsifier: if the truthifier chooses C in the first round
of the game, the falsifier will choose DC ; then if the truthifier chooses x, z in the second round, the falsifier
will choose h(n,C,DC , x). It is easy to see that the claim in the lemma is precisely the winning property of
τt1 , . . . , τ

t
` against this particular strategy for the falsifier, given the corresponding auxiliary information.

5.2.2 Proof of Theorem 5.8

Theorem (Reminder of Theorem 5.8). For every i ≥ 1, n0 ∈ N, δ ∈ Q ∩ (0, 1) and d ≥ 1, TiPV 0
LBi(s1, s2,m, n0), where s1(n) = nd, s2(n) = 2n

δ
and m(n) = 2n/2− 2n/2n

δ
.

Proof. Assume that TiPV ` LBi(s1, s2,m, n0). We will derive a contradiction to the soundness of TiPV by
showing that for sufficiently large n and all Πi-circuits M : {0, 1}nc/2 → {0, 1} of size s1(nc/2), there is a
Σi-circuit B : {0, 1}nc/2 → {0, 1} of size at most s2(nc/2) that agrees with M on all but at most m(nc/2)
inputs, for some constant c ∈ N which will be determined later.

Let NWf (w, x) be the Nisan-Wigderson generator with: f : {0, 1}nc/2 → {0, 1}, seed length |w| = nc,
|x| = n+ nd, and any two distinct subsets in the combinatorial design of intersection of size at most O(nd).
Designs with these parameters are known to exist (see Section 2.4).

By Lemma 5.10, we have ` ∈ N and FPΣpi−1 machines P1, P2, . . . , P`, Q1, . . . , Q` as described. Let
M : {0, 1}nc/2 → {0, 1} be a Πi-circuit of size s1(nc/2) as described above. Let Dw,C : {0, 1}n →
{0, 1} be a Σi-circuit of size at most s2(n) computing Dw,C(x) , NWM (w, x‖C) for w ∈ {0, 1}nc and
C ∈ {0, 1}nd .25 We would like to find some suitable w and apply Lemma 5.10 with g : C 7→ Dw,C to
obtain a circuit B ∈ SIZEΣpi−1 [2O(nd)] ⊆ Σi-SIZE[2O(nd)] approximating M , i.e. Pru[B(u) = M(u)] ≥
1
2 + 2−O(nd). By choosing c as a constant much larger than d, we can prove the theorem.

Case 1. Let C1 , P1(1n). By an averaging argument, there is an x1 ∈ {0, 1}n such that for a uniformly
random w ∈ {0, 1}nc , with probability at least 2−n, the first coordinate of Q1(1n, Dw,C1) is x1. Fix this x1

and let

S1 ,
{
w ∈ {0, 1}nc | Q1(1n, Dw,C1) = (x1, ·)

}
,

Smist
1 ,

{
w ∈ S1 | Dw,C1(x1) 6= C1(x1)

}
.

By the definition of x1 we get that |S1|/2n
c ≥ 2−n.

In this case we assume that |Smist
1 | ≥ (2/3) · |S1|, dealing with the other situation in a subsequent case

analysis. For any w, we know that Dw,C1(x1) = NWM (w, x1‖C1) = M(w|Jx1‖C1
), where Jx1‖C1

is the
subset of indices corresponding to the (x1‖C1)-th row of the combinatorial design. By Lemma E.1, there is
an assignment a ∈ {0, 1}[n

c]\Jx1‖C1 for the indices outside of Jx1‖C1
such that |S1 �a |/2n

c/2 ≥ 2−O(n) and
|Smist

1 �a |/|S1 �a | ≥ 3/5.

48

Input : The input u ∈ {0, 1}nc/2 for M and random bit r ∈ {0, 1}
Advice: x1 ∈ {0, 1}n, C1 = P1(1n), a ∈ {0, 1}[n

c]\Jx1‖C1 as discussed, and b1 = C1(x1)
1 Let w = rx1‖C1

(a, u) and (x, ·) = Q1(1n, Dw,C1);
2 If x 6= x1, return the random bit r;
3 Otherwise, return b1.

Algorithm 8: Randomized circuit B1 for M

Now we fix a ∈ {0, 1}[n
c]\Jx1‖C1 as above. Let b1 , C1(x1) ∈ {0, 1}. We define a randomized circuit

B1 with access to a random bit r ∈ {0, 1} as follow (see Algorithm 8).
Since Q1 ∈ FPΣpi−1 and |Dw,C1 | = 2n

o(1)
, it is clear that B1 ∈ SIZEΣpi−1 [2O(n)] ⊆ Σi-SIZE[2O(nd)],

so we only need to verify that the randomized circuit B1 approximates M . For u ∈ {0, 1}nc/2 such that
u ∈ S1 �a, we have that

B1(u, r) = M(u) ⇐⇒ C1(x1) = M(u) (x = x1 by the definition of S1, B(u, r) = b1 = C(x1))

⇐⇒ C1(x1) 6= Dw,C1(x1) (Dw,C1(x1) = NWM (w, x1‖C1) = M(u))

⇐⇒ u ∈ Smist
1 �a .

Therefore B1 and M agree on at least 3/5 of the inputs u ∈ S1 �a. In the other case, the circuit B simply
outputs the random bit r, therefore for a specific r∗ ∈ {0, 1}, B1(u, r∗) and M(u) agree on at least 1/2 of
the inputs u /∈ S1 �a. Since |S1 �a |/2n

c/2 ≥ 2−O(n), we obtain that

Pr
u∈{0,1}nc/2

[
B1(u, r∗) = M(u)

]
≥ 3

5
· |S1 �a |

2n
c/2

+
1

2
·
(

1− |S1 �a |
2n

c/2

)
=

1

2
+ 2−O(n).

Case 2. Assume that |Smist
1 | ≤ (2/3) · |S1|. Let h(n,C,D, x1) be the function described in Lemma 5.10.

Let y1(w) , h(n,C1, Dw,C1 , x1) and Cw2 = P2(1n, Dw,C1 , y1(w)). Again, by an averaging argument, there
are C2 ∈ {0, 1}n

d
and x2 ∈ {0, 1}n such that for a uniformly random w ∈ S1 \ Smist

1 , with probability at
least 2−O(nd), C2 = Cw2 and Q2(1n, Dw,C1 , Dw,C2 , y1(w)) = (x2, ·). Fix this C2 and x2. Let S2 and Smist

2

be sets defined as follows:

S2 ,
{
w ∈ S1 \ Smist

1 | C2 = Cw2 ∧Q2(1n, Dw,C1 , Dw,C2 , y(w)) = (x2, ·)
}

Smist
2 , {w ∈ S2 | Dw,C2(x2) 6= C2(x2)}

By the definitions of C2 and x2, we know that |S2|/2n
c ≥ (1/3) · 2−O(nd) = 2−O(nd).

In this case we assume that |Smist
2 | ≥ (2/3) · |S2|. Similarly to Case 1, for any w ∈ {0, 1}nc ,

Dw,C2(x2) = M(w|Jx2‖C2
). By Lemma E.1, there is an assignment a ∈ {0, 1}[n

c]\Jx2‖C2 for the indices

outside of Jx2‖C2
such that |S2 �a |/2n

c/2 ≥ 2−O(nd) and |Smist
2 �a |/|S2 �a | ≥ 3/5. Fix this string a. We

will assume the following computation is possible in order to complete this case, returning to it later on:

(∇) Given w ∈ S1 of the form a ∪ u (u ∈ {0, 1}Jx2‖C2), there is a deterministic circuit E(w) of size at
most 2O(nd) that outputs (y1(w), e1(w)), where y1(w) = h(n,C1, Dw,C1 , x1) and e1(w) ∈ {0, 1} such that

25We use u‖v to denote the concatenation of binary strings u and v. Jumping ahead, the idea of concatenating x‖C when defining
the NW generator will allow us to establish an analogue of Lemma 5.5 in this proof.

49

e1(w) = 1 if and only if w ∈ Smist
1 .

Note that if w ∈ S1 \ Smist
1 , y1(w) given by E(w) witnesses that ¬Error(C1, Dw,C1 , x1). Let b2 ,

C2(x2). We construct a randomized circuit B2 as follows (see Algorithm 9).

Input : The input u ∈ {0, 1}nc/2 for M and random bit r ∈ {0, 1}
Advice: x1, x2 ∈ {0, 1}n, C1, C2 ∈ {0, 1}n

d
, a ∈ {0, 1}[n

c]\Jx2‖C2 as discussed, b2 = C2(x2), and
Γ to support the subroutine (∇)

1 Let w = rx2‖C2
(a, u) and (x̂1, ẑ1) = Q1(1n, Dw,C1);

2 If x̂1 6= x1, then return the random bit r; // after this step, w ∈ S1

3 Let (y1(w), e1(w)) = E(w) by (∇);
4 If e1(w) = 1, then return the random bit r; // after this step, w ∈ S1 \ Smist

1

5 Let Ĉ2 = P2(1n, Dw,C1 , y1(w)) and (x̂2, ẑ2) = Q2(1n, Dw,C1 , Dw,C2 , y1(w));
6 If x̂2 6= x2 or Ĉ2 6= C2, then return the random bit r;
7 Otherwise, return b2. // reaching this line if and only if w ∈ S2

Algorithm 9: Randomized circuit B2 for M

First, we analyze the complexity of B2. Since Q1, P2, Q2 ∈ FPΣpi−1 and the input length for each of
them is of order 2O(n), they can be implemented by circuits of size 2O(n) with Σp

i−1 oracles. We need 2O(nd)

gates to support the computation (∇). Therefore, B2 ∈ SIZEΣpi−1 [2O(nd)] ⊆ Σi-SIZE[2O(nd)].
By construction, it is easy to verify that the algorithm reaches the last line if and only ifw = rx2‖C2

(a, u) ∈
S2. Therefore B2 will output a random bit when w /∈ S2 and output b2 when w ∈ S2. In the former case,
B2 agrees with M on 1/2 of the inputs for an r∗ ∈ {0, 1}. In the latter case, with probability at least 3/5,
w|Jx2‖C2

∈ Smist
2 �a, which further means that

M(u) = M(w|Jx2‖C2
) = Dw,C2(x2) = C2(x2) = b2 = B2(u, r).

As a result, it follows that

Pr
u∈{0,1}nc/2

[
B2(u, r∗) = M(u)

]
≥ 3

5
· |S2 �a |

2n
c/2

+
1

2
·
(

1− |S2 �a |
2n

c/2

)
=

1

2
+ 2−O(nd).

Case j ≥ 2. Using the technique for Case 2, we can in fact deal with all the remaining cases. Let j ∈
{2, 3, . . . , `}. We recursively define the following values:

(i) yj−1(w) , h(n,Cj−1, Dw,Cj−1 , xj−1).

(ii) Cwj , Pj(1
n, Dw,C1 , . . . , Dw,Cj−1 , y1(w), . . . , yj−1(w)).

(iii) Let Cj ∈ {0, 1}n
d

be the lexicographical first string (encoding an circuit) such that for a uniformly
random string w ∈ Sj−1 \ Smist

j−1 , with probability at least 2−O(nd), Cwj = Cj . The existence of Cj
follows from a counting argument.

(iv) Let xj ∈ {0, 1}n be the lexicographical first string such that for a uniformly random string w ∈
(Sj−1 \ Smist

j−1) ∩ {w ∈ {0, 1}nc | Cwj = Cj}, with probability at least 2−n,

Qj(1
n, Dw,C1 , . . . , Dw,Cj , y1(w), . . . , yj−1(w)) = (xj , ·).

Thus, for a uniformly random string w ∈ Sj−1 \ Smist
j−1 , with probability at least 2−O(nd) · 2−n =

2−O(nd), Cwj = Cj and Qj(1n, Dw,C1 , . . . , Dw,Cj , y1(w), . . . , yj−1(w)) = (xj , ·).

50

(v) Sj and Smist
j be sets recursively defined as

Sj ,
{
w ∈ Sj−1 \ Smist

j−1 | Cwj = Cj∧

Qj(1
n, Dw,C1 , . . . , Dw,Cj , y1(w), . . . , yj−1(w)) = (xj , ·)

}
Smist
j ,{w ∈ Sj | Dw,Cj (xj) 6= Cj(xj)}

In Case j we will assume that (1) |Smist
j |/|Sj | ≥ 2/3 and (2) for any i ∈ {1, 2, . . . , j−1}, |Smist

i |/|Si| <
2/3. In particular, by Lemma 5.10 we know that if we reach j = ` then S` = Smist

` , so all the cases can be
resolved in this way.

The following lemma will be useful later in the proof.

Lemma 5.11. For every 1 ≤ i < j, we have (Ci, xi) 6= (Cj , xj).

Proof. First, note that Sj ∩Smist
i = ∅. Also, since we are in case j, Smist

j 6= ∅, given that |Smist
j | ≥ 2/3 · |Sj |

and the (inductively established) density lower bound for |Sj |. Now take any w∗ ∈ Smist
j , i.e.,

Cj(xj) 6= Dw∗,Cj (xj). (9)

Since Smist
j ⊆ Sj and Sj ∩ Smist

i = ∅, we have that w∗ /∈ Smist
i , i.e.,

Ci(xi) = Dw∗,Ci(xi). (10)

Now if we had (Ci, xi) = (Cj , xj), this would be in contradiction with Equation (9) and Equation (10).
Consequently, either Ci 6= Cj or xi 6= xj .

We can prove by induction that |Sj |/2n
c

= 2−O(nd), therefore by Lemma E.1, there is an assignment
a ∈ {0, 1}[n

c]\Jxj‖Cj such that |Sj �a |/2n
c/2 ≥ 2−O(nd) and |Smist

j �a |/|Sj �a | ≥ 3/5. Fix this string a.
Similar to (∇) in Case 2, we need the following computation (∇ij) for every i ∈ {1, 2, . . . , j − 1}.

(∇ij) Given w ∈ Si of the form a ∪ u (u ∈ {0, 1}Jxj‖Cj), there is a deterministic circuit Ei(w) of size at

most 2O(nd) that outputs (yi(w), ei(w)), where yi(w) = h(n,Ci, Dw,Ci , xi) and ei(w) ∈ {0, 1} such that
ei(w) = 1 if and only if w ∈ Smist

i .

Note that (∇1
2) = (∇) by definition. Let bj , Cj(xj). Using the subroutines described above, We can

now present a randomized circuit Bj that approximates M (see Algorithm 10).
Similarly to Case 2, we can see that Bj ∈ SIZEΣpi−1 [2O(nd)]. Now we prove the correctness of Bj . By

the definition of Si, we can prove by induction that the algorithm reaches the end of the i-th iteration within
the for-loop if and only if w ∈ Si \ Smist

i for any i ∈ {1, 2, . . . , j − 1}. We can further check that the
algorithm reaches the last line if and only if w ∈ Sj . This means that, by fixing an appropriate bit r∗ as the
random bit, the algorithm agrees with M on at least 1/2 of w /∈ Sj of the form w = rxj (a, u), and on at
least 3/5 of w ∈ Sj of the form w = rxj (a, u). As before, this translates into a correlation of 2−O(nd) over
a random input u ∈ {0, 1}nc/2 using the lower bound on the density of Sj �a.

51

Input : The input u ∈ {0, 1}nc/2 for M and random bit r ∈ {0, 1}
Advice: x1, . . . , xj ∈ {0, 1}n, C1, . . . , Cj ∈ {0, 1}n

d
, a ∈ {0, 1}[n

c]\Jxj‖Cj as discussed,
bj = Cj(xj), and Γ to support the subroutines (∇ij)

1 Let w = rxj (a, u);
2 for i = 1, 2, . . . , j do
3 Let Ĉi = Pi(1

n, Dw,C1 , . . . , Dw,Ci−1 , y1(w), . . . , yi−1(w));
4 If Ĉi 6= Ci, then return the random bit r;
5 Let (x̂i, ẑi) = Qi(1

n, Dw,C1 , . . . , Dw,Ci , y1(w), . . . , yi−1(w));
6 If x̂i 6= xi, then return the random bit r;

// reaching this line iff w ∈ Si
7 if i < j then
8 Let (yi(w), ei(w)) = Ei(w) by (∇ij);
9 If ei(w) = 1, then return the random bit r;

// otherwise, x ∈ Si \ Smist
i

10 end
11 end

// reaching this line iff w ∈ Sj
12 return bj ;

Algorithm 10: Randomized circuit Bj for M

Implementation of (∇). To complete the proof it is sufficient to show that (∇ij) in the j-th step is com-

putable by 2O(nd)-size circuits, for all j ∈ {2, 3, . . . , `} and 1 ≤ i < j. Fix any j ∈ {2, 3, . . . , `}
and i < j. Recall that h(n,Ci, Dw,Ci , xi) finds the minimal yi such that ¬φ′1(Ci, Dw,Ci , xi, yi) holds if
¬φ1(Ci, Dw,Ci , xi), where ¬φ1(Ci, Dw,Ci , xi) means that Ci(xi) = 0∨Dw,Ci(xi) = 1. In case Ci(xi) = 0,
we only need to hard-wire a witness of it, since Ci and xi are fixed with respect to w.

Now we assume thatCi(xi) = 1. By the definition ofDw,Ci , we know thatDw,Ci(xi) = NWM (w, xi‖Ci),

where w = a ∪ u for a ∈ {0, 1}[n
c]\Jxj‖Cj , u ∈ {0, 1}Jxj‖Cj . By Lemma 5.11, (xi, Ci) 6= (xj , Cj). There-

fore, by the definition of the NW generator, for w = a ∪ u with the input u ∈ {0, 1}Jxj‖Cj , the output
Dw,Ci(xi), as well as the desired witness of the outer-most quantified variable in case that Dw,Ci(xi) = 1,
depends on at most O(nd) bits of u. In such case, we can hard-wire all the 2O(nd) answers with a determin-
istic 2O(nd)-size circuit.

Similarly, it is not hard to show that the computation ei(w) can also be implemented by a deterministic
circuit of at most this size.

Wrapping things up. Finally we can combine all these facts to conclude this theorem. By assuming
TiPV ` LBi(s1, s2,m, n0), we proved that for sufficiently large n and all Πi-circuitsM : {0, 1}nc/2 → {0, 1}
of size s1(nc/2) = ndc/2, there is a deterministic circuit B : {0, 1}nc/2 → {0, 1} with Σp

i−1 oracle gates
of size at most 2O(nd) that agrees with M on a 1/2 + 2−O(nd) fraction of inputs. By Theorem 2.4, we
know that B can be implemented by Σi-circuits of size 2O(nd). If we choose c > 2d/δ, B is of size
≤ 2(nc/2)δ and agrees with M on a ≥ 1/2 + 2−(nc/2)δ fraction of the inputs u ∈ {0, 1}nc/2 , which means
that N � ¬LB(s1, s2,m, n0) for the corresponding choice of m(n). This is a contradiction to the soundness
of TiPV.

52

Similarly to what was noted in Remark 4.12 and Corollary 5.6, the proof presented above shows that
one can approximate every Πi-SIZE[2n

o(1)
] circuit M by small-size Σp

i−1-oracle circuits, assuming the
provability of the worst-case circuit lower bound sentence LBwst(s1, s2, n0). We simply use Dw,C(x) ,
NWM (w, x‖C) and proceed as above. By padding dummy input bits as in Remark 4.12, we can obtain the
following corollary.

Corollary 5.12. Fix i ≥ 1. Assume that for some n0 ∈ N, δ ∈ Q∩(0, 1), and d ≥ 1, TiPV ` LBiwst(s1, s2, n0)

for s1(n) = nd and s2(n) = 2n
δ
. Then for every constant ε > 0, every sufficiently large n, and circuit

A ∈ Πi-SIZE[t(n)] where t(n) = 2n
o(1)

is some constructive funtion, there is a Σp
i−1-oracle circuit B of size

2n
ε

such that
Pr

x∼{0,1}n
[A(x) = B(x)] ≥ 1

2
+

1

2nε
.

5.2.3 Relaxing the average-case complexity parameter

As in Section 5.1.3, we now utilize the hardness amplification theorem (see Theorem 2.7) to relax the
average-case complexity parameter.

Theorem 5.13. For every i ≥ 1, n0 ∈ N, δ ∈ Q ∩ (0, 1), and d ≥ 1, TiPV 0 LBi(s1, s2,m, n0), where
s1(n) = nd, s2(n) = 2n

δ
, and m = 2n/n.

Proof. Suppose that s1 = s1(n), s2 = s2(n), m, and n0 are defined as above. Towards a contradiction, we
assume that TiPV ` LBi(s1, s2,m, n0).

(i) Under the unprovability of the almost-everywhere average-case lower bound LB(s1, s2,m0), we ob-
tain from the soundness of TiPV that (in the standard model) for sufficiently large n, there is a circuit
C ∈ Πi-SIZE[s1(n)] such that for every Σp

i−1-oracle circuit D of size 2n
δ
, we have

Pr
x∼{0,1}n

[C(x) = D(x)] ≤ 1− 1

n
.

(ii) By the assumption that TiPV ` LBi(s1, s2,m, n0), under any reasonable formalization, we know that
TiPV also proves the worst-case version of the lower bound LBiwst(s1, s2, n0). Then by Corollary 5.12,
we get that for every constant ε > 0, every sufficiently large n, and every Πi-SIZE[2n

o(1)
] circuit, there

is a Σp
i−1-oracle circuit D of size 2n

ε
such that

Pr
x∼{0,1}n

[C(x) = D(x)] ≥ 1

2
+

1

2nε
. (11)

(iii) Now we assume that n is sufficiently large and fn : {0, 1}n → {0, 1} is the function computable by
Πi-SIZE[s1(n)] circuits in Item (i) that is hard on average against Σp

i−1-oracle circuit. By Theorem 2.7,
there is a function h` : {0, 1}` → {0, 1} for some ` = O(n2) that is computable by Πi-SIZE[poly(n) ·
s1(n)] circuits, such that for every Σp

i−1-oracle circuit D of size 2γ`
γδ

,

Pr
x∼{0,1}`

[h`(x) = D(x)] ≤ 1

2
+

1

2γ`γδ
.

By setting ε = (1/2) · δ · γ, this contradicts Equation (11).

Therefore we conclude that TiPV 0 LBi(s1, s2,m, n0).

53

References

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean functions. Com-
binatorica, 7(1):1–22, 1987.

[AB09] Sanjeev Arora and Boaz Barak. Complexity Theory: A Modern Approach. Cambridge Univer-
sity Press, 2009.

[Ajt83] Miklós Ajtai.
∑1

1-formulae on finite structures. Ann. Pure Appl. Log., 24(1):1–48, 1983.

[AK10] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.
ACM, 57(3):14:1–14:36, 2010.

[And85] Alexander E. Andreev. On a method for obtaining lower bounds for the complexity of individual
monotone functions. Soviet Math. Dokl, 31(3):530–534, 1985.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. Trans-
actions on Computation Theory (TOCT), 1(1), 2009.

[Bey09] Olaf Beyersdorff. On the correspondence between arithmetic theories and propositional proof
systems – a survey. Mathematical Logic Quarterly, 55(2):116–137, 2009.

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizatons of the P =? NP Question.
SIAM J. Comput., 4(4):431–442, 1975.

[BKKK20] Sam Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký. Expander construc-
tion in VNC1. Ann. Pure Appl. Log., 171(7):102796, 2020.

[BKO20] Jan Bydzovsky, Jan Krajı́ček, and Igor C. Oliveira. Consistency of circuit lower bounds with
bounded theories. Logical Methods in Computer Science, 16(2), 2020.

[BKT14] Samuel R. Buss, Leszek A. Kołodziejczyk, and Neil Thapen. Fragments of approximate count-
ing. J. Symb. Log., 79(2):496–525, 2014.

[BM20] Jan Bydzovsky and Moritz Müller. Polynomial time ultrapowers and the consistency of circuit
lower bounds. Arch. Math. Log., 59(1-2):127–147, 2020.

[Bus86] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986.

[Bus95] Samuel R. Buss. Relating the bounded arithmetic and polynomial time hierarchies. Ann. Pure
Appl. Log., 75(1-2):67–77, 1995.

[Bus97] Samuel R. Buss. Bounded arithmetic and propositional proof complexity. In Logic of Compu-
tation, pages 67–121. Springer Berlin Heidelberg, 1997.

[Bus98] Samuel R Buss. Handbook of Proof Theory. Elsevier, 1998.

[Bus08] Samuel R. Buss. Bounded arithmetic, cryptography and complexity. Theoria, 63:147–167,
2008.

[CHO+22] Lijie Chen, Shuichi Hirahara, Igor C. Oliveira, Ján Pich, Ninad Rajgopal, and Rahul Santhanam.
Beyond natural proofs: Hardness magnification and locality. J. ACM, 69(4):25:1–25:49, 2022.

54

[CJW19] Lijie Chen, Ce Jin, and Ryan Williams. Hardness magnification for all sparse NP languages. In
Symposium on Foundations of Computer Science (FOCS), pages 1240–1255, 2019.

[CK07] Stephen A. Cook and Jan Krajı́ček. Consequences of the provability of NP ⊆ P/poly. J. Symb.
Log., 72(4):1353–1371, 2007.

[CKKO21] Marco Carmosino, Valentine Kabanets, Antonina Kolokolova, and Igor C. Oliveira. Learn-
uniform circuit lower bounds and provability in bounded arithmetic. In Symposium on Founda-
tions of Computer Science (FOCS), 2021.

[CN10] Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge
University Press, 2010.

[Cob65] Alan Cobham. The intrinsic computational difficulty of functions. Proc. Logic, Methodology
and Philosophy of Science, pages 24–30, 1965.

[Coo75] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus (preliminary
version). In Symposium on Theory of Computing (STOC), pages 83–97, 1975.

[CT06] Stephen A. Cook and Neil Thapen. The strength of replacement in weak arithmetic. ACM Trans.
Comput. Log., 7(4):749–764, 2006.

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov. A
better-than-3n lower bound for the circuit complexity of an explicit function. In Symposium on
Foundations of Computer Science (FOCS), pages 89–98, 2016.

[FLY22] Zhiyuan Fan, Jiatu Li, and Tianqi Yang. The exact complexity of pseudorandom functions and
the black-box natural proof barrier for bootstrapping results in computational complexity. In
Symposium on Theory of Computing (STOC), pages 962–975, 2022.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Math. Syst. Theory, 17(1):13–27, 1984.

[Hås86] Johan Håstad. Almost optimal lower bounds for small depth circuits. In Symposium on Theory
of Computing (STOC), pages 6–20, 1986.

[HVV06] Alexander Healy, Salil P. Vadhan, and Emanuele Viola. Using nondeterminism to amplify
hardness. SIAM J. Comput., 35(4):903–931, 2006.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In Symposium on
Foundations of Computer Science (FOCS), pages 538–545. IEEE Computer Society, 1995.

[Jeř04] Emil Jeřábek. Dual weak pigeonhole principle, boolean complexity, and derandomization. Ann.
Pure Appl. Log., 129(1-3):1–37, 2004.

[Jeř05] Emil Jeřábek. Weak pigeonhole principle and randomized computation. PhD thesis, 2005.

[Jeř06] Emil Jeřábek. The strength of sharply bounded induction. Mathematical Logic Quarterly,
52(6):613–624, 2006.

[Jeř07a] Emil Jeřábek. Approximate counting in bounded arithmetic. J. Symb. Log., 72(3):959–993,
2007.

55

[Jeř07b] Emil Jeřábek. On independence of variants of the weak pigeonhole principle. J. Log. Comput.,
17(3):587–604, 2007.

[Jer22] Emil Jerábek. Iterated multiplication in VTC0. Archive for Mathematical Logic, pages 1–63,
2022.

[KH82] Clement F. Kent and Bernard R. Hodgson. An arithmetical characterization of NP. Theor.
Comput. Sci., 21:255–267, 1982.

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadimitriou. Total
functions in the polynomial hierarchy. In Innovations in Theoretical Computer Science Confer-
ence (ITCS), pages 44:1–44:18, 2021.

[KO17] Jan Krajı́ček and Igor C. Oliveira. Unprovability of circuit upper bounds in Cook’s theory PV.
Logical Methods in Computer Science, 13(1), 2017.

[Koh08] Ulrich Kohlenbach. Applied Proof Theory - Proof Interpretations and their Use in Mathematics.
Springer Monographs in Mathematics. Springer, 2008.

[Kor21] Oliver Korten. The hardest explicit construction. In Symposium on Foundations of Computer
Science (FOCS), pages 433–444, 2021.

[KP98] Jan Krajı́cek and Pavel Pudlák. Some consequences of cryptographical conjectures for S1
2 and

EF . Inf. Comput., 140(1):82–94, 1998.

[KPT91] Jan Krajı́ček, Pavel Pudlák, and Gaisi Takeuti. Bounded arithmetic and the polynomial hierar-
chy. Ann. Pure Appl. Log., 52(1-2):143–153, 1991.

[Kra92] Jan Krajı́ček. No counter-example interpretation and interactive computation. In Yiannis N.
Moschovakis, editor, Logic from Computer Science, pages 287–293, New York, NY, 1992.
Springer New York.

[Kra95] Jan Krajı́ček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 1995.

[Kra01] Jan Krajı́ček. On the weak pigeonhole principle. Fundamenta Mathematicae, 1(170):123–140,
2001.

[Kra11] Jan Krajı́cek. On the proof complexity of the Nisan-Wigderson generator based on a hard NP ∩
coNP function. J. Math. Log., 11(1), 2011.

[Kra19] Jan Krajı́ček. Proof Complexity. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2019.

[Kra21] Jan Krajı́cek. Small circuits and dual weak PHP in the universal theory of p-time algorithms.
ACM Trans. Comput. Log., 22(2):11:1–11:4, 2021.

[LC11] Dai Tri Man Le and Stephen A. Cook. Formalizing randomized matching algorithms. Log.
Methods Comput. Sci., 8(3), 2011.

[LY22] Jiatu Li and Tianqi Yang. 3.1n - o(n) circuit lower bounds for explicit functions. In Symposium
on Theory of Computing (STOC), pages 1180–1193, 2022.

56

[Lê14] Dai Tri Man Lê. Bounded Arithmetic and Formalizing Probabilistic Proofs. PhD thesis, 2014.

[McK10] Richard McKinley. A sequent calculus demonstration of Herbrand’s theorem. arXiv preprint
arXiv:1007.3414, 2010.

[MP20] Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak circuit lower bounds.
Ann. Pure Appl. Log., 171(2), 2020.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Comb., 12(4):449–
461, 1992.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

[Oja04] Kerry Ojakian. Combinatorics in Bounded Arithmetic. PhD thesis, 2004.

[OS18] Igor C. Oliveira and Rahul Santhanam. Hardness magnification for natural problems. In Sym-
posium on Foundations of Computer Science (FOCS), pages 65–76, 2018.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[Pic14] Ján Pich. Complexity Theory in Feasible Mathematics. PhD thesis, 2014.

[Pic15a] Ján Pich. Circuit lower bounds in bounded arithmetics. Ann. Pure Appl. Log., 166(1):29–45,
2015.

[Pic15b] Ján Pich. Logical strength of complexity theory and a formalization of the PCP theorem in
bounded arithmetic. Log. Methods Comput. Sci., 11(2), 2015.

[PS21] Ján Pich and Rahul Santhanam. Strong co-nondeterministic lower bounds for NP cannot be
proved feasibly. In Symposium on Theory of Computing (STOC), 2021.

[Pud92] Pavel Pudlák. Some relations between subsystems of arithmetic and the complexity theory. In
Proc. Conf. Logic from Computer Science, pages 499–519. Springer-Verlag, 1992.

[Pud06] Pavel Pudlák. Consistency and games - in search of new combinatorial principles. In
V. Stoltenberg-Hansen and J. Väänänen, editors, Logic Colloquium ’03, volume 24 of Lecture
Notes in Logic, pages 244–281. ASL, 2006.

[Raz85] Alexander A. Razborov. Lower bounds on the monotone complexity of some Boolean functions.
Doklady Akademii Nauk SSSR, 281:798–801, 1985. English translation in: Soviet Mathematics
Doklady 31:354–357, 1985.

[Raz87] Alexander A. Razborov. Lower bounds on the size of constant-depth networks over a complete
basis with logical addition. Mathematicheskie Zametki, 41(4):598–607, 1987.

[Raz95a] Alexander A. Razborov. Bounded arithmetic and lower bounds in boolean complexity. In
P. Clote and J. Remmel, editors, Feasible Mathematics II, pages 344—-386. Birkhäuser, 1995.

[Raz95b] Alexander A Razborov. Unprovability of lower bounds on circuit size in certain fragments of
bounded arithmetic. Izvestiya: mathematics, 59(1):205, 1995.

57

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997.

[RSW22] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem for circuits.
In Symposium on Foundations of Computer Science (FOCS), 2022.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit com-
plexity. In Symposium on Theory of Computing (STOC), pages 77–82, 1987.

[Sto76] Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3(1):1–22, 1976.

[TC21] Iddo Tzameret and Stephen A. Cook. Uniform, integral, and feasible proofs for the determinant
identities. J. ACM, 68(2):12:1–12:80, 2021.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer Sci-
ence, 7(1–3):1–336, 2012.

[Wil14] Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.

[Wra76] Celia Wrathall. Complete sets and the polynomial-time hierarchy. Theor. Comput. Sci., 3(1):23–
33, 1976.

[Zam96] Domenico Zambella. Notes on polynomially bounded arithmetic. J. Symb. Log., 61(3):942–966,
1996.

A Provability in TiPV

In this section, we further elaborate on the strength of the theories TiPV. Similarly to the relation between
the complexity classes P, NP, and the different levels of PH, it is currently open if the theories TiPV form
a proper hierarchy, i.e., if TjPV can prove more sentences than TiPV when j > i. However, as explained in
this section, this is the case under standard computational hardness assumptions. Conversely, separating the
theories would lead to new complexity class separations.

In Section A.1, we show that TiPV proves every true ∀Σb
i−1-sentence extended with sharply bounded

quantifiers.
In Sections A.2 and A.3, we relate the relative strength of these theories to the hierarchy of total functions

and to the polynomial time hierarchy, respectively. The results presented in these sections are closely related
to results from [KPT91], which explore the strength of Buss’s theories Si2 and Ti2 and related questions.

In Section A.4, we exhibit a complexity lower bound statement of comparatively higher quantifier com-
plexity that is provable in T2

PV (under a minimal assumption). In more detail, we show that if NP * (i.o.)P
is true then it is provable in T2

PV.

A.1 Sentences with sharply bounded quantifiers

Recall that we have defined TiPV as the theory consisting of all true (strict) ∀Σb
i−1-sentences. In some

contexts, it can also be desirable to allow sharply bounded quantifiers of the form ∀x ≤ |t| and ∃x ≤
|t| to appear arbitrarily in a Σb

i -formula (without increasing its quantifier complexity). It is therefore also
reasonable to consider a “stronger” theory T̃iPV that consists of all true ∀Σb

i−1-sentences where sharply
bounded quantifiers can freely appear in the axioms (see a standard reference such as [Kra95] for the formal

58

definition of this more general class of sentences). Note that the introduction of sharply bounded quantifiers
could in principle be an issue in our unprovability results, since the replacement principle [Bus86] that is
used to manipulate sharply bounded quantifiers is unlikely to be provable in weak bounded theories [CT06].

In this subsection, we show that T̃iPV = TiPV. Consequently, we can use without loss of generality strict
∀Σb

i−1-sentences when defining each theory TiPV.

Lemma A.1. For every formula ϕ(~x) that contains only sharply bounded quantifiers, there is a quantifier-
free formula ϕ̂(~x) such that T1

PV ` ∀~x (ϕ(~x)↔ ϕ̂(~x)).

Proof Sketch. We use induction on the number of (sharply bounded) quantifiers in ϕ(~x). By replacing
sharply bounded quantifiers with polynomial time functions that enumerate over their domains, we can
reduce the number of sharply bounded quantifiers while maintaining the equivalence over T1

PV. We omit the
details.

Lemma A.2. For every i ≥ 1, if ∃y ≤ t φ is a Σb
i -formula without sharply bounded quantifiers, then there

exists a Πb
i−1-formula φ′ without sharply bounded quantifiers and a LPV-term s such that T1

PV ` ∃y ≤
t φ↔ ∃z ≤ s φ′.

Similarly, if ∀y ≤ t φ is a Πb
i -formula without sharply bounded quantifiers, then there exists a Σb

i−1-
formula φ′ without sharply bounded quantifiers and a LPV-term s such that T1

PV ` ∀y ≤ t φ↔ ∀z ≤ s φ′

Proof Sketch. We can make the upper bound s sufficiently large, merge all outermost bounded existential
quantifiers of φ into a single existential quantifier ∃z ≤ s (or ∀z ≤ s in the other case), and use PV-definable
pairing functions to simulate the original block of existential quantifiers. See, e.g., the proof of Lemma D.1
for more details.

Lemma A.3. Let i ≥ 2. For every true ∀Σb
i−1-sentence ϕ with sharply bounded quantifiers, there is a true

∀Σb
i−1-sentence ϕ̂ such that TiPV ` ϕ̂(x)→ ϕ(x), where no sharply bounded quantifier in ϕ̂ appears outside

of a (non-sharply) bounded quantifier.

Proof. By applying prenexification rules, we can obtain a ∀Σb
i−1-sentence ϕ′ that is logically equivalent to

ϕ. We will also assume without loss of generality that ϕ′ is in negation normal form. A pair of quantifiers
(Q1, Q2) in ϕ′ is said to be a bad pair if Q1 is a sharply bounded quantifier, Q2 is a (non-sharply) bounded
quantifier, and Q1 quantifies over a subformula containing Q2. We prove the lemma by induction on the
number of bad pairs within ϕ′. If there is no bad pair, we simply let ϕ̂ = ϕ′ and the lemma follows.

Now we assume that ϕ′ contains ` ≥ 1 bad pairs. Fix a bad pair (Q1, Q2) such that Q2 is innermost and
Q2 is outermost, so that there are no other quantifiers in between and there is no bad pair within the formula
quantified by Q2. By Lemma A.1, we can further assume without loss of generality that there is no sharply
bounded quantifier within the formula quantified by Q2. Consider Q1x ≤ |t| Q2y ≤ s φ as a subformula
of ϕ′. If Q1 = Q2 = ∀ or Q1 = Q2 = ∃, we can simply exchange them to obtain a logically equivalent
sentence with `− 1 bad pairs, which completes the proof via the induction hypothesis.

Case 1. Assume that Q1 = ∀ and Q2 = ∃. By the replacement axiom (see, e.g., [Bus86]), there are LPV
terms α, β and a quantifier-free formula γ such that(

∀x ≤ |t| ∃y ≤ s φ
)
↔
(
∃w ≤ α(s, t) ∀x ≤ |t| (φ(y/β(x,w)) ∧ γ(x,w))

)
(12)

holds in the standard model. (Note that φ may have free variables ~v other than x, y.) Since ϕ′ is a
∀Σb

i−1-sentence containing ∀x ≤ |t| ∃y ≤ s φ as a subformula, we can see that ∃y ≤ s φ must be

59

a Σb
i−1-formula. By Lemma A.2, we can assume without loss of generality that φ is a Πb

i−2-formula.
Then

Ψ , ∀~v
((
∃w ≤ α(s, t) ∀x ≤ |t| (φ(y/β(x,w)) ∧ γ(x,w))

)
→
(
∀x ≤ |t| ∃y ≤ s φ

))
⇔ ∀~v

((
∀w ≤ α(s, t) ∃x ≤ |t| (¬φ(y/β(x,w)) ∨ ¬γ(x,w))

)
∨
(
∀x ≤ |t| ∃y ≤ s φ

))
is a true ∀Σb

i−1-sentence (where⇔ is in the meta-language and denotes logical equivalence). More-
over, since φ contains no sharply bounded quantifiers, we know that Ψ is a ∀Σb

i−1-sentence even if we
treat sharply bounded quantifiers simply as bounded quantifiers. Therefore TiPV ` Ψ.

Let ϕ′′ be the ∀Σb
i−1-sentence (with sharply bounded quantifiers) obtained from ϕ′ by replacing the

LHS of Equation (12) with the RHS. Since TiPV ` Ψ, we know that TiPV ` ϕ′′ → ϕ′ as ϕ′ is in
negation normal form. Moreover, ϕ′′ has ` − 1 bad pairs. This completes the proof by the induction
hypothesis.

Case 2. Assume that Q1 = ∃ and Q2 = ∀. Again, by the replacement axiom, we know that(
∃x ≤ |t| ∀y ≤ s φ

)
↔
(
∀w ≤ α(s, t) ∃x ≤ |t| (φ(y/β(x,w)) ∨ γ(x,w))

)
(13)

is true in the standard model, where α, β are LPV terms γ is a quantifier-formula. Since ϕ′ is a ∀Σb
i−1-

sentence containing ∃x ≤ |t| ∀y ≤ s φ as a subformula, we get that ∀y ≤ s φ is a Πb
i−2-formula and

i > 2. By Lemma A.2, we can assume without loss of generality that φ is a Σb
i−3-formula. Then

Ψ , ∀~v
((
∀w ≤ α(s, t) ∃x ≤ |t| (φ(y/β(x,w)) ∨ γ(x,w))

)
→
(
∃x ≤ |t| ∀y ≤ s φ

))
⇔ ∀~v

((
∃w ≤ α(s, t) ∀x ≤ |t| (¬φ(y/β(x,w)) ∧ ¬γ(x,w))

)
∨
(
∃x ≤ |t| ∀y ≤ s φ

))
is a true ∀Σb

i−1-sentence even if we treat sharply bounded quantifiers as bounded quantifiers. Therefore
TiPV ` Ψ. Then we can resolve this case as in Case 1.

Theorem A.4. For every i ≥ 1, TiPV proves every true ∀Σb
i−1-sentence even if sharply bounded quantifiers

are allowed to appear arbitrarily in the sentence. In other words, T̃iPV = TiPV.

Proof. If i = 1, the result immediately follows from Lemma A.1. For i ≥ 2, we can first move sharply
bounded quantifiers via Lemma A.3 so they only appear as innermost quantifiers. We can then remove the
sharply bounded quantifiers using Lemma A.1.

A.2 Strength of TiPV and the hierarchy of total functions

In this section, we show that separating the theories TiPV would lead to new complexity class separations.
For instance, we prove that T2

PV = T1
PV if and only if the search problem of every TFNP relation can be

solved in polynomial time. A related result holds for every i ≥ 1 (see Theorem A.8 below for the precise
statement).

The relationship between these theories and the corresponding complexity collapses provides evidence
that the theories TiPV form a strict hierarchy. However, it also shows that unconditionally establishing that
this is the case will be quite difficult.

For convenience, in the statements below we identify TFΣp
0 with FP. We refer to Section 2.3 for defi-

nitions and to [KKMP21] for more information about total functions in the polynomial hierarchy. Abusing

60

notation, in the statements below we view TFΣp
i as a class of search problems, i.e., given x the goal is to

find y such that R(x, y) holds, where R ∈ TFΣp
i .

We will need the following lemmas, which can be proved using standard techniques from complexity
and logic.

Lemma A.5. For every i ≥ 1, PTFΣpi−1 ⊆ Σp
i−1 ⊆ PTFΣpi .

Lemma A.6. For every i ≥ 1, Σp
i ⊆ Σp

i−1 if and only if Σp
i ⊆ PTFΣpi−1 .

Lemma A.7. Let i ≥ 1, t(x) be an LPV term, and φ(x, y) be a Πb
i−1(LPV)-formula. If TiPV ` ∀x ∃y ≤

t(x) φ(x, y), then there exists a FPΣpi−1 algorithm A(x) such that for every x ∈ N, φN(x,A(x)) holds.

The next theorem relates the relative strength of theories TiPV to the computational complexity of the
search problems associated with the relations in TFΣp

j .

Theorem A.8. For every i ≥ 1, the following propositions hold:

(i) If TFΣp
i ⊆ FPTFΣpi−1 , then TiPV ≡ Ti+1

PV .

(ii) If TiPV ≡ Ti+1
PV , then TFΣp

i ⊆ FPΣpi−1 .

In particular, TFNP = FP if and only if T1
PV ≡ T2

PV.

Proof. (1) Assume that TFΣp
i ⊆ FPTFΣpi−1 . We need to show that for every ϕ ∈ Ti+1

PV , TiPV ` ϕ. Since it
is enough to prove this for the axioms of Ti+1

PV , we can assume without loss of generality that ϕ = ∀x ∃y ≤
t(x) φ(x, y) for some Πb

i−1-formula φ. LetR ⊆ {0, 1}∗×{0, 1}∗ be the search problem such that (x, y) ∈ R
if and only if y ≤ t(x) and φN(x, y). Using the assumption in Item (i), we get that this search problem can
be solved in FPTFΣpi−1 . In particular, there is a Σb

i−1-formula β(x, y) that is total over N and only accepts a
pair (x, y) if (x, y) ∈ R. Thus TiPV ` ∀x ∃y ≤ t(x) β(x, y) and TiPV ` ∀x ∀y ≤ t(x) (β(x, y)→ φ(x, y))
by counting the quantifier complexity of these two sentences. It then follows that TiPV ` ϕ.

(2) Assume that Ti+1
PV ≡ TiPV. Let R ∈ TFΣp

i be a total relation such that for every (x, y) ∈ R,
|y| ≤ |x|c. Let β(x, y) be a Πb

i−1-formula that captures over the standard model that (x, y) ∈ R. Then
Ti+1
PV ` ∀x ∃y ∈ {0, 1}

|x|c β(x, y), which further means by the assumption in Item (ii) that TiPV ` ∀x ∃y ∈
{0, 1}|x|c β(x, y). By Lemma A.7, we get that the search problem corresponding to R can be solved in
FPΣpi−1 .

A.3 Strength of TiPV and the polynomial hierarchy

In this section, we relate the collapse of theories TiPV to a collapse of the polynomial hierarchy. More
precisely, we show that if Ti+2

PV = TiPV then Σp
i+1 = Πp

i+1. Consequently, under the widely believed
assumption that PH does not collapse, the theories TiPV can prove more sentences as i increases.

We will need a technical lemma from [KPT91] employed there to relate a certain collapse in Buss’s
hierarchy of theories of bounded arithmetic to a corresponding collapse of the polynomial hierarchy. First,
we review the following statement.

Principle Ω(i). There is a constant k ∈ N such that the following holds. For every relation P (x, y) ∈ Πp
i ,

there are FPΣpi functions f1(a), f2(a, b1), . . . , fk(a, b1, . . . , bk−1) such that:

• Either ∀z P ∗(a, f1(a), z) is true, or for every b1 s.t. ¬P ∗(a, f1(a), b1), it holds that:

• Either ∀z P ∗(a, f2(a, b1), z) is true, or for every b2 s.t. ¬P ∗(a, f2(a, b1), b2), it holds that:

61

• Either ∀z P ∗(a, f3(a, b1, b2), z) is true, or . . .

• . . .

• ∀z P ∗(a, fk(a, b1, b2, . . . , bk), z) is true;

where P ∗(x, y, z) , |y| ≤ |x| ∧ (y = 0 ∨ P (x, y)) ∧ (|y| < |z| ≤ |x| → ¬P (x, z)).

Lemma A.9 ([KPT91], Lemma 2.2). For every i ≥ 0, if Principle Ω(i) is true, then Σp
i+1 ⊆ P

Σpi
/poly and thus

also Σp
i+2 = Πp

i+2.

Theorem A.10. For every i ≥ 1, if TiPV ≡ Ti+2
PV , then Σp

i ⊆ P
Σpi−1

/poly and thus also Σp
i+1 = Πp

i+1.

Proof. By Lemma A.9, it suffices to show that TiPV ≡ Ti+2
PV implies Principle Ω(i − 1), for each i ≥ 1.

Assume that TiPV ≡ Ti+2
PV . For every relation P (x, y) ∈ Πp

i−1, consider the Πb
i−1(LPV)-formula α(x, y) that

defines it and let α∗(x, y, z) be defined as

α∗(x, y, z) , |y| ≤ |x| ∧ (y = 0 ∨ α(x, y)) ∧ (|y| < |z| ≤ |x| → ¬α(x, z)).

Let ϕ , ∀x ∃|y| ≤ |x| ∀|z| ≤ |x| α∗(x, y, z). Since N � ϕ and ϕ is a ∀Σb
i+1 sentence, we obtain that

Ti+2
PV ` ϕ and thus TiPV ` ϕ by the assumption that TiPV ≡ Ti+2

PV . By Theorem 2.14, it follows that UiPV ` ϕ.
Moreover, by Lemma 2.13, we know that

UiPV ` ∀x ∃y ∀z |y| ≤ |x| ∧ (y = 0 ∨ fα(x, y)) ∧ (|y| < |z| ≤ |x| → ¬fα(x, z)),

where fNα (x, y) is exactly P (x, y). Principle Ω(i− 1) then follows directly from the KPT Witnessing Theo-
rem (Theorem 2.9) and Theorem 2.17.

A.4 On the provability of NP * (i.o.)P

Recall that the axioms of T2
PV consist of all true ∀Σb

1-sentences in the language LPV. In this section,
we give a simple example of a complexity lower bound encoded by a collection of ∀Σb

2(LPV)-sentences
provable in T2

PV, assuming the lower bound holds. (Note that the formalization below uses n ∈ Log, while
our unprovability results hold even for n ∈ LogLog.)

Theorem A.11. Assume that NP * (i.o.)P. For every polynomial-time Turing machineA, there is a constant
n0 ∈ N such that T2

PV proves

Fail(A) , ∀n ∈ Log ∃ϕ(x1, . . . , xm) ∈ {0, 1}n
(
n > n0 → Error(A,ϕ)

)
,

where ϕ is an 3-CNF formula, and

Error(A,ϕ) , (∃x ∈ {0, 1}m ϕ(x) = 1 ∧A(ϕ) = 0) ∨ (∀x ∈ {0, 1}m ϕ(x) = 0 ∧A(ϕ) = 1).

Proof. Assume that NP * (i.o.)P. Then 3SAT * (i.o.)P, which means that for every polynomial-time
Turing machineA, there exists a constant n0 such thatA does not solve 3SAT on instances of length n > n0.
Let A be an arbitrary polynomial-time Turing machine. We would like to show that T2

PV ` Fail(A).

62

Input : A string ϕ ∈ {0, 1}n encoding a 3-CNF formula.
1 Let ϕ1(x1, x2, . . . , xm) be ϕ;
2 Let z ∈ {0, 1}m be a string to be determined;
3 If A(ϕ1) = 0, return (0, 0);
4 for i = 1, 2, . . . ,m do
5 if A(ϕi(xi/0)) = 1 then
6 Let zi = 0 and ϕi+1 = ϕi(xi/0);
7 else if A(ϕi(xi/1)) = 1 then
8 Let zi = 1 and ϕi+1 = ϕi(xi/1);
9 else

10 return (1, ϕi);
11 end
12 end
13 return (2, z);

Algorithm 11: Search-SAT Algorithm S

Search-to-Decision Reduction. We firstly use a standard search-to-decision reduction to construct an ef-
ficient algorithm S that searches for a satisfying assignment, assuming that A solves SAT. An explicit
description of S appears below (see Algorithm 11: Search-SAT Algorithm S).

Without loss of generality, we assume that for every ϕ = ϕ1 ∈ {0, 1}n and i ∈ [m], the corresponding
formulas ϕi(xi/0) and ϕi(xi/1) can also be encoded as n-bit strings. Let A′ be the following polynomial-
time algorithm: given an instance ϕ ∈ {0, 1}n encoding a 3-CNF formula; run S(ϕ) = (b, z); accept if and
only if b = 2 and ϕ(z) = 1.

Claim A.12. There is a constant n1 ∈ N such that T2
PV ` ∀n ∈ Log ∃ϕ(x1, . . . , xm) ∈ {0, 1}n ∃x ∈

{0, 1}m (n > n1 → ϕ(x) = 1 ∧A′(ϕ) = 0).

Proof. By the definition of A′ we can see that it has only one-sided error, i.e., for every ϕ such that A′(ϕ) =
1, ϕ is satisfiable. Since 3SAT * (i.o.)P, the sentence is a ∀Σb

1-sentence that is true in the standard model
provided that n1 is large enough, which further means that it is provable in T2

PV.

Claim A.13. We have that T2
PV ` ∀n ∈ Log ∀ϕ(x1, . . . , xm) ∈ {0, 1}n (A(ϕ) = 1 ∧ A′(ϕ) = 0→ ∃ϕ′ ∈

{0, 1}n Error(A,ϕ′)).

Proof. Indeed, it is possible to establish even in PV that if ¬Error(A,ϕ′) holds for every ϕ′ ∈ {0, 1}n then
the search-to-decision reduction works as desired and consequently ¬(A(ϕ) = 1∧A′(ϕ) = 0). We omit the
details.

Provability of the Hardness of 3SAT. Now we prove in T2
PV that Fail(A) holds for n0 , n1, where

n1 ∈ N is the constant in Claim A.12. Arguing in the theory, let n ∈ Log be larger than n1. Towards a
contradiction, assume that for every ϕ(x1, . . . , xm) ∈ {0, 1}n, ¬Error(A,ϕ). Let ϕ(x1, . . . , xm) ∈ {0, 1}n
be a 3-CNF formula from Claim A.12 such that ∃x ∈ {0, 1}m (n > n1 → ϕ(x) = 1 ∧ A′(ϕ) = 0).
Since ϕ is satisfiable and by assumption ¬Error(A,ϕ), we get that A(ϕ) = 1. Consequently, we have both
A(ϕ) = 1 ∧ A′(ϕ) = 0. In turn, Claim A.13 yields the existence of ϕ′ ∈ {0, 1}n such that Error(A,ϕ′).
This is in contradiction to the initial assumption on the correctness of A′ on all instances of length n.

63

B Proofs of the Witnessing Theorems

In this section, we present some omitted proofs for the witnessing theorems discussed in Section 3.

B.1 Proof of Theorem 3.1 via Herbrand’s Theorem

We now demonstrate a proof of the witnessing theorem using Herbrand’s Theorem.26 The latter appears
in different forms in the literature; in this section, we refer to the exposition in [Bus98].27

We start by clarifying some basic definitions. We work with connectives and quantifiers {∀,∃,∧,∨,¬}
and define other connectives from them. We always assume that first-order sentences are written in negation
normal form, i.e., negations are placed only over atoms. A formula is said to be in prenex normal form if it
can be written asQ1x1 Q2x2 . . . Qkxk P , whereQ1, . . . , Qk ∈ {∀, ∃} and P is quantifier-free. We identify
formulas that differ only by a renaming of bounded variables.

Definition B.1. Let ϕ(x) be a formula. A prenexification of ϕ(x) is a formula in prenex normal form
obtained by successive applications of the following operations Qx φ ? ψ 7→ Qx (φ ? ψ) and φ ? Qx ψ 7→
Qx (φ ? ψ), where Q ∈ {∀,∃} and ? ∈ {∧,∨}. As usual, variables are renamed whenever necessary.

Definition B.2. An ∨-expansion of a formula ϕ is any formula obtained from ϕ through applications of the
following operation:

If ψ is a subformula of an ∨-expansion ϕ′ of ϕ, replacing ψ in ϕ′ with ψ ∨ ψ produces another
∨-expansion of ϕ.

A strong ∨-expansion of a formula ϕ restricts ψ to be a subformula where the outermost connective is an
existential quantifier. Similarly to the previous definition, multiple applications of the rule are allowed.

Definition B.3. Let T be a theory and ϕ be a formula in prenex normal form:

ϕ , ∀x1 . . . ∀xn1 ∃y1 ∀xn1+1 . . . ∀xn2 ∃y2 . . . ∀xnr−1+1 . . . ∀xnr ∃yr ∀xnr+1 . . . ∀xnr+1 ψ(~x, ~y).

A witnessing substitution for ϕ over T is a sequence of terms t1, . . . , tr such that T ` ∀~x ϕ(~x, ~y/~t), where
ti contains variables only from x1, . . . , xni for every i ∈ [r].

Theorem B.4 (Herbrand’s Theorem (see, e.g., [Bus98, McK10])). Let T be a universal theory and ϕ be a
first-order formula. Then T ` ϕ if and only if there is a prenexification of a strong ∨-expansion of ϕ that
admits a witnessing substitution over T .

Reminder of Theorem 3.1. Let T be a universal bounded theory with vocabulary L that is closed under
if-then-else. Let ϕ be a bounded L-formula of the form

ϕ(x) , ∃y1 ≤ t1(x) ∀x1 ≤ s1(x, y1) ∃y2 ≤ t2(x, y1, x1) . . . ∀xk−1 ≤ sk−1(x, y1, x1, . . . , yk−1)

∃yk ≤ tk(x, y1, x1, . . . , yk−1, xk−1) ∀xk ≤ sk(x, y1, x1, . . . , yk) φ(x, x1, . . . , xk, y1, . . . , yk),

where φ(x, ~x, ~y) is a quantifier-free L-formula. Then T ` ∀x ϕ(x) if and only if there is a universal winning
L-strategy of length O(1) for the truthifier in the corresponding tree exploration game of ϕ(x).

26We thank an anonymous reviewer for suggesting this perspective, which simplified our previous presentation relying on a direct
analysis based on a sequent calculus. J. Krajı́ček has also proposed a simplification of the original proof via Gentzen’s Midsequent
Theorem that we do not explore here.

27See also [McK10] for a correction in the proof of Herbrand’s Theorem presented in [Bus98].

64

The “if” direction of the theorem is simpler. Assume that T 0 ∀x ϕ(x). Then by the completeness
theorem there is a model M = (D, I) and n0 ∈ D such that ϕM(n0) is false, which further means that
there is a winning strategy of the falsifier in the evaluation game of ϕ(x) on the broad (M, n0). Consider the
strategy of the falsifier in the tree exploration game that simply simulates this winning strategy, i.e., after the
truthifier adds a node and specifies an element on the edge, the falsifier treats the path from the root to this
node as a partial transcript of the evaluation game and chooses an element according to the strategy of the
evaluation game. It is clear that the truthifier cannot reach a winning node, thus it does not have a universal
winning L-strategy of the tree exploration game.

In the rest of this sub-section, we prove the “only if” direction of the theorem, that is to extract a winning
strategy from T ` ∀x ϕ(x).

Step 1: Unbounded Tree Exploration Game. Due to technical reasons, we need to define unbounded
variants of the tree exploration games.

Let ϕ(x) be a Σb
k-formula in prenex normal form (with bounded quantifiers). We define the following

translation [·]imp that transforms a bounded formula in prenex normal form into a logically equivalent formula
with only unbounded quantifiers:

• If ϕ(~x) is quantifier free, [ϕ(~x)]imp , ϕ(~x).

• If ϕ(~x) = ∀y ≤ t(~x) φ(~x, y) and [φ]imp = Q1z1 Q2z2 . . . Qkzk α(~x, y, ~z), where Qi ∈ {∀,∃} for
i ∈ [k] and α is quantifier-free, then [ϕ(~x)]imp , ∀y Q1z1 Q2z2 . . . Qkzk(¬(y ≤ t(~x)) ∨ α(~x, y, ~z)).

• If ϕ(~x) = ∃y ≤ t(~x) φ(~x, y) and [φ]imp = Q1z1 Q2z2 . . . Qkzk α(~x, y, ~z), where Qi ∈ {∀,∃} for
i ∈ [k] and α is quantifier-free, then [ϕ(~x)]imp , ∃y Q1z1 Q2z2 . . . Qkzk(y ≤ t(~x) ∧ α(~x, y, ~z)).

We say a formula ϕ is implicitly bounded if there is a bounded formula ψ in prenex normal form such that
ϕ = [ψ]imp.

Let ϕ(x) = ∃y1 ∀x1 . . . ∃yk ∀xk φ(x, ~x, ~y) be an implicitly bounded L-formula as discussed above and
(M = (D, I), n0) be a board. The unbounded tree exploration game of ϕ is defined as follows. In each
round, the truthifier chooses a node u on the tree (which only consists of the root at the beginning) and
specifies a number m ∈ D; the falsifier then specifies a number n ∈ D; after this round, a child of u is
added to the tree by an edge labeled (m,n). The truthifier wins if and only if there is a node on the tree such
that the pairs on the path from the root to the node form a satisfying assignment of φ(x/n0, ~x, ~y) withinM,
where the truthifier’s moves are for ~y and the falsifier’s moves are for ~x.

An L-strategy of the truthifier of length ` ∈ N is a sequence

τ = 〈p1, r1, p2, r2, . . . , p`, r`〉 ,

where pi is an L-term and ri ∈ N such that 1 ≤ ri ≤ i. Let (M, n0) be a board. The game-theoretic strategy
for the unbounded tree exploration game induced by τ is the following strategy:

• In the i-th move, the truthifier introduces a node numbered i+ 1 as a child of the node ri, and chooses
the element vi , pMi (n0, T,Γ) ∈ M, where Γ describes the moves of previous rounds (including
v1, . . . , vi−1 and the falsifier’s moves).

A length-` L-strategy is said to be a universal winning strategy if the truthifier playing the induced game-
theoretic strategy wins within ` moves against any strategy of the falsifier on any board (M, n0).

Lemma B.5. Let T be a bounded theory over the language L that is closed under if-then-else. If there
is an O(1)-length L-strategy that is a universal winning strategy of the truthifier for the unbounded tree

65

exploration game of ϕ = [ψ]imp, then there is an O(1)-length L-strategy that is a universal winning strategy
of the truthifier for the tree exploration game of ψ.

Proof. Assume that τ = 〈p1, r1, p2, r2, . . . , p`, r`〉 is a universal winning L-strategy of length ` ∈ N for the
unbounded tree exploration game. Let p′i(x,Γ) be the term defined as follows:

(i) Parse Γ = (m1, n1,m2, n2, . . . ,mi−1, ni−1) as the moves in previous rounds.

(ii) Define Γ̂0 to be the empty list and Γ̂j+1 to be

Γ̂j+1 =

{
Γ̂j ; (mj+1, nj+1) if mj+1 = pj+1(n0, Γ̂j)

Γ̂j ; (pj+1(n0, Γ̂j), 0) otherwise

(iii) Output 0 if pi(n0, Γ̂i−1) is not a valid move (i.e., it violates the inequality for the bounded variable);
and output pi(n0, Γ̂i−1) otherwise.

Note that such p′i always exists as T is closed under if-then-else. We now argue that the L-quasi-strategy
τ ′ , 〈p′1, r1, p

′
2, r2, . . . , p

′
`, r`〉 is indeed a universal winning L-strategy for the tree exploration game of ψ.

Intuitively, τ ′ is the following L-quasi-strategy: it simulates τ if it gives a valid move; otherwise, it simply
outputs 0 and “forgets” the response of the falsifier, pretending that in this round it simulates τ and the
falsifier’s response were 0.

By the definition of p′i it is easy to see that τ ′ is an L-strategy for the tree exploration game of ψ, since
it will never output an invalid move. Towards a contradiction we assume that it is not a universal winning
strategy. In such case, there exist a board (M, n0) and a strategy τ ′f for the falsifier that prevents the truthifier
from winning within ` rounds on the board against the truthifier playing the induced strategy of τ ′. We now
construct a strategy τf of the falsifier for the unbounded tree exploration game of ϕ on the board (M, n0)
that prevents τ from winning within ` rounds and thus leads to a contradiction.

• Assume that the moves of τ ′f against τ ′ are n′1, n
′
2, . . . , n

′
`. In the i-th move, if the truthifier’s move is

an invalid move in the (bounded) tree exploration game (i.e., it violates the inequality for the bounded
variable), the falsifier chooses ni , 0; otherwise the falsifier chooses ni , n′i.

It is easy to check that against this strategy of the falsifier, τ cannot win within ` rounds. This is because the
transcript of τf vs τ is exactly the lists Γ̂ in the definition of τ ′; and since τ ′ cannot win against τ ′f within `
rounds, τ also cannot win against τf within ` rounds.

This lemma shows that to obtain a winning strategy of the tree exploration game, we only need to
construct a winning strategy of the unbounded tree exploration game. In practice, this means that we do not
need to treat bounded quantifiers in a special way.

Step 2: Strategy from Herbrand’s Theorem. Let ϕ(x) be any implicitly bounded formula of form
ϕ(x) = ∃y1 ∀x1 . . . ∃yk ∀xk φ(x, ~x, ~y) and T be a universal theory, where φ is quantifier-free. Assume
that T ` ∀x ϕ(x). Then by Theorem B.4 there is a prenexification of a strong ∨-expansion of ∀x ϕ(x) that
admits a witnessing substitution over T . Our goal is to extract a winning strategy for the unbounded tree
exploration game of ϕ(x) from the strong ∨-expansion, prenexification, and witnessing substitution.

Let ϕexp be the strong ∨-expansion of ∀x ϕ(x) and ϕpre be a prenexification of ϕexp. We can see that
the existential quantifiers within ϕexp form a tree structure with respect to the sub-formula relation. More
formally: we introduce a node εi for each existential quantifier ∃i in ϕexp, and define the node εi to be a child
of εj if and only if ∃i is inside ∃j within ϕexp and there is no other existential quantifiers in between. We
introduce a root node ε0 corresponding to the entire sentence that has all nodes without parent as children.

66

Let T be the tree defined above. It is easy to see that the tree has depth k and every leaf in T is in the
k-th level (the root is in the 0-th level).

We can observe that for every existential quantifier ∃i in ϕexp, there is a universal quantifier ∀i that
immediately follows it (i.e. ∀i is the outermost quantifier of the formula quantified by ∃i), and this pair
(∃i,∀i) is a copy of an adjacent pair of quantifiers in ϕ(x). Conversely, every universal quantifier (except for
the outermost one) directly follows an existential quantifier. Therefore the quantifiers of ϕexp except for the
outermost one are partitioned into disjoint pairs (∃i,∀i) as defined above.

Recall that ϕpre is a prenexification of ϕexp, that is, we turn ϕexp into its prenex normal form by prenex-
ification rules. Moreover, the order of existential quantifiers of ϕpre is essentially a traversal of T . That is,
for every εi and εj in T such that εj is a child of εi, where εi corresponds to ∃i and εj corresponds to ∃j ,
then ∃i is to the left of ∃j in ϕpre. In addition, for every existential quantifier ∃i, its corresponding universal
quantifier ∀i appears to the right of ∃i. Let ϕpn be the sentence obtained from ϕpre by moving ∀i to the
immediate right of ϕpre, for every pair (∃i, ∀i) of corresponding quantifiers, as defined above. We note that
if ϕpre has a witnessing substitution, then ϕpn also has a witnessing substitution. (Intuitively, this is because
∃x ∀y φ(x, y) implies ∀y ∃x φ(x, y).)

Now we focus on the structure of ϕpn. The quantifiers of ϕpn (except for the outermost universal quan-
tifier) are obtained from a traversal of T , where every universal quantifier immediate follows its existential
quantifier. The quantifier-free formula within all the quantifiers is a disjunction of copies of φ(x, ~x, ~y),
where:

• x is a bounded variable quantified by the outermost universal quantifier;

• ~x = (x1, . . . , xk) and ~y = (y1, . . . , yk) are bounded variables quantified by universal and existential
quantifiers within ϕpn, respectively, where yi and xi are quantified by a pair of corresponding pairs of
existential and universal quantifiers.

• Assume that yi, xi are quantified by ∃i,∀i, respectively, for every i ∈ [k]. Let εi be the node in T
corresponding to ∃i. Then ε1, ε2, . . . , εk forms a path in T from the root to a leaf.

• Conversely, for every such path ε1, ε2, . . . , εk corresponding to ∃1, ∃2, . . . ,∃k, there is a copy of
φ(x, ~x, ~y) appearing in the disjunction in ϕpn such that ~y are quantified by ∃1, . . . ,∃k and ~x are quan-
tified by the universal quantifiers corresponding to ∃1, . . . ,∃k.

Therefore, the paths from the root to the leaves in T corresponds to the copies of φ(x, ~x, ~y) in the disjunction
in ϕpn.

Now we spell out the strategy for the (unbounded) tree exploration game of ϕ(x) from the tree T , ϕpn,
and the witnessing substitution of ϕpn. Let

ϕpn = ∀0x ∃1y1 ∀1x1 ∃2y2 ∀2x2 . . . ∃dyd ∀dxd φ̂, φ̂ ,
∨̀
i=1

φi ,

where each φi is a copy of φ(x, ~x, ~y) corresponding to a leaf in T . (We add subscripts to the quantifiers
for simplicity of the presentation.) Let t1, t2, . . . , td is a witnessing substitution of ϕpn, where tj contains
x, x1, . . . , xj−1 as free variables for every j ∈ [n]. The strategy is as follows.

• Fix a modelM = (D, I) and any n0 ∈ D. In the first round, the truthifier chooses the root, adds a
child, and puts tM1 (n0) on the edge. Suppose that the falsifier puts n1 ∈ D on the edge (so that the
edge is labeled with (t1(n0), n1)). In the second round, the truthifier works as follows.

67

– If ∃2 is a child of ∃1 in T , then the truthifier chooses the node corresponding to ∃1, adds a child,
and puts tM2 (n0, n1) on the edge.

– Otherwise, ∃2 must be a child of the root in T . Then the truthifier chooses the root, adds a child,
and puts tM2 (n0, n1) on the edge.

• Suppose that the falsifier’s responses in the first i− 1 rounds are n1, n2, . . . , ni−1. The parent of ∃i in
T is either ∃j for some j < i or the root. In the i-th round, the truthfier chooses the node introduced
in the j-th round if ∃j is the parent of ∃i in T , and chooses the root if the parent of ∃i is the root in T .
The truthifer then adds a child, and puts tMi (n0, n1, . . . , ni−1) on the edge.

It is clear that the strategy can be described by an L-term strategy, so it remains to show that it wins the
game within at most d rounds. Suppose that the falsifier’s responses in the first d rounds are n1, n2, . . . , nd ∈
D. We observe that:

(i) The game tree explored by the truthifier is identical to T . Moreover, the order of explored nodes
follows exactly the traversal of T specified by the order of existential quantifiers in ϕpre (and ϕpn).

(ii) In the i-th round, the truthifier puts tMi (n0, n1, . . . , ni−1) on the edge. Therefore in the explored game
tree, the edge connecting the i-th explored node and its parent is labeled by (tMi (n0, n1, . . . , ni−1), ni).

Let σ be the assignment of variables {x 7→ n0, xi 7→ ni, yi 7→ tMi (n0, n1, . . . , ni−1)}. Since t1, . . . , td
come from witnessing substitution, φ̂[σ] is true inM. In other words, for some i ∈ [`], φi[σ] is true inM.
Fix this i ∈ [`]. Recall that φi is a copy of φ(x, ~x, ~y) and corresponds to a path in T from the root to a leaf,
in the sense that the bounded variables in φi appears on the path. By Item (i) above, it also corresponds to a
path in the explored game tree from the root to a leaf.

Suppose that the path corresponds to ∃j1 , ∃j2 , . . . ,∃jk from the root to the leaf, where 1 ≤ j1 < j2 <
· · · < jk ≤ d. By Item (ii), the labels on the edges in the path are

(tMj1 (n0, . . . , nj1−1), nj1), (tMj2 (n0, . . . , nj2−1), nj2), . . . , (tMjk (n0, . . . , njk−1), njk). (14)

By the definition of σ, the path (14) is a truthifier’s winning transcript in the evaluation game. This shows
that the truthifier wins the tree exploration game. As the responses of the falsifier can be arbitrary, the
aforementioned strategy is a winning strategy of the tree exploration for the truthifier. This completes the
proof.

B.2 Oblivious falsifiers: Self-contained proof of Theorem 3.2 via Herbrandization

The no-counterexample interpretation (see, e.g., [Koh08, Section 2.3] and [Kra92]) is a standard tool in
proof theory to extract computational content from provable sentences of high quantifier complexity. In this
section, we use this perspective to provide a different proof of Theorem 3.2. We refer to Section 3.2 for the
necessary definitions and notation.

Let T be a universal theory over L, and let

ϕ(x) , ∃y1 ∀x1 ∃y2 . . . ∀xk−1 ∃yk ∀xk φ(x, ~x, ~y)

be an L-formula, where φ is quantifier-free. The Herbrand normal form of ϕ(x) is defined as

ϕH(x) , ∃y1 ∃y2 . . . ∃yk φ(x, x1/f1(x, y1), x2/f2(x, y1, y2), . . . , xk/fk(x, y1, y2, . . . , yk), ~y),

where f1, f2, . . . , fk are new function symbols not in L. By a simple model-theoretical argument, T `
∀x ϕ(x) if and only if T ` ∀x ϕH(x). Under the assumption that T ` ∀x ϕ(x), we can apply Theorem 2.8

68

to extract L(f1, f2, . . . , fk)-terms that witness the existential quantifiers. In particular, if T is TPV and L is
LPV, this witnessing result implies that for every x ∈ N and all interpretations of f1, f2, . . . , fk over N, we
can find suitable y1, y2, . . . , yk ∈ N in polynomial-time given oracle access to fN1 , f

N
2 , . . . , f

N
k .

Let M be a structure over the vocabulary L such that M � T (e.g., T = TPV and M = N), and
let n0 be an object in the domain of M. It is instructive to consider the following game on the board
(M, n0). There are two players in the game: a truthifier (or student) that claimsM � ϕ(n0), and a falsifier
(or teacher) that claims M � ¬ϕ(n0). In the i-th step, first the truthifier chooses an element ni for yi,
then the falsifier chooses an element mi for xi. The truthifier (resp. falsifier) wins if and only if M �
ϕ(n0,m1, . . . ,mk, n1, . . . , nk) holds (resp. does not hold). It is easy to see that M � ϕ(n0) if and only
if the truthifier has a winning strategy for the game on board (M, n0). The interpretation of the function
symbols f1, . . . , fk corresponds naturally to a strategy for the falsifier. The no-counterexample interpretation
essentially means that if T ` ∀x ϕ(x), for every board (M, n0) and every strategy f1, . . . , fk of the falsifier,
the truthifier has a winning strategy that can be expressed by terms in L(f1, f2, . . . , fk). Next, we transform
such a strategy into L-strategies with ancillary information for the truthifier in the evaluation game of ϕ(x).

Theorem (Reminder of Theorem 3.2). Let T be a universal theory over the language L that is closed under
if-then-else. Let ϕ(x) be the formula

ϕ(x) , ∃y1 ≤ t1(x) ∀x1 ≤ s1(x, y1) ∃y2 ≤ t2(x, y1, x1) . . . ∀xk−1 ≤ sk−1(x, y1, x1, . . . , yk−1)

∃yk ≤ tk(x, y1, x1, . . . , yk−1, xk−1) ∀xk ≤ sk(x, y1, x1, . . . , yk) φ(x, x1, . . . , xk, y1, . . . , yk),

where φ(x, ~x, ~y) is a quantifier-free L-formula. If T ` ∀x ϕ(x), then there is a constant ` ∈ N and L-
strategies τt1 , τ

t
2 , . . . , τ

t
` (with ancillary information) such that, for any board (M, n0) and evaluation game

of ϕ(x) on (M, n0), for every strategy τf of the falsifier:

• either τ̂t1 , τ
t
1 [∅] beats τf,

• or τ̂t2 , τ
t
2 [
〈
τ̂t1 : τf

〉
] beats τf,

• or τ̂t3 , τ
t
3 [
〈
τ̂t1 : τf

〉
,
〈
τ̂t2 : τf

〉
] beats τf,

• . . . ,

• or τ̂t` , τ
t
` [
〈
τ̂t1 : τf

〉
,
〈
τ̂t2 : τf

〉
, . . . ,

〈
τ̂t`−1 : τf

〉
] beats τf.

