
The Library
Oxidation of mineral sulphides by thermophilic microorganisms
Tools
UNSPECIFIED (1996) Oxidation of mineral sulphides by thermophilic microorganisms. MINERALS ENGINEERING, 9 (11). pp. 1119-1125. ISSN 0892-6875.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Abstract
Pyrite and arsenopyrite concentrates were oxidized during growth of a variety of acidophilic microorganisms over a wide temperature range. A mesophilic culture, comprising Thiobacillus ferrooxidans and Leptospirillum ferrooxidans as the principal iron-oxidizing bacteria, was used at 30 degrees C; Sulfobacillus thermosulfidooxidans was active in pure and mixed cultures at 48 degrees C; and Sulfolobus-like, thermoacidophilic archaea were grown at up to 84 degrees C. At low mineral concentrations, the rate of pyrite/arsenopyrite dissolution was proportional to temperature. However, the use of elevated temperatures to increase rates of mineral processing over those obtainable with mesophiles appeared to be most practicable with moderately thermophilic bacteria because growth of Sulfolobus strain BC was inhibited at higher mineral concentrations. Two aspects of higher temperature bioleaching were emphasized: the unique capacity of Sulfolobus-like archaea for extensive chalcopyrite oxidation; and the requirement for progress in leaching at high mineral concentrations before the potential of these organisms can be realised in process development. Copyright (C) 1996 Elsevier Science Ltd.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | T Technology > TP Chemical technology Q Science > QE Geology T Technology > TN Mining engineering. Metallurgy |
||||
Journal or Publication Title: | MINERALS ENGINEERING | ||||
Publisher: | PERGAMON-ELSEVIER SCIENCE LTD | ||||
ISSN: | 0892-6875 | ||||
Official Date: | November 1996 | ||||
Dates: |
|
||||
Volume: | 9 | ||||
Number: | 11 | ||||
Number of Pages: | 7 | ||||
Page Range: | pp. 1119-1125 | ||||
Publication Status: | Published |
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |