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Abstract 

A large literature in exchange rate economics has investigated the forecasting 

performance of empirical exchange rate models using conventional point forecast 

accuracy criteria. However, in the context of managing exchange rate risk, interest centers 

on more than just point forecasts.  This paper provides a formal evaluation of recent 

exchange rate models based on the term structure of forward exchange rates, which 

previous research has shown to be satisfactory in point forecasting, in terms of density 

forecasting performance.  The economic value of the exchange rate density forecasts is 

investigated in the context of an application to a simple risk management exercise.  
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1. Introduction 

Exchange rate risk plays a major role in international portfolio diversification and in 

several aspects of economic policy, including the assessment of the uncertainty surrounding 

prices of exports and imports, the value of international reserves and open positions in foreign 

currency, and the domestic currency value of debt payments and workers’ remittances which, 

in turn, may affect domestic wages, prices, output and employment.  In international financial 

markets, expectations of future exchange rates affect agents’ decisions in a number of 

respects, including their investment, hedging, and borrowing and lending decisions.  It is not 

surprising, therefore, that an enormous empirical literature has developed which focuses on 

modelling and forecasting nominal exchange rates.  

The vast majority of the empirical literature on forecasting exchange rates has 

centered on forecasting the level of nominal exchange rates.  This literature is highly 

influenced by the seminal work of Meese and Rogoff (1983a,b), who first documented that 

empirical exchange rate models, based on conventional macroeconomic fundamentals 

suggested by international macroeconomics theory, cannot outperform a simple no-change or 

random walk forecast of exchange rates in terms of standard measures of point forecast 

accuracy.  After over twenty years of research since the publication of the Meese-Rogoff 

studies, their findings remain, with a few exceptions, very robust (e.g. Mark, 1995; Neely and 

Sarno, 2002).
1
  

While macroeconomic fundamentals do not appear to be useful in forecasting 

exchange rates, however, models which exploit the information in the term structure of 

forward exchange rates and forward premia have produced satisfactory results.  Clarida and 

Taylor (1997) first argued that, although the forward exchange rate is not an optimal predictor 

of the future spot exchange rate (e.g. see Lewis, 1995; Engel, 1996; and the references 

therein), forward rates may still contain valuable information for forecasting future spot 

exchange rates.  Under the assumption of stationary expected foreign exchange excess 

returns, Clarida and Taylor (1997) derive a linear vector equilibrium correction model 

(VECM) of spot and forward exchange rates.  Using this linear VECM, Clarida and Taylor 

show that is possible to extract sufficient information from the term structure of forward 

premia to outperform the random walk model for several exchange rates in out-of-sample 

                                                 
1See, for example, the papers published in the special issue of the Journal of International Economics (May 

2003) on “Empirical Exchange Rate Models.” 
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forecasting.  Then, following the large literature showing the existence of regime-switching 

behavior in exchange rate movements (e.g. Engel and Hamilton, 1990; LeBaron, 1992; Engel, 

1994; Engel and Hakkio, 1996), Clarida, Sarno, Taylor and Valente (2003) generalize the 

linear VECM of spot and forward exchange rates to a nonlinear, three-regime Markov-

switching VECM (MS-VECM) which is found to outperform a random walk as well as to 

improve on the linear VECM in terms of out-of-sample forecasting.  

While an extensive body of literature has investigated the performance of exchange 

rate models in forecasting the level of the exchange rate, surprisingly little attention has been 

devoted to forecasting the density of exchange rates.  In a decision-theoretical context, the 

need to consider the density forecast of a variable
2
 - as opposed to considering only its 

conditional mean and variance - seems fairly accepted on the basis of the argument that 

economic agents may have loss functions that do not depend symmetrically on the realizations 

of future values of potentially non-Gaussian variables (Satchell and Timmermann, 1995; 

Granger, 2003).  In this case, agents are interested in forecasting not only the mean and 

variance of the variables in question, but their full predictive densities.  In various contexts in 

economics and finance - among which the recent boom in financial risk management is an 

obvious case - there is strong need to evaluate density forecasts.  

Several researchers have proposed methods for evaluating density forecasts.  These 

methods allow us to evaluate a model-based predictive density by measuring the closeness of 

two density functions or by testing the hypothesis that the predictive density generated by a 

particular model corresponds to the true predictive density (e.g. Diebold, Gunther and Tay, 

1998; Berkowitz, 2001).
3
  More recently, this line of research has also provided a test statistic 

to formally evaluate the relative ability of competing models in matching the true predictive 

density (Corradi and Swanson, 2004a,b).  However, a literature focusing on the performance 

of empirical models to forecast the density of exchange rates has not emerged to date, and the 

                                                 
2A density forecast (or predictive density) of the realization of a random variable at some future time is an 

estimate of the probability distribution of the possible future values of that variable.  It therefore provides a full 

description of the uncertainty associated with a forecast, in contrast with a point forecast, which contains no 

description of the associated uncertainty.  For a survey of the literature on density forecasting and a discussion of 

its applications in macroeconomics and finance, see Tay and Wallis (2000).  See also Granger and Pesaran 

(1999), Granger (2003) and Sarno and Valente (2004a,b). 

3By ‘true’ predictive density of the data we mean the density of the data over the chosen forecast period.  

Therefore, no forecast is in fact carried out in this case, and the term ‘predictive’ simply refers to the fact that the 

density in question does not refer to the full sample but only to the forecast period.  Also note that we use the 
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main focus of the relevant literature remains on point forecasting of the nominal exchange 

rate.  

The present paper contributes to the relevant literature in that we re-examine the 

forecasting performance of term structure models of exchange rates, which were shown to 

outperform a random walk in out-of-sample point forecasting by Clarida and Taylor (1997) 

and Clarida et al. (2003).  However, we assess the ability of these models to forecast out-of-

sample the one-step-ahead density of nominal exchange rates, hence filling, to some extent, 

the important gap in the literature described above.  Our analysis is carried out using the 

recent techniques on evaluating density forecasts mentioned above as well as on Value-at-

Risk (VaR) calculations.  

In particular, using weekly data for eight bilateral dollar exchange rates from January 

1985 to December 2003, we focus on the ability of both the linear VECM and the MS-VECM 

to forecast the one-week-ahead exchange rate density.  To anticipate our main results, we find 

that Markov-switching term structure models of exchange rates produce satisfactory density 

forecasts of exchange rates.  In particular, the MS-VECM of the term structure convincingly 

outperforms a random walk forecast and a linear term structure VECM in our density 

forecasting exercise, suggesting that the allowance for nonlinearity in these models may be 

particularly important to produce satisfactory out-of-sample density forecasting performance.   

Finally, we illustrate the practical importance of our results on density forecasting with a 

simple application to a risk management exercise.  In recent years, trading accounts at large 

financial institutions have shown a dramatic growth and become increasingly more complex.  

Partly in response to this trend, major trading institutions have developed risk measurement 

models designed to manage risk.  The most common approach employed in this context is 

based on the VaR methodology, where VaR is defined as the expected maximum loss over a 

target horizon within a given confidence interval (Jorion, 2001) - more formally, VaR is an 

interval forecast, typically a one-sided 95% or 99% interval of the distribution of expected 

wealth or returns.  In our simple application we analyze the out-of-sample forecasting 

performance of term structure models of exchange rates, investigating the implications of 

these forecasts for a risk manager who has to quantify the risk associated with holding a 

currency portfolio over a one-week horizon.  This application further illustrates how the MS-

VECM captures satisfactorily the higher moments of the predictive density of exchange rates, 

generating VaRs that estimate the probability of large losses better than the other two 

                                                                                                                                                         
terms ‘predictive density’ and ‘forecast density’ interchangeably below. 
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competing models.  Put another way, our findings indicate that better density forecasts of 

exchange rates, of the type recorded by the regime-switching model considered in this paper, 

can potentially lead to substantial improvements in risk management and, more precisely, to 

better estimates of downside risk.  

The remainder of the paper is set out as follows.  In Section 2, we briefly review the 

literature employing term structure models of forward premia to forecast exchange rates, both 

in a linear framework and in a Markov-switching framework.  In Section 3, we describe the 

data and carry out a preliminary unit root and cointegration analysis of the spot and forward 

exchange rates data.  We also report linearity tests and other tests designed to select the most 

adequate MS-VECM in our context.  We then forecast from these models in Section 4, where 

we report tests designed to assess the performance of the random walk model, the linear 

VECM and the MS-VECM in terms of density forecasting.  We also explore the implications 

of the density forecasting results in a risk management exercise.  A final section briefly 

summarizes and concludes.  

2. Term Structure Forecasting Models of Exchange Rates: A 

Brief Overview 

Let ts  and k

tf  be, respectively, the spot exchange rate and the k -period forward 

exchange rate at time t .  Under the assumptions that (i) each of ts  and k

tf  are well described 

by unit root processes and that (ii) departures from the risk-neutral efficient markets 

hypothesis - namely expected foreign exchange excess returns, " #k

t t t k tf E s $% & ' , defined 

with respect to a given information set t'  - are stationary, it is straightforward to derive an 

expression which implies that the forward premium, k

t tf s%  is stationary (Clarida and Taylor, 

1997).  In turn, this result implies that forward and spot exchange rates have a common 

stochastic trend and are cointegrated with cointegrating vector ( )1 1* % .  This also implies that, 

since this is true for any k , if we consider the vector of forward rates of tenor 1 to m  periods, 

together with the current spot rate, 1 2 3[ ]m

t t t t ts f f f … f +* * * * * , then this must be cointegrated with 

m  unique cointegrating vectors, each given by a row of the matrix [ ]mI,% * , where mI  is an 

m -dimensional identity matrix and ,  is an m -dimensional column vector of ones.  Finally, 

by the Granger Representation Theorem (Granger, 1986; Engle and Granger, 1987) this 

vector of forward and spot rates must possess a VECM representation in which the term 

structure of forward premia plays the part of the equilibrium errors.  
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It is important to note that, while assumption (i) above is uncontentious, assumption 

(ii) and its key implication of a stationary forward premium are more controversial.  In 

particular, some authors have suggested that the forward premium may display long memory 

properties and is well characterized as a nonstationary fractionally integrated process, or ( )I d  

process, where 0 5 1d- . . .  This property of the forward premium would then imply that spot 

and forward exchange rates are fractionally cointegrated and that the dynamic relationship 

between spot and forward rates is characterized by a fractional VECM (e.g. see Baillie, 1996; 

Baillie and Bollerslev, 2000; Maynard and Phillips, 2001).  While it is well documented in the 

literature that the forward premium is persistent and this property is likely to plague statistical 

inference in the context of testing market efficiency, the specific long-run properties of the 

forward premium and of the relationship between spot and forward rates are not central to the 

empirical work carried out in the present study.  Our main aim relates to the investigation of 

the short-run forecasting ability of empirical exchange rate models based on information 

extracted from the term structure of forward rates.  For this purpose, the assumption of a 

stationary (albeit potentially persistent) forward premium is not crucial in our analysis, and 

hence we shall stick to the original assumptions of the Clarida-Taylor framework.  

The linear VECM used by Clarida and Taylor (1997) may be written as follows:  

 
1

1 1

p

t d d t d t ty y y u/ %
0 % %1 0 $ 2 1 $3 $  (1) 

where 4 13 26 52[ ]t t t t t ty s f f f f +0 * * * * , with the superscript denoting the number of weeks 

corresponding to the maturity of the forward contract; 45 +3 0  is the long-run impact matrix 

whose rank determines the number of cointegrating vectors linking spot and forward rates 

(equal to four in this specific VECM); and tu  is a vector of Gaussian error terms (Johansen, 

1988, 1991).  Clarida and Taylor (1997) exploit this linear VECM representation to show that 

sufficient information may be extracted from the term structure in order to forecast the spot 

dollar exchange rate during the recent floating exchange rate regime.  Their dynamic out-of-

sample forecasts suggest that the linear VECM is superior to a range of alternative forecasts, 

including a random walk and standard spot-forward regressions.  

Clarida et al. (2003) then generalize the linear VECM in equation (1) to a multivariate 

Markov-switching framework and examine the performance of such a model in out-of-sample 

exchange rate forecasting.  This generalized term structure model was inspired by 

encouraging results previously reported in the literature on the presence of nonlinearities (and 

particularly by the success of Markov-switching models) in the context of exchange rate 

modelling.  Using weekly data on major spot and forward dollar exchange rates over the 
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period 1979 through 1995, Clarida et al. report evidence of the presence of nonlinearities in 

the term structure, which appeared to be well characterized by a three-regime MS-VECM that 

allows for shifts in both the intercept and the covariance structure of the error terms.  This 

MS-VECM may be written as follows:  

 " #
1

1

1

p

t t t d t d t

d

y z y y/ 6
%

% %
0

1 0 $ 3 $ 2 1 $ *7  (2) 

where ty  is as defined in equation (1); ( )tz/  is a 3 -dimensional column vector of regime-

dependent intercept terms, 1 2 3( ) [ ( ) ( ) ( )]t t t tz z z z/ / / / +0 * * ; the i3 ’s are 3 38  matrices of 

parameters; 1 2 3[ ]t t t t6 6 6 6 +0 * *  is a 3 -dimensional vector of error terms, (0 ( ))t tNID z66 *9! .  

The regime-generating process is assumed to be an ergodic Markov chain with three states 

{1 2 3}tz : * * , governed by the transition probabilities 1Pr( )ij t tp z j z i$0 0 0" , and 3

1 1j ijp0 0  

{1 2 3}i j; * : * * .  This MS-VECM is termed Markov-Switching-Intercept-Heteroskedastic-

VECM or MSIH-VECM.  In order to reflect the fact that the model has three regimes and one 

lag of the dependent variable in each equation, the model is termed MSIH(3)-VECM(1).  

Estimation of an MS-VECM can be carried out using an expectations maximization (EM) 

algorithm for maximum likelihood (Dempster, Laird and Rubin, 1977; Krolzig, 1997).
4
  

Clarida et al. (2003) use the MSIH(3)-VECM(1) to forecast dynamically out of sample 

over the period 1996 through to 1998.  The results suggest that the MS-VECM forecasts are 

strongly superior to the random walk forecasts at a range of forecasting horizons up to 52 

weeks ahead, using standard forecast accuracy criteria.  Moreover, the MS-VECM also 

outperforms a linear VECM for spot and forward rates in out-of-sample forecasting of the 

spot rate, although the magnitude of the gain, in point forecasting, from using an MS-VECM 

relative to a linear VECM is rather small at short horizons (about 10% on average at the 4-

week forecast horizon).  Nevertheless, it is possible that traditional measures of forecast 

accuracy mask somehow the potential superiority of nonlinear models (Satchell and 

Timmermann, 1995; Granger, 2003).  

Overall, this literature suggests that not only the term structure of forward premia 

contains valuable information about the future spot exchange rate, but also that the allowance 

for nonlinear dynamics in the form of regime-switching behavior enhances somewhat this 

                                                 
4An alternative way to carry out specification, estimation and density forecasting for this class of regime-

switching models involves conducting robust statistical inference using Markov Chain Monte Carlo (MCMC) 

methods (e.g. see Chib, 2001, 2004, and the references therein).  
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information to produce a satisfactory forecasting exchange rate model.  While previous 

research on term structure models has analyzed forecasting performance focusing primarily 

on accuracy evaluations based on point forecasts, several authors have recently emphasized 

the importance of evaluating the forecast accuracy of economic models on the basis of density 

- as opposed to point - forecasting performance.  Especially when evaluating nonlinear 

models, which are capable of producing non-normal forecast densities, it would seem 

appropriate to consider a model’s density forecasting performance.  This is indeed the primary 

objective of the empirical work undertaken in this paper, where we carry out density 

forecasting tests on the linear VECM and the MS-VECM of the term structure of forward 

premia as well as on a random walk exchange rate model.  We then investigate some of the 

implications of our density forecasting results for exchange rate risk management.  

3. Empirical Analysis I: Modelling 

In this section, we describe the data and carry out a preliminary unit root and 

cointegration analysis of spot and forward exchange rates.  We also report linearity tests and 

other tests designed to select the most adequate MS-VECM in our context, which we then 

estimate.
5
  

3.1. Data and Preliminaries 

Our data set comprises weekly observations of eight bilateral spot and 4-, 13-, 26- and 

52-week forward US dollar exchange rates (vis-à-vis the UK sterling, Swiss franc, Japanese 

yen, Canadian dollar, New Zealand dollar, Swedish krona, Norwegian krona, Danish krona).  

The sample period spans from January 4 1985 to December 31 2003.
6
  Following previous 

literature (e.g. Hansen and Hodrick, 1980, p. 852), data are Tuesdays of every week, taken 

from Datastream.  From this data set, we constructed the time series of interest, namely the 

logarithm of the spot exchange rate, ts  and the logarithm of the k -week forward exchange 

rate, k

tf  for 4 13 26 52k 0 * * * .  In our empirical work, we carried out our estimations over the 

period January 1985-December 1995, reserving the last eight years of data for out-of-sample 

forecasting.  

                                                 
5Throughout our discussion of the empirical results, we employ a nominal significance level of 5% unless 

explicitly stated otherwise. 

6The start date was chosen since it was the earliest date for which data for all exchange rates examined are 

available.  Full details on the preliminary empirical analysis discussed in this sub-section are available from the 

authors upon request, but are not reported to conserve space. 
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Having first confirmed - by using standard unit root test statistics - the stylized fact 

that each of the time series examined is a realization from a stochastic process integrated of 

order one, we then employed the Johansen (1988, 1991) maximum likelihood procedure in a 

vector autoregression for 4 13 26 52[ ]t t t t t ty s f f f f +0 * * * *  and an unrestricted constant term.  On the 

basis of the Johansen likelihood ratio test statistics for cointegrating rank, we could strongly 

reject the hypothesis of three independent cointegrating vectors against the alternative of four, 

but were not able to reject the hypothesis of exactly four cointegrating vectors for each 

exchange rate examined at conventional nominal test sizes.  

When testing the hypothesis that the cointegrating vectors linking spot and forward 

rates are of the form [1 1]* % , we rejected this hypothesis but - consistent with Naka and 

Whitney (1995), Luintel and Paudyal (1998) and Clarida et al. (2003) - the departure from the 

overidentifying restrictions, albeit statistically significant at conventional test sizes, was found 

to be very small in magnitude.  Following Clarida et al. (2003), we interpreted the rejection of 

the unity restrictions on the cointegration space as due to tiny departures from the null 

hypothesis (due, for example, to tiny data imperfections) which are not economically 

significant, but which appear as statistically significant given our large sample size.  Given 

the theoretical economic priors in favor of the unity restrictions and the fact that, under 

covered interest parity, coefficients different from unity would have the implausible 

implication of a unit root in international interest rate differentials, we carried out our 

empirical work employing the unity restrictions.  

We next estimated a standard linear VECM, as given in equation (1), using full-

information maximum likelihood (FIML) methods, assuming a maximum lag length of three, 

as suggested by both the Akaike Information Criterion and the Schwartz Information 

Criterion.  Employing the conventional general-to-specific procedure, we obtained fairly 

parsimonious models for each exchange rate.  

3.2. Linearity Tests, Identification and Estimation of the MS-VECM 

We proceeded to investigate the presence of nonlinearities further through the 

estimation of a general MS-VECM of the form:  

 " # " # " #
1

1

1

p

t t t t d t t d t

d

y z z y z y/ <
%

% %
0

1 0 $ 3 $ 2 1 $ *7  (3) 

where all parameters are as defined in equation (2), except for the autoregressive parameters 

d2 ’s and the long-run matrix 3  which are also allowed to be regime-shifting, i.e. " #d tz2  and 
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" # " #t tz z4 5 +3 0 ; t<  is a vector of error terms, (0 ( ))t tNID z<< *9! .  The number of regimes, 

tz  - for which we consider a maximum of three regimes, i.e. {1 2 3}tz : * *  - is identified using 

a likelihood ratio test specifically designed for this purpose and described below.  The MS-

VECM in equation (3) is indeed slightly more general than the MS-VECM used by Clarida et 

al. (2003) in that, except for the long-run cointegrating matrix 5 + , which is restricted to be 

consistent with stationary forward premia, every other parameter of the model is allowed to be 

regime shifting.  In essence, this MS-VECM allows for each of the intercepts, the variance-

covariance matrix and the autoregressive structure to be regime dependent.  To reflect the fact 

that model (3) allows for each of the parameters on the autoregressive lags of y1  to be 

regime switching, in addition to regime-switching intercept vector and covariance matrix, this 

VECM is termed Markov-Switching-Intercept-Autoregressive-Heteroskedastic-VECM or 

MSIAH-VECM.  

Next we applied the ‘bottom-up’ procedure designed to detect Markovian shifts in 

order to select the most adequate characterization of an MS-VECM for ty1 .  The linearity 

tests led us, for each exchange rate, to reject the linear VECM against an MS-VECM.  These 

tests provide strong empirical evidence that the linear VECM fails to capture important 

nonlinearities in the data generating process, since linearity is rejected with marginal 

significance levels (p-values) of virtually zero - see the last column in Table 1.  

For each MS-VECM estimated, we tested the hypothesis of no regime shifts against the 

alternative hypothesis of regime shifts in each of the vector of intercept terms, the variance-

covariance matrix, and the autoregressive structure respectively.  The likelihood ratio (LR) 

tests 1LR , 2LR  and 3LR , constructed as suggested by Krolzig (1997, p. 135-6) and reported 

in Table 1, suggest in each case massive rejections of the null hypotheses tested, clearly 

indicating that an MS-VECM that allows for shifts in each of the intercept, the variance-

covariance matrix and the autoregressive structure, namely an MSIAH-VECM, is the most 

appropriate model within its class in the present application.  

Finally, in order to discriminate between models allowing for two regimes against 

models governed by three regimes we also calculated an LR test for this null hypothesis.  The 

results produced very low p-values (see 4LR , Table 1), suggesting that three regimes are 

appropriate in all cases.  Therefore, in spite of parsimony considerations, we allowed for three 

regimes in the MSIAH-VECM.  

Following the results from the identification procedure reported in Table 1, we 

estimated the MSIAH-VECM (3) for each of the eight exchange rates examined.  The 
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estimation yielded fairly plausible estimates of the coefficients, including the adjustment 

coefficients in 4 , which were generally found to be strongly statistically significantly 

different from zero.  

For each exchange rate we find that three regimes are appropriate in describing the 

data.  Shifts from one regime to another appeared to be due largely to shifts in the variance of 

the term structure equilibrium.  On the other hand, shifts in the intercept terms and, to a lesser 

extent, in the autoregressive structure were found to be relatively smaller in magnitude, albeit 

strongly statistically significant.  This seems consistent with the large empirical literature 

investigating the time-varying nature of exchange rates risk premia.  One tentative 

interpretation of this MSIAH-VECM is, in fact, in terms of shifts in the mean and variance of 

foreign exchange returns consistent with deviations from the equilibrium levels implied by 

conventional macroeconomic fundamentals that may be caused, for example, by ‘peso 

problems’ or by other kinds of departures from the efficient markets hypothesis (see Engel 

and Hamilton, 1990; Clarida et al., 2003).  

For each of the countries considered, we clearly identified one regime characterized by 

periods in which the average spot rate and its variability were relatively high compared to the 

remaining two regimes.  We then investigated whether or not the probability of switching 

between regimes was related to macroeconomic fundamentals, in the spirit of recent research 

by Bansal and Zhou (2002), Bansal, Tauchen and Zhou (2004) and Clarida et al. (2004) - in 

the context of interest rates modelling, these authors find that regime shifts are intimately 

related to macroeconomic fundamentals.  Like in previous research (e.g. Bansal and Zhou, 

2002; Clarida et al., 2004), because data on the explanatory variables we consider are not 

available at weekly frequency, we use quarterly data.  Hence, from the estimated MSIAH-

VECMs, we converted the weekly smoothed probabilities into quarterly probabilities by 

averaging.  Further, in order to obtain a binary variable from the estimated average MSIAH-

VECM probabilities we defined a variable which is equal to zero when the average quarterly 

probability of being in a regime is smaller than 0.5 and equal to unity when this average 

probability is greater than or equal to 0.5.  The fundamentals term we consider in our simple 

exercise is the deviation of the spot exchange rate from its equilibrium value as predicted by 

the monetary model of exchange rate determination (see, inter alia, Mark, 1995; Sarno and 

Taylor, 2003; Sarno, Valente and Wohar, 2004).
7
  These deviations have been squared in 

                                                 
7Precisely, we focus on the deviation, say dev , of the nominal exchange rate from its fundamental value: 

t t tdev s fund0 %
, where the fundamentals term, 

fund
 is the long-run equilibrium of the nominal exchange 
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order to assign the same weight to negative and positive departures from equilibrium.  We 

then calculated the correlation between the binary indicator variable - capturing the regime of 

high mean and volatility of spot exchange rate movements - and our proxy for the deviation 

from exchange rate equilibrium.  Our results show that on average, across countries, the 

probability of being in the regime characterized by high average and volatile spot exchange 

rates is significantly positively correlated with departures from their equilibrium levels.  In 

particular, the average estimated correlation coefficient is about 8%, which is in line with the 

recent literature on interest rates shifts and macroeconomic fundamentals (i.e. Bansal and 

Zhou, 2002, p. 2020).  This positive relationship suggests that when large deviations (of either 

sign) from the fundamental exchange rate equilibrium level occur, spot exchange rates are 

likely to experience periods of high excess returns and volatility.  

In general, we note that considerable caution should be exercised in interpreting the 

regime classification, as there is considerable error in this classification due to parameter 

estimation error.  However, at first glance, our results suggest that the shifts in mean and 

variance of spot exchange rates depicted by our MSIAH-VECMs may be related, to some 

extent, to changes in the sort of economic fundamentals one would expect to play a role in 

driving exchange rates behavior and regimes.  

4. Empirical Analysis II: Forecasting and Risk Assessment 

In this section we compute tests designed to assess the performance of the random 

walk model, the linear VECM and the MSIAH-VECM in terms of exchange rate density 

forecasting.  We then explore the implications of the density forecasting results in a risk 

management exercise.  

                                                                                                                                                         
rate determined by the monetary fundamentals.  The fundamentals term is given by: 

( )t t t t tfund m m g g! != >
? @
A B

0 % % %
, where m  and 

g
 denote the log-levels of money supply and real income 

respectively; and asterisks denote foreign variables - data for narrow money and real Gross Domestic Product 

were taken for each country from the International Financial Statistics of the International Monetary Fund.  

fund
 may be thought of as a typical representation of the long-run equilibrium exchange rate implied by 

exchange rate determination theory, and forms of this kind are implied, for example, by the monetary approach 

to exchange rate determination as well as by general equilibrium models with cash-in-advance constraints and 

several ‘new open economy macroeconomic’ models (see Sarno, 2001; Neely and Sarno, 2002; Sarno and 

Taylor, 2003, Chapters 4-5; Sarno, Valente and Wohar, 2004).  Hence, the link between monetary fundamentals 

and the nominal exchange rate is consistent with both traditional models of exchange rate determination based 

on aggregate functions as well as with more recent microfounded open economy models. 
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4.1. Out-of-Sample Density Forecasts 

To investigate the forecasting ability of our linear and Markov-switching VECMs, we 

attempt to exploit the whole information provided by the out-of-sample predictions of the 

models in the context of a density forecasting approach.  In particular, it is interesting to 

examine whether the MSIAH-VECM (3), which was chosen on the basis of the identification 

procedure which rejected the linear VECM, performs satisfactorily in terms of ‘closeness’ of 

the predicted moments of the forecast density of the model relative to the true moments of 

exchange rate movements obtained from the data over the forecast period.  This question 

cannot be addressed fully by using conventional methods of point forecast accuracy 

evaluation, since these methods consider only the first two moments of the distribution of 

exchange rates.  

A large and growing literature has recently focused on evaluating the forecast 

accuracy of empirical models on the basis of density, as opposed to point, forecasting 

performance (see, inter alia, Diebold et al., 1998; Granger and Pesaran, 1999; Tay and 

Wallis, 2000; Timmermann, 2000; Sarno and Valente, 2004a,b).  Several researchers have 

proposed methods for evaluating density forecasts.  For example, Diebold et al. (1998) extend 

previous work on the probability integral transform and show how it is possible to evaluate a 

model-based predictive density.  Diebold et al. propose the calculation of the probability 

integral transforms of the actual realizations of the variables (i.e. exchange rate changes for 

each country under investigation) over the forecast period, C D1 1

n

t t
s $ 0

1  with respect to the 

models’ forecast densities, denoted by " #C D1 1

n

t t t
p s $ 0

1 :  

 " #1

1
ts

t tw p d t … nE E$1

%F
0 0 * * -G  (4) 

When the model forecast density corresponds to the true predictive density, then the sequence 

of C D
1

n

t t
w

0
 is iid ( )0 1U * .  The idea is to evaluate whether the realizations of the data over the 

forecast period come from the selected forecast density by testing whether the C Dtw  series 

departs from iid uniformity.  

Berkowitz (2001) suggests that rather than working with the C Dtw  series it may be 

fruitful to take the inverse normal cumulative distribution function (CDF) transform of the 

series C Dtw , denoted by C Dtx .  Under the null hypothesis of equality of the model density and 

the true predictive density, C Dtx  is distributed as standard normal, and Berkowitz proposes an 
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LR test for zero mean and unit variance, under the maintained hypothesis of iid normality.  

We rely on the test of Berkowitz (2001) in our empirical work, since Berkowitz shows that 

working with the inverse normal transform of the series C Dtw  drastically increases the power 

of the test relative to the version based on uniformity.  

While, under general conditions, the linear VECMs forecast densities are easy to 

calculate analytically (they are in fact multivariate normal distributions with means and 

variances given by functions of the estimated parameters), the MSIAH-VECM forecast 

densities can, in general, be obtained analytically only for one-step-ahead forecasts.  The 

MSIAH-VECM forecast densities are mixtures of multivariate normal distributions with 

weights given by the predicted regime probabilities.  In general, the MSIAH-VECM forecast 

densities are non-normal, asymmetric and heteroskedastic.  In this paper we focus on the one-

step-ahead forecast density of the MSIAH(3)-VECM(1), which is given by:  

 " #
3 3

1 1 1 1 1

1 1

t t ij t t t t

j i

p y p p y z j= >
? @$ $ $ $ $A B

0 0

H I
1 0 1 0 *' *J K

L M
7 7 P  (5) 

where 1Pr( )ij t tp z j z i$0 0 0  are the transition probabilities; P  is the transition matrix 

conditional on the information set at time t , t' ; and 1 1 1t t t tp y z j= >
? @$ $ $A B
1 0 *'  is the regime-

conditional forecast density.  

We now turn to the evaluation of the probability integral transforms.  The null of iid 

normality is a joint hypothesis and, in the spirit of Diebold et al. (1998), we consider each part 

of the hypothesis in turn.  The iid assumption is tested by calculating the Ljung-Box (1978) 

test for no serial correlation.  In order to take into account the dependence occurring in the 

higher moments, we consider " #x x
N

%  for N  up to four.  In our forecasting exercise, we 

compare the density forecasting performance of the linear VECM in equation (1) and the 

MSIAH-VECM in equation (3) with the standard benchmark in the literature on exchange rate 

forecasting, namely the random walk model.
8
  The p-values from carrying out these tests are 

reported in Panel a) of Table 2.  The results suggest that, for each exchange rate, we are 

unable to reject the null hypothesis of no serial correlation at conventional significance levels.  

This finding holds for each of three models examined, namely the random walk model, the 

linear VECM, and the MSIAH-VECM.  We then carry out tests for normality to verify 

                                                 
8Obviously, the random walk model refers to the level of the exchange rate, implying that in the case of 

exchange rate changes the model becomes a model of normally distributed exchange rate changes with mean 

equal to the drift term and variance equal to the residual variance estimated over the sample period available. 
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whether the C Dtx  series displays any statistically significant skewness or excess kurtosis.  The 

p-values from these tests, reported in Panel b) of Table 2, suggest that the null hypotheses of 

no skewness and no excess kurtosis cannot be rejected for any of the exchange rates and any 

of the three competing models considered.   Taken together, the results in Panel a) and Panel 

b) of Table 2 indicate that the null hypothesis of iid normality of the C Dtx  series cannot be 

rejected.   

Given these findings, the maintained hypothesis which is required to carry out the LR 

test proposed by Berkowitz (2001) is validated by the data.  Hence, we calculate the LR tests 

of zero mean and unit variance proposed by Berkowitz (2001), which we report in Panel a) of 

Table 3.  The results are interesting.  On the basis of these LR tests, the only model for which 

we cannot reject the null hypothesis is the MSIAH-VECM.  Indeed, the forecast densities of 

the random walk model and the linear VECM lead to rejection of the null hypothesis for each 

exchange rate except for the New Zealand dollar.  In other words, except for the New Zealand 

dollar (where each of three competing models performs satisfactorily), the random walk 

model and the linear VECM produce density forecasts that are statistically significantly 

different from the actual density of exchange rates data over the forecast period.  On the other 

hand, the MSIAH-VECM generates, for each exchange rate considered, density forecasts that 

are statistically identical to the true predictive densities.  

One of the limitations of the testing procedure employed above is the fact that, while it 

allows us to measure how well a model’s predictive density approximates the true predictive 

density of the data, it does not allow a formal test of which of the competing models 

considered performs best in terms of density forecasting performance.  Heuristically this can 

be investigated by inspecting the p-values of the Berkowitz tests for each individual model 

(i.e. higher p-values presumably reflect a better density forecast) but it is not possible to use 

the Berkowitz testing procedure to obtain a p-value for the null hypothesis that two models 

perform equally well in forecasting the true predictive distribution.  A solution to this problem 

has recently been proposed by Corradi and Swanson (2004a), who derive a test statistic for 

the null hypothesis that two models have equal density forecast accuracy.  In some sense, this 

test evaluates competing forecasting models in terms of density forecasting in the same spirit 

of the Diebold and Mariano (1995) test for equal point forecast accuracy of competing 

models.  Using a measure that may be seen as the analogue of the mean square error in the 

contest of density forecasts, Corradi and Swanson (2004a) test a null hypothesis that can be 

expressed as  
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 " # " # " # " #C D " #
2 2

0 1 1 1 0 1 2 1 1 0 1t t t t t t
U

H E F s u F s u F s u F s u u duO* $ $ $ * $ $ $P Q P QR 1 & % 1 & % 1 & % 1 & *S T S TG   

(6) 

where u U: U V , " # 0uO W  is a possible unbounded set on the real line; " # 1U u duO 0 ; 

" #1 1q t tF s u* $ $1 &  is the predictive cumulative density function (CDF) implied by model 1 2q 0 *  

at time 1t $  for a given u ; and " #0 1tF s u$1 &  is the value of the true CDF for a given u .  The 

test statistic for the null hypothesis (6) takes the form of  

 " #T T u
U

Z Z u duO*0 *G  (7) 

where 
# " # " # # " # " #C D2 21

1
1 1 1 0 1 2 1 1 0 10

n

T u t t t t t tn t
Z F s u F s u F s u F s u

%

* * $ $ $ * $ $ $0
P Q P Q0 1 & % 1 & % 1 & % 1 &S T S T7 ; 

and 
#

1q tF * $  is the estimated counterpart of 
1q tF * $  for 1 2q 0 * .  The test statistic TZ  is then 

calculated by averaging 
T uZ *  over u U: .  Following Corradi and Swanson (2004a), this can 

be done by generating a fine grid of u  whose values are equally spaced across the range 

determined by the minimum and maximum value of 1ts $1  over the sample period.  Hence, if 

we assume a grid with S  points, the test statistic (7) becomes:  

 
# #

1 2 2

1 1 1 0 1 2 1 1 0 1

1 0

1 1S n

T t t t t t t

t

Z F s u F s u F s u F s u
S n

H I% H IX XP Q P QX X= > = > = > = >
J J KK? @ ? @ ? @ ? @Y Z Y Z* $ $ $ * $ $ $A B A B A B A BS T S TX X XXL M0 0L M

0 1 & % 1 & % 1 & % 1 & -7 7 ! ! ! !

!

  

(8) 

Differently from the previous testing procedures based on the probability integral transform, 

the limiting distribution of the test statistic (8) is a functional of a Gaussian process whose 

covariance kernel is not a martingale difference sequence in the presence of model 

misspecification.  This implies that its limiting distribution is not nuisance-parameter free and 

therefore cannot be tabulated.  Corradi and Swanson (2004a) show how to obtain critical 

values for the distribution of the test statistic (8) by bootstrap.
9
 
10

  

The results from calculating the Corradi-Swanson (2004a) test are reported in Panel b) 

of Table 3. In general, the null hypothesis of equal density forecast accuracy is rejected for 

                                                 
9In our density forecasting exercise we implement the bootstrap designed to calculate critical values using 

subsampling, as shown in Politis, Romano and Wolf (1999, Ch. 3) and recently employed by Linton, Maasoumi 

and Whang (2003). 

10Note that another test for equal density forecast accuracy available in the literature is due to Sarno and Valente 

(2004a).  While this test has the advantage of being easily applicable since it has a known limiting distribution, 

we prefer to use the Corradi-Swanson test since this is more general and works under less stringent assumptions 

and regularity conditions. 
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most exchange rates at the 5% significance level.  In particular, there is clear evidence that the 

MSIAH-VECM is able to generate predictive densities which are better approximations of the 

true predictive density than the ones implied by the random walk model and the linear 

VECM.  Indeed, by inspecting the second and third columns in Panel b) of Table 3, the 

Corradi-Swanson test statistics are all positive and statistically significant.  This means that 

the distance between the true predictive density implied by the data and the predictive 

densities generated by the random walk model (column 2) or the linear VECM (column 3) is 

significantly larger than the distance between the true predictive density and the predictive 

density generated by the MSIAH-VECM.  Further, while it is straightforward to establish, on 

the basis of these results, that the MSIAH-VECM is the best model in terms of density 

forecasting performance, it is difficult to discriminate between the linear VECM and the 

random walk model since there is no clear pattern in the sign of the test statistics.  

Summing up, the forecasting results in this section suggest that, in terms of density 

forecasting performance, the MSIAH-VECM performs better than the linear VECM and the 

random walk model in terms of explaining the out-of-sample behavior of exchange rate 

movements.  Clearly, this finding, obtained by both testing procedures employed - namely the 

Berkowitz test and the Corradi-Swanson test given in Table 3 - is due to the allowance for 

multiple regimes in the MSIAH-VECM, which enhances the information embedded in the 

forward premia and generates density forecasts that are closer to the true predictive densities, 

providing a better characterization of the uncertainty surrounding the exchange rate forecasts 

than the other two competing models.  

4.2. The Economic Value of Density Forecasts: A Simple Example of VaR 

Analysis 

In this section we further investigate the practical implications of the density 

forecasting results reported in the previous sub-section in the context of a simple risk 

management exercise.  Given the predictions of the three competing models examined here, 

assume that a US risk manager wishes to quantify the one-week-ahead risk associated with 

holding a position in foreign currency.  Assume that the position in question is a naive 

diversified portfolio comprising a domestic asset and N  foreign assets which are identical in 

all respects except for the currency of denomination, e.g. euro-deposit rates.  Each asset 

delivers yields in local currency, and given that diversification of this portfolio is assumed to 

be naive, the weight on each asset is 1
1N$ .  Define ti  the domestic (US) one-period interest rate 

and c

ti  the foreign one-period interest rate associated with country c .  Then, given a certain 
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level of wealth at time t  invested in this portfolio, say tW , the law of motion of wealth is as 

follows:  

 " #1 1

1

1 1
exp exp

1 1

N
c c

t t t t t

c

W i i s W
N N

P Q
Y Z= >

? @Y Z$ $A BY Z
0S T

0 $ $ 1
$ $7  (9) 

where 1

c

ts $1  is the first difference in the dollar log-exchange rate vis-á-vis the currency of 

country c  (e.g. Mark, 2001; Elton, Gruber, Brown and Goetzmann, 2003).  Given that ti  and 

c

ti  are known at time t , the only source of risk to be taken in consideration by the risk 

manager at time t  is the future nominal exchange rate 1

c

ts $1  for 1c … N0 * * .  Normalizing 

1tW 0  for simplicity, the risk manager can use a specific model of exchange rates at time t  to 

produce one-week-ahead density forecasts of 1

c

ts $1 , which, in turn, imply one-week-ahead 

density forecasts for the one-week-ahead wealth 1tW $ .  On the basis of these densities the risk 

manager calculates, for each of the three competing models - the random walk, the linear 

VECM and the MSIAH-VECM - the VaR as a confidence interval for losses such that  

 " #1 1Pr 1t tW VaR O$ $. 0 % -  (10) 

In our example the VaR is a 99% confidence level for losses (i.e. 0 99O 0 - ), for all models; 

and 8N 0 , corresponding to the eight dollar exchange rates studied in this paper.  Equation 

(10) simply states that the probability that one-week-ahead wealth, 1tW $  is less than the VaR is 

equal to the significance level " #1 O% .
11

  

Summary statistics are reported in Panel a) of Table 4.  In order to assess the relative 

size and relative variability of the VaR estimates across the competing models we use the 

mean relative bias statistic ( MRB ) and root mean squared relative bias statistic ( RMSRB ), 

suggested by Hendricks (1996).  The MRB  statistic is calculated as:  

 
1

1 n
g t h t h

g

h g t h

VaR VaR
MRB

n VaR

* $ $

0 * $

%
0 7  (11) 

where 
g tVaR *  is the estimated VaR from the specific model g  used at time t , tVaR  is the 

cross-sectional average VaR at time t  over the three competing models, and n  is the number 

of out-of-sample observations.  This statistic gives a measure of size for each estimated VaR 

relative to the average of all competing models.  

                                                 
11For this sub-section, we obtained weekly observations of 1-week eurorates for each country examined during 

the sample period January 1996-December 2003 from Datastream. 
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The RMSRB  statistic is calculated as:  

 

2

1

1 n
g t h t h

g

h g t h

VaR VaR
RMSRB

n VaR

* $ $

0 * $

= >%
0 -? @

? @
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7  (12) 

This measure provides us with information about the extent to which the estimated VaR tends 

to vary around the average VaR at time t .  The results from calculating the MRB  and 

RMSRB , reported in Panel a) of Table 4, suggest that the MSIAH-VECM produces higher 

VaRs (compared to the average VaR produced by the other two competing models) and it also 

produces more volatile VaRs (around the average VaR).  The higher VaR produced by the 

MSIAH-VECM is indicative that this model is less conservative, on average, than the other 

two competing models.  

We also report in Panel a) of Table 4 the average distance ( AD ) between the realized 

data and the VaR implied by the random walk model, the linear VECM and the MSIAH-

VECM, standardized by the average distance of the random walk model; and, finally, we 

report the correlation coefficient between the estimated VaR from each model and the realized 

data, calculated as in Hendricks (1996) and termed VaR Wcorr * .  These calculations indicate, on 

the basis of the AD , that the MSIAH-VECM produces the “closest” VaR to the realized data 

by some 13% relative to the random walk model and 12% relative to the linear VECM.  Also, 

on the basis of 
VaR Wcorr * , the MSIAH-VECM generates the VaR most highly correlated with 

the realized data across the three models considered.
12

  

In Panel b) of Table 4, we report some VaR backtests.  In particular, we report (as V ) 

the number of times that 1 1t tW VaR$ $. , and the implied estimate of the violation rate (i.e. V  

divided by the number of out-of-sample observations), say VR , for each of the random walk 

model, the linear VECM and the MSIAH-VECM respectively.  We also test of the null 

hypothesis that the violation rate VR  does not exceed the theoretical 1% violation rate 

considered in this VaR application, calculated as in Kupiec (1995).  Finally, we report the 

Christoffersen and Diebold (2000) test for the sample first-order autocorrelation of a binary 

variable which is equal to unity if a violation occurs and zero otherwise.  The results in Panel 

b) indicate that the random walk model and the linear VECM are too conservative in that they 

both exhibit one violation, whereas the number of violations under the VaR estimated for the 

MSIAH-VECM is three, which implies an estimated violation rate of 0.72%.  Such estimated 

                                                 
12The results show the poor performance of the other two models, which both display statistically insignificant 

correlation coefficients and, for the random walk model, a negatively signed one. 
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violation rate is indeed insignificantly different from the theoretical violation rate of 1%, as 

confirmed by the Kupiec test statistic.  On the other hand, the estimated violation rate for the 

other two competing models is, in each case, equal to about 0.23%, and is statistically 

significantly different from the theoretical violation rate of 1%.  The CD  test also suggests 

that there is no first-order serial correlation in the VaR violations for each of the three models 

under examination, indicating that these violations are, for each model, non-systematic.
13

  

Summing up, this simple application further illustrates the satisfactory out-of-sample 

forecasting performance of the MSIAH-VECM relative to the random walk benchmark and to 

the linear VECM.  We find that the MSIAH-VECM provides a violation rate which is 

statistically insignificantly different from the theoretical violation rate of 1%, whereas the 

other two competing models provide estimated VaRs which are too conservative and, 

generally, poor estimates of the risk of the portfolio under examination.  This may be seen as 

evidence that the most general model, the MSIAH-VECM does better than the other two 

competing models at matching the moments of the predictive distribution of exchange rate 

changes, generating VaRs that are more in line with the desired violation rate, confirming the 

findings of the previous sub-section on density forecasting performance and illustrating the 

practical importance of such results.  

5. Conclusion 

This article has re-examined the performance of some empirical exchange rate models 

in terms of out-of-sample forecasting of nominal exchange rates.  In particular, inspired by the 

success of recently developed models of the term structure of forward exchange rates in terms 

of point forecasting, we have carried out a density forecasting analysis, applied to both linear 

and regime-switching versions of these term structure models.  This exercise was aided by the 

recent developments of sophisticated econometric techniques which allow us to formally 

evaluate the performance of time series models in terms of density forecasting.  

Our main result, using weekly data for eight US dollar exchange rates during the 

recent floating exchange rate regime, is that a Markov-switching VECM for spot and forward 

exchange rates that explicitly takes into account the mounting evidence that the conditional 

distribution of exchange rates is well characterized by a mixture of normal distributions 

                                                 
13In terms of interpretation, a significant autocorrelation coefficient denotes a persistent series of violations, 

which in turn implies unsatisfactory performance of a model in estimating the VaR.  Note that, while our result 

of no significant serial correlation is obvious for the random walk model and the linear VECM since these 

models only imply one violation, it is not obvious for the MSIAH-VECM. 
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produces very satisfactory one-week-ahead density forecasts.  This model was found to 

outperform its more parsimonious linear counterpart as well as the standard benchmark in the 

exchange rate forecasting literature, namely the random walk model.   

The implication of our findings were further investigated in the context of a simple 

application of Value-at-Risk methods.  In our application we specifically examined the 

implications of our exchange rate density forecasts for a risk manager who has to quantify the 

risk associated with holding a currency portfolio over a one-week horizon.  This application 

further illustrated how the Markov-switching VECM captures satisfactorily the moments of 

the predictive density of exchange rates, generating VaRs that measure the probability of 

large losses more accurately than the other two competing models.  

Overall, the pecking order implied by our density forecasting results - Markov-

switching term structure model, linear term structure model, random walk model
14

 - is the 

same as recorded in previous work based on conventional point forecasting criteria.  

However, when evaluating these models in terms of density forecasting results, the superiority 

of the Markov-switching VECM relative to the linear VECM becomes much clearer than 

previously recorded in the literature using point forecast evaluation.  Overall, our findings 

highlight how better density forecasts of exchange rates, of the type recorded in this paper 

using Markov-switching models of the term structure, can potentially lead to substantial 

improvements in risk management and, more precisely, to better estimates of downside risk.  

 

 

                                                 
14Specifically, this is the result suggested by the Berkowitz test statistic, while using the Corradi-Swanson test 

we were not able to discriminate between the linear VECM and the random walk model.  All tests indicated, 

however, that the best performing model is the Markov-switching VECM. 
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Table 1.  ‘Bottom up’ identification procedure  

 

 

 

 

 

 

 

 

 

 

 

 1LR   2LR   3LR   4LR   Linearity   

UK  0  1.67 1610%8 1.59 1410%8 2.61 2210%8 0   

Switzerland 0  4.13 1410%8 7.36 1810%8 2.23 2410%8 0   

Japan  0  3.02 1210%8 2.61 1810%8 2.83 3710%8 0   

Canada  3.98 24310%8 5.93 310%8 9.77 1510%8 5.85 4610%8 2.24 27510%8
New 

Zealand  

0  2.08 810%8 2.86 810%8 4.01 8210%8 0   

Sweden  0  0  4.77 910%8 1.93 1710%8 0   

Norway  0  4.23 2710%8 6.64 1010%8 2.64 3210%8 0   

Denmark  0  1.53 610%8 2.79 1310%8 1.09 5010%8 0   

 

 

 

 

Notes: 1LR  is a test statistic of the null hypothesis of MSI(3 )-VECM(1) versus MSIAH(3 )-

VECM(1). 2LR  is a test statistic of the null hypothesis of MSH(3 )-VECM(1) versus 

MSIAH(3 )-VECM(1). 3LR  is a test statistic of the null hypothesis of MSIH(3 )-VECM(1) 

versus MSIAH(3 )-VECM(1).  4LR  is the likelihood ratio test for the null hypothesis that the 

MSIAH-VECM(1) with 2  regimes is equivalent to the MSIAH-VECM(1) with 3  regimes.  

These LR tests are constructed as 2(ln ln )L L! % , where L!  and L  represent the unconstrained 

and the constrained maximum likelihood respectively.  These tests are distributed as 2 ( )r[  

where r  is the number of restrictions. ‘Linearity’ is a linearity test for the null hypothesis 

that the selected MSIAH-VECM(1) is equivalent to a linear Gaussian VECM(1). p-values 

relative to the 4LR  and linearity tests are calculated as in Ang and Bekaert (1998).  For all 

test statistics only p-values are reported; p-values below 35010%  are reported as 0. 
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Table 2. Out-of-sample performance: tests for iid and normality  

 

 

 

 

 

Panel a)  Tests for iid based upon inverse normal probability transform  

 

 

  

" #x x%  

 RW  VECM MSIAH-VECM 

UK  0.6418 0.7148 0.5057 

Switzerland  0.2083 0.3228 0.2938 

Japan  0.1297 0.3857 0.6756 

Canada  0.9946 0.9999 0.9996 

New Zealand  0.1137 0.2823 0.2758 

Sweden  0.5129 0.7465 0.8697 

Norway  0.2161 0.4233 0.4113 

Denmark  0.2266 0.3691 0.4011  

" #2

x x%  

RW  VECM MSIAH-VECM 

0.8343 0.8589 0.4124 

0.4420 0.4007 0.2085 

0.8186 0.6971 0.3731 

0.3179 0.2214 0.2993 

0.2287 0.0826 0.2010 

0.7254 0.7170 0.6521 

0.4269 0.4719 0.2673 

0.4258 0.4131 0.3374  
  

" #3

x x%  

 RW  VECM MSIAH-VECM  

UK  0.5712 0.6276 0.5653 

Switzerland  0.4365 0.3774 0.2621 

Japan  0.6344 0.7032 0.9260 

Canada  0.9997 0.9898 0.9927 

New Zealand 0.0927 0.0564 0.1713 

Sweden  0.6938 0.7875 0.7801 

Norway  0.6198 0.6643 0.5724 

Denmark  0.4958 0.5058 0.5879  

" #4

x x%  

RW  VECM MSIAH-VECM 

0.6671 0.6519 0.6486 

0.5964 0.5721 0.4772 

0.7047 0.6953 0.3668 

0.1012 0.4297 0.2364 

0.3145 0.1416 0.1795 

0.7622 0.7148 0.6689 

0.6167 0.6197 0.4444 

0.5060 0.4802 0.3604  
 

 

 

 

 

  

(continued ...) 
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(... Table 2 continued)  

 

 

 

 

Panel b)  Tests for normality based upon inverse normal probability transform  

 

 

 

 

 

 RW VECM MSIAH-VECM 

 Sk  Ku  Sk  Ku  Sk  Ku   

UK  0.4021 0.2618 0.3431 0.2669 0.5604 0.3330  

Switzerland  0.1823 0.4309 0.1921 0.4089 0.2324 0.3615  

Japan  0.0951 0.4780 0.0817 0.4511 0.2718 0.4734  

Canada  0.2815 0.5165 0.4250 0.4801 0.4418 0.5155  

New Zealand  0.7336 0.4482 0.6906 0.4043 0.6684 0.4273  

Sweden  0.4482 0.4069 0.4624 0.4442 0.5021 0.3872  

Norway  0.3649 0.2717 0.4698 0.2537 0.5232 0.3212  

Denmark  0.4204 0.4567 0.4156 0.4464 0.5525 0.2804  

 

 

 

 

Notes:  Panel a):  Figures denote p-values for the Ljung and Box (1978) 2[  test of no first-

order serial correlation of the normal inverse probability transform series, tx , as defined in 

Section 4.1.  Panel b):  Figures denote p-values for the tests of the null hypothesis that the 

skewness (Sk) and excess kurtosis (Ku) of the distribution of the normal inverse probability 

transform series tx  are equal to 0.  
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Table 3.  Out-of-sample performance: density forecasting tests  

 

 

Panel a)  Berkowitz (2001) LR test  

 

 RW  VECM MSIAH-VECM 

UK  2.60 210%8 3.08 210%8 6.92 110%8    

Switzerland 5.47 610%8 7.03 510%8 7.03 110%8    

Japan  1.27 1010%8 4.25 810%8 3.19 110%8    

Canada  2.91 710%8 6.86 510%8 3.11 110%8    

New Zealand 6.41 110%8 6.35 110%8 7.04 110%8    

Sweden  3.46 910%8 3.19 810%8 3.44 110%8    

Norway  4.88 610%8 1.58 510%8 8.12 110%8    

Denmark  5.70 410%8 3.42 410%8 3.89 110%8    

 

Panel b)  Corradi and Swanson (2004) test  

 

 RW vs VECM  RW vs MSIAH-VECM VECM vs MSIAH-VECM  

UK  -0.0013  0.0201  0.0214   

 ( )0 0274-   ( )0 0032-   ( )0 0030-    

Switzerland  -0.0071  0.0077  0.0148   

 ( )0 0221-   ( )0 0237-   ( )0 0212-    

Japan  0.0183  0.0102  0.0284   

 ( )0 0124-   ( )0 0194-   ( )0 0122-    

Canada  -0.0211  0.0264  0.0475   

 ( )0 0101-   ( )0 0073-   ( )0 0037-    

New Zealand  0.0074  0.0285  0.0211   

 ( )0 0220-   ( )0 0092-   ( )0 0129-    

Sweden  0.0010  0.0117  0.0107   

 ( )0 0299-   ( )0 0280-   ( )0 0307-    

Norway  0.0085  0.0122  0.0037   

 ( )0 0211-   ( )0 0188-   ( )0 0249-    

Denmark  -0.0107  0.0047  0.0154   

 ( )0 0203-   ( )0 0013-   ( )0 0009-    

 

Notes:  Panel a):  Figures denote p-values from computing the LR test statistic of Berkowitz 

(2001), which is distributed as " #2 3[  under the null hypothesis.  Panel b):  Figures reported 

are Corradi and Swanson (2004) test statistics for the null hypothesis that the conditional 

densities from two competing models are equally accurate relative to the true density.  The 

test statistics are constructed by selecting min maxu s sP Q
Y ZS T: 1 *1  where s1  is the time series of the 

log-difference of the nominal exchange rate over the entire sample period and 100 equally 

spaced values of u  across this range were used.  Values in brackets are p-values calculated by 

bootstrap based on subsampling as in Politis, Romano and Wolf (1999), where the number of 

bootstrap replications is set to 100. 
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Table 4.  Value-at-Risk calculations  

 

 

 

 

 

Panel a)  Summary statistics  

 

 

 

 RW  VECM  MSIAH-VECM  

MRB   -0.0014  -0.0010  0.0024   

RMSRB  2.43 610%8   1.45 610%8   6.65 610%8    

AD   -  0.0132  0.1347   

VaR Wcorr *
-0.0121  0.0314  0.1553**   

 

 

 

 

Panel b)  VaR backtests  

 

 

 

 RW VECM MSIAH-VECM  

V   1  1  3   

VR  0.23%*0.23%* 0.72%   

CD 0.998 0.996 0.994   

 

 

 

Notes:  Panel a):  MRB  and RMSRB  are the mean relative bias and the root mean square 

relative bias, calculated as in Hendricks (1996) and given in equations (11) and (12) 

respectively.  AD  is the average distance between the realized data and the VaR implied by 

each of the random walk (RW) model, linear VECM and MSIAH-VECM, standardized by the 

average distance of the RW model.  VaR Wcorr *  is the correlation coefficient between the 

estimated VaR and the realized data, calculated as in Hendricks (1996).  ** indicates 

statistical significance at the 1% significance level.  Panel b):  V  denotes the number of times 

that 1 1t tW VaR$ $. , while VR  denotes the estimated violation rate (i.e. V  divided by the 

number of out-of-sample observations), for each of the three competing models.  We test the 

null hypothesis that the violation rate VR  does not exceed the theoretical violation rate of 1% 

using the Kupiec (1995) test; the asterisk * indicates statistical significance at the 5% 

significance level, while the absence of an asterisk next to VR  implies that the Kupiec test 

statistic does not reject the null hypothesis of equality of the model’s estimated violation rate 

and 1%. CD  is the Christoffersen and Diebold (2000) test for the sample first-order 

autocorrelation of a binary variable which is equal to unity if a violation occurs and zero 

otherwise.  For the CD  tests only p-values are reported.  
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