Proof. We introduce Herbrandization functions f1, f2, . . . , fk such that in L∗ , L ∪ {f1, . . . , fk},

T ` ∀x ∃~y ≤ ~t φ(x, ~x∗, ~y),

where x∗j = fj(x, y1, y2, . . . , yj) for all j ∈ [k]. By Herbrand’s Theorem (Theorem 2.8), there is a constant
r ∈ N and L∗-terms qij(x) (i ∈ [r], j ∈ [k]) such that

T ` ∀x

(
r∨
i=1

φi(x)

)
,

where φi(x) , φ(x, x1/f1(x, qi1(x)), . . . , xk/fk(x, q
i
1(x), . . . , qik(x)), y1/q

i
1(x), . . . , yk/q

i
k(x)).

We will translate (qi1, q
i
2, . . . , q

i
k) into `i L-strategies τti,1, τ

t
i,2, . . . , τ

t
i,`i

for some `i ∈ N, such that for
every board (M = (D, I), n0) and every interpretation F1, F2, . . . , Fk of f1, f2, . . . , fk overD derived from
τ̂f, if M(F1, F2, . . . , Fk) � φi(x/n0), then τti,1, τ

t
i,2, . . . , τ

t
i,`i

will satisfy the conclusion of the theorem
against the strategy τ̂f. If this is possible, then

τt1,1, τ
t
1,2, . . . , τ

t
1,`1 , τ

t
2,1, τ

t
2,2, . . . , τ

t
2,`2 , . . . , τ

t
r,1, τ

t
r,2, . . . , τ

t
r,`r

69

is a sequence of L-strategies as required. The argument is as follows. Fix any board (M = (D, I), n0)
and any strategy τf of the falsifier. Let F1, . . . , Fk be the interpretation of f1, . . . , fk corresponding to this
strategy, i.e., for every j ∈ [k],

Fj(n,m1,m2, . . . ,mk) ,

the move of τf

in the j-th step

if n = n0 and n1, F1(n0,m1), n2, F2(n0,m1,m2),

. . . , nj−1, Fj−1(n0,m1, . . . ,mj−1) is a prefix of a

valid transcript over (M, n0);

0 otherwise.

Then there is an index i ∈ [r] such thatM(F1, F2, . . . , Fj) � φi(x/n0) holds.
Before presenting the translation, we explain the main difficulty and how to address it. The issue is that

(qi1, q
i
2, . . . , q

i
k) are L∗-terms, while the desired strategy in the evaluation game consists of L-terms only.

For simplicity, suppose qij(x) invokes a single function from the list f1, . . . , fk of new function symbols,
and assume it is f1(x, y1). The idea is to replace the computation F1(w1, w2) over inputs w1, w2 by forcing
the falsifier to compute its value in a previously played game. To achieve this, we use that τf is fixed. In
other words, if w1 = n0, the falsifier must play and reveal F1(n0, w1) if the truthifier plays w1 in the first
round. (On the other hand, if w1 6= n0 we have F1(w1, w2) = 0 by definition.) Consequently, by playing
more games we guarantee that the necessary information appears in the transcript, which allows us to replace
calls to functions fj and express the winning strategy using L-terms. To streamline the presentation, in the
description below we omit the trivial case where the first input to a function fj is different than x, the input
to the L∗-terms qij (corresponding to the case w1 6= n0 we have just explained).

Let τf be the strategy specified by f1, f2, . . . , fk (i.e. fi denotes the falsifier’s move in the i-th round).
We prove by structural induction on the terms that we can decompose each qij (j ∈ [k]), which consists of
L-functions and f1, f2, . . . , fk, into finitely many L-strategies τ i,j1 , τ i,j2 , . . . , τ i,jdi,j and an L-term pi,j such
that M(F1, F2, . . . , Fj) � qij(n0) = pi,j(Γ(n0)) for every board (M, I) and strategy τf of the falsifier,
where F1, F2, . . . , Fj is the interpretation of τf corresponding to the strategy and Γ(n0) is a sequence of
transcripts produced as follows.

• For each u ∈ [di,j], let Γu(n0) ,
〈
τ i,ju [Γ1(n0),Γ2(n0), . . . ,Γu−1(n0)] : τf

〉
.

• Let Γ(n0) , (Γ1(n0),Γ2(n0), . . . ,Γdi,j (n0)).

Concretely, we translate each term as follows. Let the term be g(v1, v2, . . . , vd). By induction hypothesis,
for every r ∈ [d], we can decompose the term vr into a sequence of cr ∈ N L-strategies τ r1 , τ

r
2 , . . . , τ

r
cr and

an L-term pr, such that for every board (M,m),M � vr(n0) = pr(Γ
r(n0)) (where Γr(n0) is the transcript

of games as described above).

• If g(·) is a function symbol in the original language L, it is easy to see that the L-term

g(p1(Γ(n0)), p2(Γ(n0)), . . . , pd(Γ(n0)))

and the strategies
(τ1

1 , τ
1
2 , . . . , τ

1
c1 , τ

2
1 , τ

2
2 , . . . , τ

2
c2 , . . . , τ

d
1 , τ

d
2 , . . . , τ

d
cd

)

provide what we want, where Γ(n0) , (Γ1(n0),Γ2(n0), . . . ,Γcd(n0)).

• If g(·) = fj for some j ∈ [k], we define a new L-strategy τ fj as follows: suppose that the ancillary
information consists of the transcripts Γ of τ1

1 , τ
1
2 , . . . , τ

1
c1 , τ

2
1 , τ

2
2 , . . . , τ

2
c2 , . . . , τ

d
1 , τ

d
2 , . . . , τ

d
cd

vs τf;

70

in the i-th round for i ≤ j, the truthifier’s move is

p̂i(n0,m1, n1, . . . , ni−1,Γ) ,

{
pi(Γ) pi(Γ) ≤ ti(n0,m1, n1, . . . , ni−1)

0 otherwise

while in the remaining n − i rounds the truthifier always chooses 0. Note that p̂i is expressible since
T is closed under if-then-else. It is clear that the following L-term vg that takes Γ and the transcript〈
τ fj [Γ] : τf

〉
as input parameters outputs fj(v1(n0), . . . , vd(n0)):

– If
∨
i pi(Γ) > ti(n0,m1, n1, . . . , ni−1) holds, then vg outputs 0.

– Otherwise, vg outputs the j-th move of the falsifier in the transcript
〈
τ fj [Γ] : τf

〉
.

Therefore, we can obtain a term vg that simply reads the transcripts Γ,
〈
τ fj [Γ] : τf

〉
and outputs

fj(v1(n0), . . . , vd(n0)), together with the strategies

τ1
1 , τ

1
2 , . . . , τ

1
c1 , τ

2
1 , τ

2
2 , . . . , τ

2
c2 , . . . , τ

d
1 , τ

d
2 , . . . , τ

d
cd
, τ fj ,

as promised in the induction hypothesis.

Now we go back to the translation of (qi1, q
i
2, . . . , q

i
k) into L-strategies. Assume that each qij for j ∈ [k]

has been decomposed into strategies τ i,j1 , . . . , τ i,jdi,j and a term pi,j(Γ) as discussed above. Define an L-

strategy τ q
i

with ancillary information as follows: suppose that the ancillary information is the transcripts
Γ(n0) of τf vs

τ i,11 , τ i,12 , . . . τ i,1di,1 , τ
i,2
1 , τ i,22 , . . . τ i,2di,2 , . . . , τ

i,k
1 , τ i,k2 , . . . τ i,kdi,k

in which the latter strategies are given the transcripts of τf vs previous strategies. In the j-th round, the
truthifier’s move is pi,j(Γ(n0)). By construction, it is easy to see that for every board (M, n0) and every
strategy τf of the falsifier, given correct ancillary information Γ(n0), τ q

i
will choose qij(n0) in the j-th round.

Therefore, the strategy will beat τf as long asM(F1, F2, . . . , Fj) � φi(n0), where F1, . . . , Fj constitute the
interpretation of f1, . . . , fj corresponding to τf. This completes the proof by previous discussions.

C Proof of Hardness Amplification in PH

Reminder of Theorem 2.7. There is a constant γ > 0 and ` = `(n) = poly(n) such that the following holds
for every i ≥ 1. Let s1, s2 : N → N be non-decreasing functions, where s2(n) = nω(1), and suppose there
is a function fn : {0, 1}n → {0, 1} computable by Σi-SIZE[s1(n)] circuits (resp. Πi-SIZE[s1(n)] circuits)
such that each Σp

i−1-oracle circuit An of size at most s2(n) satisfies

Pr
x∈{0,1}n

[fn(x) = An(x)] ≤ 1− 1

n
.

Then there exist a function h` : {0, 1}` → {0, 1} computable by Σi-SIZE[poly(`) · s1(`)] circuits (resp.
Πi-SIZE[poly(`) · s1(`γ)] circuits) such that each Σp

i−1-oracle circuit B` of size at most s2(`γ)γ satisfies

Pr
y∈{0,1}`

[h`(y) = B`(y)] ≤ 1

2
+

1

s2(`γ)γ
.

71

Note that since Σp
i−1-oracle circuits are closed under complementation, we only need to prove the case

where fn is computable by Σi circuits. More formally, given a function f : {0, 1}n → {0, 1} computable by
Πi-SIZE[s1(n)] circuits that is hard on average against Σp

i−1-oracle circuits of size s2(n), we can consider
g(x) , ¬f(x) that is computable by Σi-SIZE[s1(n)] circuits and still hard on average against the same
class. By the hardness amplification theorem for Σi circuits, we can obtain a function h` computable by
Σi-SIZE[poly(`) · s1(`)] circuits that is strongly hard on average against Σp

i−1-oracle circuits of size s2(`γ)γ .
The negation of h` is then the required hard function computable in Πi-SIZE[poly(`) · s1(`)].

We first fix the notation.

• A probabilistic function is a Boolean function with two inputs h(x; r) where the second input is treated
as random bits. If the random bits are omitted, a probabilistic function is treated as a function mapping
the input to a random variable distributed according to the output of the function over the random bits.

• Let g be a function probabilistic function) with input length n, the k-th direct product is defined as the
function (resp. probabilistic function) with input length k · n and output length k as follows:

g⊗k(x1, . . . , xk) , g(x1)‖ . . . ‖g(xk) .

• The bias of a random variable X is defined as Bias(X) ,
∣∣Pr[X = 0] − Pr[X = 1]

∣∣. The bias of
a probabilistic function h(x; r) is defined as the bias of the random variable h(x; r) for a uniformly
random x and r. The probabilistic function h is said to be balanced if Bias(h) = 0.

• A probabilistic function h : {0, 1}n × {0, 1}r → {0, 1} is δ-random if h is balanced and there is a
subset H ⊆ {0, 1}n of size 2δ · 2n such that h is a “coin flip” over H and deterministic outside H
(i.e., Pr[h(x) = 1] = 1/2 for every x ∈ H , and h(x) is deterministic for every x /∈ H).

• The expected bias of a probabilistic function h is defined as ExpBias(h) , Ex [Bias(h(x))].

• The noise stability of a Boolean function C : {0, 1}k → {0, 1} with respect to the noise rate δ is
defined as

NoiseStabδ(g) , 2 · Pr
x,η

[C(x) = C(x⊕ η)]− 1,

where x ∼ {0, 1}k and each bit of η is 1 independently with probability δ. By Lemma 3.7 of [HVV06],
ExpBias[C ◦ g⊗k] ≤

√
NoiseStabδ[C] for every δ-random probabilistic function g.

• Two random variables X1 and X2 are said to be ε-indistinguishable for size s, denoted by X1 ≈sε X2,
if for every Σp

i−1-oracle circuit C of size s,
∣∣Pr[C(X1) = 1] − Pr[C(X2) = 1]

∣∣ ≤ ε. Note that
our definition of the indistinguishability differs from the original definition in [HVV06] since we are
proving hardness amplification against Σp

i−1-oracle circuits.

• For simplicity, we say a function f : {0, 1}n → {0, 1} is ε-hard for size s, if for every Σp
i−1-oracle

circuit C of size s, C(x) = f(x) for at most an ε fraction of x ∈ {0, 1}n.

We assume that fn is balanced, that is, Prx[fn(x) = 1] = 1/2 for every n ≥ 1. This is without loss of
generality, since we can first increase the input length by one then use non-uniformity to make the resulting
function balanced, without a relevant change of parameters.

The hardness amplification of [HVV06] proceeds as follows.

The Construction. Fix any n ≥ 1. Let f : {0, 1}n → {0, 1} be the hard function and C : {0, 1}k →
{0, 1} be an explicit circuit to be determined later. Let G : {0, 1}` → ({0, 1}n)k be an explicit function in

72

the sense that given σ ∈ {0, 1}` and i ∈ [k], we can compute the i-th block Xi ∈ {0, 1}n of the output of
G(σ) in poly(`, log k) time.28 The amplified function is defined as Ampf : {0, 1}` → {0, 1}:

Ampf (σ) , C(f(X1), f(X2), . . . , f(Xk)),

where (X1, X2, . . . , Xk) , G(σ). We need to carefully choose C and G such that Ampf (σ) is computable
in Σi-SIZE[poly(n) · s1(n)] and can amplify the hardness of f .

The Choice of G. To ensure the hardness of Ampf , the function Gk : {0, 1}` → ({0, 1}n)k should satisfy
the following two technical requirements.

• Gk is indistinguishability-preserving for size t = k2: Let f1, . . . , fk, g1, . . . , gk be probabilistic func-
tions such that for every i ∈ [k], x‖fi(x) ≈sε x‖gi(x) for x ∼ {0, 1}n, then

σ‖f1(X1)‖ . . . ‖fk(Xk) ≈s−tk·ε σ‖g1(X1)‖ . . . ‖gk(Xk),

where σ ∼ {0, 1}` and (X1, . . . , Xk) , Gk(σ).

• Gk is 2−n-pseudorandom against (read-once oblivious) branching programs of size 2n and block-size
n:29 for every branching program B of size 2n and block-size n, we have∣∣∣∣ Pr

x∼{0,1}`
[B(Gk(x)) = 1]− Pr

y∼{0,1}nk
[B(y) = 1]

∣∣∣∣ ≤ 2−n.

Lemma C.1 (Generalized version of [HVV06, Theorem 5.12]). For every k ≤ 2n, there is an explicit
computable generator Gk : {0, 1}` → ({0, 1}n)k that satisfies the requirements below:

(i) There is an algorithm that computes the i-th block of Gk(σ) in poly(`, log k) time given σ, i.

(ii) Gk is indistinguishability-preserving for size t = k2.

(iii) Gk is 2−n-pseudorandom against branching programs of size 2n and block-size n.

Proof. The only difference between this lemma and [HVV06, Lemma 5.12] is that in our definition, the
indistinguishability-preserving property holds against Σp

i−1-oracle circuits instead of standard circuits, which
will not cause any issue since their argument only requires mild closure properties of the adversary. For
completeness, we sketch their proof here.

The generator Gk is defined as the XOR of two generators: a Nisan-Wigderson based generator NWk :
{0, 1}`NW → ({0, 1}n)k that is efficiently computable and indistinguishability-preserving; and Nisan’s un-
conditional PRG Nk : {0, 1}`N → ({0, 1}n)k against (probabilistic) branching programs (see, e.g., [HVV06,
Theorem 5.6] and [Nis92]). That is, Gk(x, y) , NWk(x) ⊕ Nk(y). Both Nk and NWk have seed length at
most O(n2), hence Gk has seed length ` = O(n2). Next, we discuss the properties of the generator.

