Copulas: an Open Field for Risk Management

Erick Bouyé, Vado Durrleman, Ashkan Nikeghbali, Gael Riboulet and Thierry Roncalli
Copulas: an open ...eld for risk management

1 Introduction

One of the main issues of risk management is the aggregation of individual risks. A powerful concept to aggregate the risks — the copula function — has been introduced in ...nance by Embrechts, McNeil, and Straumann [1999,2000]. In their papers, the authors clarify the essential concepts of dependence and correlation and certainly will greatly influence the risk management industry. The goal of this paper is to provide simple applications for the practical use of copulas for risk management from an industrial point of view. First, we remind some basics about copulas. Then, some applications of copulas for market risk, credit risk and operational risk are given. We will not provide a full mathematical treatment of the subject and we refer interested readers to Joe [1997] or Nielsen [1999].

2 Copulas definition

A copula is a function that links univariate margins to the full multivariate distribution. Then, this function is the joint distribution function of N standard uniform random variables. Mathematically speaking, a function C is a copula function if it fulfills the following properties (Nielsen [1999]):

1. Dom C = [0; 1]N;
2. C is grounded and N-increasing;
3. The margins CN of C satisfy C N (u) = C (1;:::;1;u;1;:::;1) = u for all u in [0;1].

This class of function is very important because it permits to describe the dependence structure between the margins of a multivariate distribution. Indeed, let think about N random variables (X1;:::;XN) with multivariate distribution F and univariate margins (F1;:::;FN). Then we have the canonical decomposition

F (x1;:::;xN) = C (F1 (x1);:::;FN (xN))

Moreover, Abe Sklar proved in 1959 that the copula C is unique for a given distribution F if the margins are continuous. To illustrate the idea behind the copula function, we can think about the multivariate gaussian that is a ‘standard’ assumption in risk management. To postulate that a vector (X1;:::;XN) is gaussian is equivalent to assume that:

1. the univariate margins F1;:::;FN are gaussians;
2. these margins are linked by a unique copula function C (called Normal copula) such that:

\[C_N (u_1;:::;u_N) = \bigotimes \bigotimes_{i=1}^N (u_i) \]

with \(\bigotimes \) the multivariate normal cdf with correlation matrix \(\frac{1}{2} \) and \(\bigotimes \) the inverse of the standard univariate gaussian distribution.

It appears that the risk can be splitted into two parts: the individual risks and the dependence structure between them. Indeed, the assumption of normality for the margins can be removed and F1;:::;FN may be fat-tailed distributions (e.g. Student, Weibull, Pareto) and the dependence may still be characterized by a Normal copula. This leads to a new multivariate distribution that takes into account, for example, the leptokurtic property of asset returns. This is illustrated by Figure 1.

From standard textbooks, we know that the density f of the distribution F is its N-derivative, if it exists:

\[f (x_1;:::;x_N) = \frac{\partial F (x_1;:::;x_N)}{\partial x_1;:::;\partial x_N} \]
To illustrate the difference between the Normal copula and the Student copula, we have plotted bivariate simulations (i) with Gaussian margins (ii) with normalized Student margins (such that the variances are the same).

3 Market risk management

The copula methodology can be applied both to compute Value at Risk (VaR) and to perform stress testing. The two approaches are explained.

3.1 VaR for portfolios

As noted by Embrechts, McNeil and Straumann [2000], the correlation is a special case through all measures that are available to understand the relationships between all the risks. If we assume a Normal copula, the empirical correlation is a good measure of the dependence only if the margins are Gaussian. To illustrate this point, we can construct two estimators:

1. The empirical correlation \(\hat{\rho}_e \);
2. The canonical correlation \(\hat{\rho}_{\text{GML}} \) obtained as follows: the data are mapped to empirical uniforms and transformed with the inverse function of the Gaussian distribution. The correlation is then computed for the transformed data\(^3\).

\(^2\)We refer to Bouyé, Durrleman, Nicoleghbali, Riboulet and Roncalli [2000] for the proof.

\(^3\)\(\hat{\rho}_{\text{GML}} \) is also called the ‘omnibus estimator’. It is consistent and asymptotically normally distributed (Genest, Ghoudi and Rivest [1995]).
The advantage of the canonical measure is that no distribution is assumed for individual risks. Indeed, it can be shown that a misspecification about the marginal distributions (for example to assume gaussian margins if they are not) leads to a biased estimator of the correlation matrix. This is illustrated by the following example for asset returns. The database of the London Metal Exchange⁴ is used and the spot prices of the commodities Aluminium Alloy (AL), Copper (CU), Nickel (NI), Lead (PB) and the 15 months forward prices of Aluminium Alloy (AL-15), dating back to January 1988, are considered. The two correlation measures of asset returns are reported below⁵.

<table>
<thead>
<tr>
<th></th>
<th>AL</th>
<th>AL-15</th>
<th>CU</th>
<th>NI</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>1.00</td>
<td>0.82</td>
<td>0.44</td>
<td>0.38</td>
<td>0.33</td>
</tr>
<tr>
<td>AL-15</td>
<td>1.00</td>
<td>0.39</td>
<td>0.34</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>1.00</td>
<td>0.37</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI</td>
<td>1.00</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Correlation matrix ρ of the LME data

<table>
<thead>
<tr>
<th></th>
<th>AL</th>
<th>AL-15</th>
<th>CU</th>
<th>NI</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>1.00</td>
<td>0.85</td>
<td>0.49</td>
<td>0.39</td>
<td>0.35</td>
</tr>
<tr>
<td>AL-15</td>
<td>1.00</td>
<td>0.43</td>
<td>0.35</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>1.00</td>
<td>0.41</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NI</td>
<td>1.00</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PB</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Correlation matrix ρ_{cml} of the LME data

Even if we assume that the margins are gaussians, we will show that the choice of the dependence structure has a great impact on the VaR computation of a portfolio. If we consider that the dependence of the LME data is a Student copula with 1 degree of freedom⁶, the obtained parameter matrix (see Table 3) differs from the Normal one⁷ of Table 1. Then, let consider a portfolio with $\rho (t)$ the price vector of the assets at time t. The one period value-at-risk with α confidence level is defined by $VaR = F^{-1}(1-\alpha)$ with F the distribution of the random variate $a^2 (\rho (t+1) \rho (t))$. Let assume we have three diörent portfolios (a negative number corresponds to a short position):

<table>
<thead>
<tr>
<th></th>
<th>AL</th>
<th>AL-15</th>
<th>CU</th>
<th>NI</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P_3</td>
<td>2</td>
<td>1</td>
<td>-3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

For these three portfolios, we assume that the margins are gaussians and compare⁸ the VaRs under the assumption of Normal copula and Student copula with $\alpha = 1$. The higher the quantile⁹, the more the Student dependence leads to a higher VaR (see Tables 4 and 5). An interesting point is that for the three portfolios and for a low level quantile (for example 90%), the Student copula leads to lower VaRs. In Table 6, we have reported the VaR when the copula is Normal and the margins are Student. If we compare this table with Table 4, we remark the impact of the choice of fat-tailed distributions on the VaR computation.⁹ Note that if no analytical formula is available for the VaR computation, the results are obtained by simulation.

<table>
<thead>
<tr>
<th></th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
<th>99.5%</th>
<th>99.9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>7.26</td>
<td>9.33</td>
<td>13.14</td>
<td>14.55</td>
<td>17.45</td>
</tr>
<tr>
<td>P_2</td>
<td>4.04</td>
<td>5.17</td>
<td>7.32</td>
<td>8.09</td>
<td>9.81</td>
</tr>
<tr>
<td>P_3</td>
<td>13.90</td>
<td>17.82</td>
<td>25.14</td>
<td>27.83</td>
<td>33.43</td>
</tr>
</tbody>
</table>

Table 4: VaR with Normal copula

<table>
<thead>
<tr>
<th></th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
<th>99.5%</th>
<th>99.9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>5.69</td>
<td>7.95</td>
<td>13.19</td>
<td>15.38</td>
<td>20.06</td>
</tr>
<tr>
<td>P_2</td>
<td>3.82</td>
<td>5.55</td>
<td>9.75</td>
<td>11.65</td>
<td>16.41</td>
</tr>
<tr>
<td>P_3</td>
<td>13.41</td>
<td>19.36</td>
<td>34.16</td>
<td>40.55</td>
<td>54.48</td>
</tr>
</tbody>
</table>

Table 5: VaR with Student copula ($\alpha = 1$)