• Both NWk and Nk are efficiently computable in the sense that given σ and i, we can compute the i-th
block of the output in poly(`, log k) time. Therefore Item (i) holds.

28We note that C is used to replace the XOR function in the standard hardness amplification based on Yao’s XOR Lemma (see,
e.g., Theorem 19.2 of [AB09]), while G is used as a pseudorandom generator that (in some sense) “fools” C ◦ f⊗k.

29See [HVV06, Definition 5.4] for the precise definition of this branching program model.

73

• To prove Item (ii), we need to show that any indistinguishability-preserving generator XORed with
a fixed string is still indistinguishability-preserving. Towards a contradiction, assume that Gk is not
indistinguishability-preserving. This means that there are f1, . . . , fk, g1, . . . , gk such that for every
i ∈ [k], x‖fi(x) ≈sε x‖gi(x) for x ∼ {0, 1}n, while for (σ1, σ2) ∼ {0, 1}`NW × {0, 1}`N and
(X1, . . . , Xk) , NWk(σ1)⊕ Nk(σ2),

σ1‖σ2‖f1(X1)‖ . . . ‖fk(Xk) 6≈s−tε σ1‖σ2‖g1(X1)‖ . . . ‖gk(Xk).

By an averaging argument, there is a σ∗2 ∈ {0, 1}`N such that

σ1‖f1(X1 ⊕ y1)‖ . . . ‖fk(Xk ⊕ yk) 6≈s−tε σ1‖g1(X1 ⊕ y1)‖ . . . ‖gk(Xk ⊕ yk), (15)

where (y1, . . . , yk) , Nk(σ
∗
2). Let f ′i(x) , fi(x ⊕ yi) and g′i(x) , gi(x ⊕ yi) for i ∈ [k]. Clearly

for every i ∈ [k], x‖f ′i(x) ≈sε x‖g′i(x),30 which is impossible since NWk is indistinguishability-
preserving but Equation (15) holds.

• Similarly, we can show that since Nk is 2−n-pseudorandom against branching programs of size 2n,
after XORed with another generator, Gk is still 2−n-pseudorandom against branching programs of
size 2n. This implies Item (iii).

It remains to verify that the Nisan-Wigderson based generator NWk is indistinguishability-preserving for
size k2 against Σp

i−1-oracle circuits. Let ` = O(n2) and S1, S2, . . . , Sk ⊆ [`] be an (`, n, log k)-design (see
Section 2.4 and [Nis92]). Then NWk : {0, 1}` → ({0, 1}n)k is defined as

NWk(σ) , (σ|S1 , σ|S2 , . . . , σ|Sk).

Let f1, . . . , fk, g1, . . . , gk be probabilistic functions such that for every i ∈ [k], x‖fi(x) ≈sε x||gi(x) for
x ∼ {0, 1}n. Suppose, for the sake of contradiction, that

σ‖f1(σ|S1)‖ . . . ‖fk(σ|Sk) 6≈s−k2k·ε σ‖g1(σ|S1)‖ . . . ‖gk(σ|Sk). (16)

For every i ∈ [0, k], we define the hybrid distribution

Hi = σ‖g1(σ|S1)‖ . . . ‖gi(σ|Si)‖fi+1(σ|Si+1)‖ . . . ‖fk(σ|Sk).

Then the distinguisher D for Equation (16), which is a Σp
i−1-oracle circuit of size s − k2, can distinguish

between Hi and Hi+1 with advantage at least ε for some i ∈ [0, k − 1]. Note that

Hi = σ‖g1(σ|S1)‖ . . . ‖gi(σ|Si)‖fi+1(σ|Si+1)‖fi+2(σ|Si+2)‖ . . . ‖fk(σ|Sk) and

Hi+1 = σ‖g1(σ|S1)‖ . . . ‖gi(σ|Si)‖gi+1(σ|Si+1)‖fi+2(σ|Si+2)‖ . . . ‖fk(σ|Sk)

differ only on the (i+ 2)-th part: Hi has fi+1(σ|Si+1) while Hi+1 has gi+1(σ|Si+1).
By an averaging argument, we can fix all the bits of σ outside of Si+1 so that Ĥi and Ĥi+1 are still

distinguishable with advantage ε, where Ĥi and Ĥi+1 refer to the distribution Hi and Hi+1 after we fix the
bits of σ outside of Si+1. Since for every j 6= i + 1, |Sj ∩ Si+1| ≤ log k, we can construct a Σp

i−1-oracle
circuit of size at most (s − k2) + 2log k · k = s that hardwires all possibilities for the common parts of Hi

and Hi+1 such that:

• Given the unfixed bits of σ and fi+1(σ), it generates Ĥi and outputs D(Ĥi).

• Given the unfixed bits of σ and gi+1(σ), it generates Ĥi+1 and outputs D(Ĥi+1).

Since D can distinguish between Ĥi and Ĥi=1 with advantage ε, the circuit above can distinguish bewteen
σ‖fi+1(σ‖Si+1) and σ‖gi+1(σ‖Si+1) with advantage ε. This leads to a contradiction.

30There is no loss in the circuit size of the adversary if we define the circuit model so that NOT gates are free.

74

The Choice of C. The outer function C, which serves as the counterpart of the XOR function in Yao’s
XOR Lemma (see, e.g., [AB09, Theorem 12.9]), is chosen according to the following lemma.

Lemma C.2 (Generalized version of [HVV06, Lemma 5.15]). For every i ≥ 1, δ(n) = 1/poly(n), and
k = k(n) such that nω(1) ≤ k ≤ 2n, there is a function Ck : {0, 1}k → {0, 1} such that:

(i) NoiseStabδ[Ck] ≤ 1/kΩ(1);

(ii) For every f : {0, 1}n → {0, 1} computable by Σi-SIZE[s(n)] circuits, (Ck ◦ f⊗k) ◦ Gk : {0, 1}` →
{0, 1} is computable by Σi-SIZE[poly(n) · s(n)] circuits.

(iii) Ck is computable by a branching program of size poly(n) · k and by a deterministic circuit of size
poly(n) · k.

Proof. Let δ = δ(n) ≥ 1/poly(n) and k = k(n) such that nω(1) ≤ k ≤ 2n. We will define Ck as the
composition of two functions defined as follows:

• The recursive-majority function RMajr : {0, 1}3r → {0, 1} is recursively defined by

RMaj1(x1, x2, x3) , Maj(x1, x2, x3)

RMajr(x1, . . . , x3r) , RMajr−1(Maj(x1, x2, x3), . . . ,Maj(x3r−2, x3r−1, x3r))

where Maj(x1, x2, x3) is the majority value among x1, x2, x3 ∈ {0, 1}.

• The tribes function of k bits is defined by

Tribesk(x1, . . . , xk) , (x1 ∧ · · · ∧ xb) ∨ (xb+1 ∧ · · · ∧ x2b) ∨ · · · ∨ (xk−b+1 ∧ · · · ∧ xk),

where b = O(log k) is the largest integer such that (1− 2−b)k/b ≥ 1/2.

Let r , c · log(1/δ) for a constant c to be determined later. Assuming without loss of generality that r
and k/3r are integers, we define Ck : {0, 1}k → {0, 1} by

Ck , Tribesk/3r ◦ RMaj⊗k/3
r

r .

As [HVV06, Section 5.5] in the proof of Lemma 5.15, we know that for some sufficiently large constant
c, the noise stability of Ck is at most 1/kΩ(1). Also they showed that Ck can be computed by a branching
program of size poly(n) · k and a deterministic circuit of size poly(n) · k.

It remains to determine the complexity of (Ck ◦ f⊗k) ◦ Gk for f : {0, 1}n → {0, 1} computable by
Σi-SIZE[s(n)] circuits. Consider the following Σi-circuit. We first guess (using non-determinism) a clause
K of the upper Tribesk/3r function that is satisfied. For every RMajr function feeding into this clause (there
are b = O(log k) = poly(n) such RMajr functions), we guess the input bits of the upper Ck sub-circuit (or
equivalently, the output bits of the lower f functions) that are 1 and

(i) we verify that these input bits that are 1 make the clause K accept, which can be done by a determin-
istic circuit of size poly(3r) = poly(n) since RMaj is a monotone function;

(ii) for every guessed input bit of Ck (or equivalently, the output bit of one of f in the middle f⊗k layer)
that is supposed to be 1, we use the Σi-SIZE[s(n)] circuit for f to verify that it is indeed 1. The
input to this function f is one of the n-bit blocks of the output of Gk, which can be computed by a
deterministic algorithm in poly(`, log k) = poly(n) time (see Lemma C.1).

The overall Σi-circuit complexity of (Ck ◦ f⊗k) ◦Gk is at most poly(n) · s(n).

75

Note that the second item means that the function (Ck ◦ f⊗k) ◦ G is efficiently computable even if k is
as large as 2n. The argument relies on the explicitness of Ck and G as well as on the power of Σi-circuits.
This is crucial for hardness amplification up to 1/2− 1/s2(`γ)γ (instead of only 1/2− 1/poly(`)).

Proof of the Hardness Amplification. Following [HVV06, Section 5], we now argue that if f is δ-hard for
size s(n) ≥ nω(1), where δ ≥ 1/poly(n), then we can construct Ampf : {0, 1}` → {0, 1} with ` = poly(n)

that is (1/2 − 1/s(
√
`)Ω(1))-hard for size s(

√
`)Ω(1). To prove this, we need the following two technical

lemmas.

Lemma C.3 ([HVV06, Lemma 5.7 and Lemma 5.12]). Let g be an n-input single output δ-random function,
and Ck and Gk be defined as above. Then

ExpBias[(Ck ◦ g⊗k) ◦Gk] ≤
√

NoiseStabδ(Ck) + 2−n+1.

Lemma C.4 (Generalized version of [HVV06, Lemma 5.2]). Assume that f : {0, 1}n → {0, 1} is δ-hard
for size s = nω(1). There is a δ′-random function g with δ′ ∈ [δ/2, δ] such that Ampf : {0, 1}` → {0, 1} has
hardness

1

2
− ExpBias[(C ◦ g⊗k) ◦G]

2
− k

s1/3

for size Ω(s1/3/ log(s/δ))− k2 − poly(n) · k.

Before proving this lemma, we need to verify that Impagliazzo’s hardcore lemma (see, e.g., [AB09,
Section 19.1.2]) holds against adversaries with access to Σp

i−1 oracles.

Lemma C.5 (Generalized version of Impagliazzo’s Hardcore Lemma). Assume that 2n < s < 0.001 ·(εδ)2 ·
2n/n. Let f : {0, 1}n → {0, 1} be a balanced function that is δ-hard for Σp

i−1-oracle circuits of size s. There
exists a δ′-random function g : {0, 1}n → {0, 1} such that X‖f(X) ≈s′ε X‖g(X) for X ∼ {0, 1}n, where
s′ = Ω(sε2/ log(1/(δε))) and δ′ ∈ [δ/2, δ].

Proof Sketch. We follow the proof presented in [AB09, Section 19.1.2] based on the min-max theorem for
zero-sum games (also see, e.g., [Imp95]). We say that a distributionH over {0, 1}n has density δ if for every
x ∈ {0, 1}n, H(x) ≤ 1/(δ2n). Let δ1 = 0.99δ. We first show that there is a distribution H of density δ1

such that for every Σp
i−1-oracle circuit C of size s′, Pr[f(x) = C(x)] < 1/2 + ε/2 for x ∼ H.

Towards a contradiction, we assume that such distribution does not exist. By a game-theoretic argument
using the min-max theorem, we can construct a distribution C over Σp

i−1-oracle circuits of size s′ such that
for every distributionH of density δ1, a random C ∼ C can approximate f overH with error ≤ 1/2− ε/2.

An input x ∈ {0, 1}n is said to be bad if Pr[C(x) 6= f(x)] > 1/2− ε/2 for C ∼ C. It is said to be good
otherwise. There are at most δ1 · 2n bad inputs, since otherwise we can let H be the uniform distribution
over a set of δ1 · 2n bad inputs and violate the aforementioned property of C. Let t = O(ε−2 log(1/(δε)))
and C be the following probabilistic circuit (with Σp

i−1 oracles): given input x, obtain t independent samples
C1, . . . , Ct ∼ C, and output the majority of C1(x), . . . , Ct(x). This probabilistic circuit has size at most
t · s′ ≤ s. By the Chernoff bound, it computes f(x) for any good x with error at most exp(−Ω(ε2t)) ≤
0.001 · δ. This means that for a uniformly random x ∼ {0, 1}n, the probabilistic Σp

i−1-oracle circuit (and
also deterministic Σp

i−1-orcle circuit by an averaging argument) can approximate f(x) with error at most
δ1 + δ/2 ≤ δ for an x ∼ {0, 1}n, which is impossible.

We then prove via a probabilistic argument that there is a subset H of size δ′ ∈ [δ/2, δ] such that no
Σp
i−1-oracle circuit of size s can approximate f on H with advantage ε. Let H be a random subset defined

76

as follows: for every x ∈ {0, 1}n, we let x ∈ H independently with probability H(x). By a “concentration
bound then union bound” argument, we get with non-zero probability that H has size δ′ ∈ [δ/2, δ] and for
every C of size s, Pr[f(x) = C(x)] ≤ 1/2 + 1/ε. This means that the δ′-random function g defined over H
satisfies the conditions of the lemma.

Proof of Lemma C.4. Assume that f : {0, 1}n → {0, 1} is δ-hard for size s = nω(1). By Impagliazzo’s
hardcore lemma, there is a δ′-random function g : {0, 1}n → {0, 1} such that X‖f(X) ≈s′ε X‖g(X) for
X ∼ {0, 1}n, where s′ = Ω(sε2/ log(1/(δε))) and δ′ ∈ [δ/2, δ]. Since G is indistinguishability-preserving
for size k2, we get that

σ‖f(X1)‖ . . . ‖f(Xk) ≈s
′−k2
kε σ‖g(X1)‖ . . . ‖g(Xk),

where σ ∼ {0, 1}` and (X1, . . . , Xk) = G(σ). Since Ck has complexity bounded by poly(n) · k this further
means that

σ‖Ck(f(X1), . . . , f(Xk)) ≈s
′′
kε σ‖Ck(g(X1), . . . , g(Xk)),

where s′′ = s′ − k2 − poly(n) · k. Note that

Ck(f(X1), . . . , f(Xk)) = (Ck ◦ f⊗k) ◦Gk(σ) and Ck(g(X1), . . . , g(Xk)) = (Ck ◦ g⊗k) ◦Gk(σ) .

Also we can see that the for every probabilistic function h, the statistical distance between X‖h(X) and
X‖b for X ∼ {0, 1}n and b ∼ {0, 1} is exactly ExpBias[h]/2 (see, e.g., [HVV06, Lemma 3.4]). Therefore
we know that

∆(σ‖(Ck ◦ g⊗k) ◦Gk(σ), σ‖b) ≤ ExpBias[(Ck ◦ g⊗k) ◦Gk]
2

,

where σ ∼ {0, 1}` and b ∼ {0, 1}. This further means that σ‖(Ck ◦ f⊗k) ◦Gk(σ) and σ‖b are kε+ (1/2) ·
ExpBias[(Ck ◦ g⊗k) ◦Gk] indistinguishable for size s′′. By setting ε = s−1/3, we obtain the lemma.

Let k = k(n) = s(n)1/7, Ck be the function in Lemma C.2, and Gk be the generator in Lemma C.1 with
` = O(n2). Recall that Ampf : {0, 1}` → {0, 1} is defined as Ampf , (Ck ◦ f⊗k) ◦Gk, and note that the
upper bound on the complexity of Ampf is guaranteed by Lemma C.2. By Lemma C.4, we know that Ampf
has hardness

1

2
− ExpBias[(Ck ◦ g⊗k) ◦Gk]

2
− k

s1/3
(17)

for size Ω(s1/3/ log(s/δ)) − k2 − poly(n) · k = s(
√
`)Ω(1), where g is some δ′-random function with

δ′ ∈ [δ/2, δ]. By Lemma C.3, we can bound Equation (17) using the noise stability bound for Ck given in
Lemma C.2:

(17) ≥ 1

2
−
√

NoiseStabδ′(Ck) + 2−n+1

2
− k

s1/3

≥ 1

2
−
√
k−Ω(1) + 2−n+1

2
− k

s(n)1/3

≥ 1

2
− 1

s(
√
`)Ω(1)

.

This completes the argument.

77

D A Universal Theory for TiPV

In this section, we describe the proofs omitted from Section 2.7. First, we will need some auxiliary
results.

Lemma D.1. Let i ≥ 0. For every Σb
i -formula (resp. Πb

i -formula) α(~z) in the language LPV, there exists a
formula αnorm(~z) = Q1x1 ≤ t1(~z) Q2x2 ≤ t2(~z) . . . Qixi ≤ ti(~z) φ(~z, ~x), where Q1 = ∃ (resp. Q1 = ∀),
Qj ∈ {∀,∃}, and Qj 6= Qj+1 for every j ≤ i− 1, such that T1

PV ` ∀~z (α(~z)↔ αnorm(~z)).

Proof. Note that for every Σb
i -formula (resp. Πb

i -formula) α(~z), we can firstly find its prenex normal form
αpnf(~z) with i − 1 quantifier alternations starting with an existential (resp. universal) quantifier that is logi-
cally equivalent to α(~z). Note that T1

PV defines pairing and unpairing functions. Concretely, there are func-
tions 〈·, ·〉 , π1(·), π2(·) such that T1

PV ` ∀x ∀y (π1(〈x, y〉) = x∧π2(〈x, y〉) = y∧| 〈x, y〉 | ≤ 10·(|x|+|y|)).
It is then easy to see that

T1
PV `

(
∀x ≤ s ∀y ≤ t ϕ(x, y)

)
↔
(
∀p ≤ (s · t)10(π1(p) ≤ s ∧ π2(p) ≤ t→ ϕ(π1(p), π2(p)))

)
T1
PV `

(
∃x ≤ s ∃y ≤ t ϕ(x, y)

)
↔
(
∃p ≤ (s · t)10(π1(p) ≤ s ∧ π2(p) ≤ t ∧ ϕ(π1(p), π2(p)))

)
.

Therefore we can further collapse adjacent quantifiers of the same kind to obtain αnorm(~z) as described above
such that T1

PV ` ∀~z (α(z)↔ αpnf(~z)↔ αnorm(~z)).

Lemma D.2. For every i ≥ 1 and (Πb
i−1 ∪ Σb

i−1)-formula α(~x), we have (1) UiPV ` ∀~x (fα(~x) = 1 ↔
f¬α(~x) = 0) and (2) UiPV ` ∀~x (fα(~x) = 0 ∨ fα(~x) = 1).

Proof. By the definition of each fNα , we can see that the universal sentences ∀~x (fα(~x) = 1↔ f¬α(~x) = 0)
and ∀~x (fα(~x) = 0 ∨ fα(~x) = 1) are both true in the standard model, so they are provable in UiPV.

Reminder of Lemma 2.12. Let i ≥ 2, β(~x, y) be any Σb
i−1-formula in LPV, and t be any term in LPV. Then

UiPV ` ∀~x ((∃y ≤ t(~x) fβ(~x, y) = 1)↔ fβ(~x, gβ,t(~x)) = 1).

Proof. We will show separately that:

UiPV ` ∀~x ((∃y ≤ t(~x) fβ(~x, y) = 1)→ fβ(~x, gβ,t(~x)) = 1), (Case 1)

UiPV ` ∀~x (fβ(~x, gβ,t(~x)) = 1→ (∃y ≤ t(~x) fβ(~x, y) = 1)). (Case 2)

• Case 1: It’s easy to see that the sentence we want to prove (in UiPV) is logically equivalent to the
following universal sentence: ∀~x ∀y ≤ t(~x) (fβ(~x, y) = 1 → fβ(~x, gβ,t(~x)) = 1) (∗). Furthermore,
(∗) is a true universal sentence in the standard model by the definition of gNβ,t and fNβ . Therefore UiPV
proves (∗).

• Case 2: By the definition of gNβ,t, the universal sentence ∀~x gβ,t(~x) ≤ t(~x) is true in the standard model,
which further means that UiPV ` ∀~x gβ,t(~x) ≤ t(~x). This sentence logically implies the sentence we
want to prove in UiPV.

Reminder of Lemma 2.13. For every i ≥ 1 and (Πb
i−1 ∪ Σb

i−1)-formula α(~z) in the language LPV, UiPV `
∀~z (α(~z)↔ fα(~z) = 1).

Proof. Fix any i ≥ 1. Let ϕα , ∀~z (α(~z)↔ fα(~z) = 1). We firstly prove that UiPV ` ϕα for every bounded
LPV-formula α(~z) = Q1x1 ≤ t1(~z) Q2x2 ≤ t2(~z) . . . Qkxk ≤ tk(~z) φ(~z, x1, . . . , xk), where φ is quantifier
free, k ≤ i− 1, Qi ∈ {∀,∃}, and Qi 6= Qi+1 for every i ∈ [k − 1]. We will prove this by induction over k.

78

• (Case 0). Assume that k = 0 and α(~z) is a quantifier-free formula. Then ϕα is a universal sentence.
Furthermore, by the definition of the interpretation of fα over the standard model, we know that
N � ϕα, which means that UiPV ` ϕα.

• (Case 1). Assume that α(~z) = ∀x ≤ t(~z) α′(x, ~z). In such case, i ≥ 2. By the induction hypothesis,
UiPV ` ϕα′ . To show that UiPV ` ϕα it is sufficient to prove that UiPV ` ∀~z (fα(~z) = 1 → α(~z)) and
UiPV ` ∀~z (α(~z)→ fα(~z) = 1). Now we prove them separately.

(i) Since UiPV ` ϕα′ , we know that UiPV proves ∀~z ∀x ≤ t(~z) (fα′(x, ~z) = 1 → α′(x, ~z)) (?).
Consider the universal sentence ψ , ∀~z ∀x ≤ t(~z) (fα(~z) = 1 → fα′(x, ~z) = 1). By the
definition of the interpretations of fα and fα′ , ψ is a true sentence, therefore UiPV ` ψ (♦).
Combining (?) and (♦) we get that

UiPV ` ∀~z ∀x ≤ t(~z) (fα(~z) = 1→ α′(x, ~z)).

This means that UiPV ` ∀~z (fα(~z) = 1→ α(~z)).

(ii) Recall that we need to show that UiPV ` ∀~z ((∀x ≤ t(~z) α′(x, ~z)) → fα(~z) = 1). Since
UiPV ` ϕα′ , it is sufficient to prove that

UiPV ` ∀~z ((∀x ≤ t(~z) fα′(~z, x) = 1)→ fα(~z) = 1).

Since α is a Πb
i−1-formula of the form above, ¬α′ is a Σb

i−2 ∪ Πb
i−2-formula. By Lemma D.2,

UiPV ` fα′(~z, x) = 1↔ f¬α′(~z, x) = 0. So we only need to prove that

UiPV ` ∀~z ((∀x ≤ t(~z) f¬α′(~z, x) = 0)→ fα(~z) = 1).

By Lemma 2.12, we know that UiPV ` (∃x ≤ t(~z) f¬α′(~z, x) = 1) ↔ f¬α′(~z, g¬α′,t(~z)) = 1,
which means we only need to prove that

UiPV ` ∀~z (f¬α′(~z, g¬α′,t(~z)) = 0→ fα(~z) = 1). (18)

By considering the interpretations of fα, f¬α′ , and g¬α′,t in the standard model, it follows that
the universal sentence (18) is true in the standard model. Therefore it is provable in UiPV. This
completes this case.

• (Case 2). Assume that α(~z) = ∃x ≤ t(~z) α′(x, ~z). Let α(~z) be the formula obtained by pushing the
negation in ¬α(~z) into the quantifiers. Note that ` ¬α(~z)↔ α(~z). By applying Case 1, we can show
that

UiPV ` ∀~z (fα(~z) = 1↔ ¬α(~z)) .

Since ∀~z (fα(~z) = 1 ↔ fα(z) 6= 1) is a universal sentence that is true in the standard model, we
know that it is provable in UiPV, which further implies that

UiPV ` ∀~z (fα(~z) 6= 1↔ ¬α(~z)).

This yields UiPV ` ϕα.

Now we consider the case when α is an arbitrary (Πb
i−1 ∪ Σb

i−1)-formula. By Lemma D.1, we can see
that UiPV ` ∀~z (α(~z)↔ αnorm(~z)). According the discussion above, we know that UiPV ` ∀~z (αnorm(~z)↔
fαnorm(~z) = 1). Moreover, we have that UiPV ` ∀~z (fα(~z) = 1↔ fαnorm(~z) = 1), since this is a true universal
sentence in the standard model. It follows from the provability of these three sentences that UiPV ` ϕα, as
desired.

79

Reminder of Theorem 2.18. For every i ≥ 1, the theory UTiPV satisfies the following properties:

(i) UTiPV is a universal theory.

(ii) Every LiPV-sentence provable in UiPV is also provable in UTiPV.

(iii) Every LPV-sentence provable in TiPV is also provable in UTiPV.

(iv) Let t be an arbitrary LiUT-term, and consider its interpretation tN : Nk → N over the standard model.
Then tN ∈ FPΣpi−1 .

(v) UTiPV is closed under if-then-else.

(vi) UTiPV is sound, i.e., every sentence provable in UTiPV is true over N.

Proof. We prove each item in turn.

(i) This is immediate from the definition of the theory.

(ii) Let ϕ be an LiPV-sentence provable in UiPV. It is enough to argue that every axiom of UiPV is provable
in UTiPV. Since UiPV is the theory consisting of all universal true sentences (over the standard model)
in LiPV, LiPV ⊆ LiUT, and UTiPV is the theory of all universal sentences in LiUT that are true in the
standard model, the result is immediate.

(iii) Let ϕ be an LPV-sentence provable in TiPV. It follows from Theorem 2.14 that ϕ is provable in UiPV.
Consequently, the claim follows from the previous item.

(iv) This follows from Theorem 2.17, the definition of LiUT, and the closure of the functions in FPΣpi−1

under composition.

(v) To show this, letϕ(x1, . . . , xk) be a quantifier-freeLiUT-formula, and considerLiUT-terms t1(x1, . . . , xk)
and t2(x1, . . . , xk). We must prove that there exists an LiUT-term t(x1, . . . , xk) such that

UTiPV `
(
t(~x) = t1(~x) ∧ ϕ(~x)

)
∨
(
t(~x) = t2(~x) ∧ ¬ϕ(~x)

)
. (19)

Consider the interpretations of terms tN1 , t
N
2 : Nk → N over the standard model. Let f : Nk → N be the

function defined as follows:

f(~a) =

{
tN1 (~a) if ϕN(~a) is true;

tN2 (~a) otherwise.

Since ϕ is a quantifier-free formula, thanks to Item (iii), it is easy to see that f ∈ FPΣpi−1 . Conse-
quently, the corresponding function symbol fUT ∈ LiUT. Take t as fUT. It follows from the definition
of f and of t that, for every ~a ∈ Nk,

N |=
(
t(~a) = t1(~a) ∧ ϕ(~a)

)
∨
(
t(~a) = t2(~a) ∧ ¬ϕ(~a)

)
.

Since the formula above is free of quantifiers, the definition of UTiPV immediately yields Equation (19).

(vi) This is obvious from its definition.

80

E The Counting Lemma: Existence of a Good Restriction

Notation. Recall that for m ≥ 1, a set S ⊆ {0, 1}[m], and a string a ∈ {0, 1}I , where I ⊆ [m], we define
the restriction of S with respect to a as the set

S �a, {w ∈ S | w|I = a}.

For a non-empty set U and a set S ⊆ U , we define densU (S) , |S|/|U |.

For simplicity of the exposition, we consider without loss of generality restrictions with respect to the
first m1 input bits. Let S ⊆ {0, 1}m, where m = m1 + m2. Suppose that dens{0,1}m(S) = δ. Now let
T ⊆ S be a set such that densS(T) > 2/3. The following result appears implicit in [Kra11, Pic15a].

Lemma E.1 (Counting Lemma). Under these assumptions, there is a ∈ {0, 1}m1 such that

|S �a |
2m2

≥ 1

100
· δ and

|T �a |
|S �a |

≥ 2

3
− 1

100
. (20)

Proof. Suppose this is not the case, i.e., for every a ∈ {0, 1}m1 , at least one of the two inequalities above
does not hold. We use this to contradict |T | > (2/3) · |S| = (2/3) · δ · 2m. Under the assumption, and using
that T �a⊆ S �a,

|T | =
∑

a∈{0,1}m1

|T �a |

≤
∑

a∈{0,1}m1

(
1

100
· δ · 2m2 +

(
2

3
− 1

100

)
|S �a |

)

= 2m1+m2 · 1

100
· δ +

(
2

3
− 1

100

)
· |S|

=
δ

100
· 2m +

(
2

3
− 1

100

)
· δ · 2m

=
2

3
· δ · 2m. (21)

This completes the proof.

81

	Unprovability of strong complexity lower bounds in bounded arithmetic
	dcs-260323-wrap--stoc-unprovability
	Introduction
	Results
	Techniques
	Organization

	Preliminaries
	Complexity theory
	Logic and bounded arithmetic
	Total search problems and the polynomial hierarchy
	The Nisan-Wigderson generator
	Hardness amplification in the polynomial hierarchy
	Herbrand's Theorem and the KPT Witnessing Theorem
	A universal theory for TPVi

	Witnessing Theorems for General Formulas
	A game-theoretic witnessing theorem
	A special case: Falsifiers with oblivious strategies

	Warm-up: Krajícek's Technique and the Pich-Santhanam Result
	Formalization of complexity lower bounds
	Proof of Theorem 4.1
	Extensions of the technique and unprovability of weaker lower bounds

	Unprovability of Strong Complexity Lower Bounds in Bounded Arithmetic
	Unprovability of lower bounds in expressive theories
	Unprovability of lower bound sentences of higher quantifier complexity

	Provability in TPVi
	Sentences with sharply bounded quantifiers
	Strength of TPVi and the hierarchy of total functions
	Strength of TPVi and the polynomial hierarchy
	On the provability of NP(i.o.)P

	Proofs of the Witnessing Theorems
	Proof of thm:witnessing-tree-exploration via Herbrand's Theorem
	Oblivious falsifiers: Self-contained proof of Theorem 3.2 via Herbrandization

	Proof of Hardness Amplification in PH
	A Universal Theory for TPVi
	The Counting Lemma: Existence of a Good Restriction