⁴The database is available on the web site of the LME http://www.lme.co.uk.
⁵The standard errors are not reported here. However, the correlations of Table 2 and Table 3 are in italics if they are signifi cantly diörent from Table 1 at 5% confidence level.
⁶We use the iterative algorithm described in [2] and [5] to estimate the parameters matrix ρ.
⁷But if α is equal 2, only three parameters among eleven are signifi cantly diörent at 5% confidence level.
⁸All the parameters are estimated using maximum likelihood method.
⁹We have reported the VaR for the 99.9% quantile, which approximately corresponds to the rating target A.
¹⁰For low level quantiles (90% and 95%), we have lower VaRs whereas higher quantiles produce bigger VaRs.
can be estimated for \(n = 1; \ldots; N \). Then, the multivariate extreme value distribution for maxima \(G \) is

\[
G_{\mathbf{A}^*; \ldots; \mathbf{A}_N^*} = \left(x^*_n \right)^{-\frac{1}{\xi}} \exp \left(\frac{-1}{\xi} \right) \sum_{i=1}^{N} \left(\frac{x^*_n}{x^*_i} \right)^{-\frac{1}{\xi}}
\]

To illustrate how this result can be used for risk management, we consider an example which focuses on the extremes of the pair (CAC40,DowJones). First, the GEV univariate distributions are estimated for maxima and minima of CAC40 and DowJones respectively (that makes four estimations). Then, let assume a copula that fulfills the condition (2), for example the Gumbel copula:

\[
C_\gamma(u_1; u_2) = \exp \left(\frac{1}{\gamma} \ln u_1 + \frac{1}{\gamma} \ln u_2 \right)
\]

with \(\gamma \) the dependence parameter (\(\gamma = 1 \) for independence and \(\gamma = 1 \) for fully dependent extremal). It is then possible to construct a failure area that corresponds to the set of values \(\mathbf{A}^*_1 \mathbf{A}^*_2 \) such that

\[
\Pr \left(\mathbf{A}^*_1 > \mathbf{A}_1; \mathbf{A}^*_2 > \mathbf{A}_2 \right) = 1 - G_1 (\mathbf{A}_1) \mathbf{G}_2 (\mathbf{A}_2) + G_1 (\mathbf{A}_1) \mathbf{G}_2 (\mathbf{A}_2) \text{ equals a given level of probability.}
\]

By applying the same methodology to the three other pairs (min/max, max/min and min/min), one can construct the failure area from the estimation of the dependence for the four quadrants of (CAC40,DowJones).

Table 6: VaR with Normal copula and Student margins (\(\nu = 4 \))

<table>
<thead>
<tr>
<th>(%)</th>
<th>90%</th>
<th>95%</th>
<th>99%</th>
<th>99.5%</th>
<th>99.9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1)</td>
<td>6.51</td>
<td>8.32</td>
<td>14.26</td>
<td>16.94</td>
<td>24.09</td>
</tr>
<tr>
<td>(p_2)</td>
<td>3.77</td>
<td>5.00</td>
<td>7.90</td>
<td>9.31</td>
<td>13.56</td>
</tr>
<tr>
<td>(p_3)</td>
<td>12.76</td>
<td>17.05</td>
<td>27.51</td>
<td>32.84</td>
<td>49.15</td>
</tr>
</tbody>
</table>

Table 7: Computational time for computing VaR

<table>
<thead>
<tr>
<th>Number of assets</th>
<th>Computational time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.1 s</td>
</tr>
<tr>
<td>10</td>
<td>24.5 s</td>
</tr>
<tr>
<td>100</td>
<td>4 mn 7 s</td>
</tr>
<tr>
<td>500</td>
<td>33 mn 22 s</td>
</tr>
<tr>
<td>1000</td>
<td>1 hr 44 mn 45 s</td>
</tr>
</tbody>
</table>

3.2 Stress testing

The extreme value theory is now familiar to practitioners. It allows, for example, to apply stress scenarios to a portfolio. However, the extension to the multivariate case is a difficult issue. There exists a special class of copula function that avoids the problem. Indeed, any copula function \(C_\gamma \) such that

\[
C_\gamma (u_1; \ldots; u_N) = C_\gamma (u_1; \ldots; u_N) \quad 8 t > 0 \quad (2)
\]

can be used to construct a multivariate extreme value distribution (Deheuvels [1978]). We just write the equations for maxima as the problem is identical for minima. The maxima are denoted componentwise

\[
\mathbf{A}^*_m = \left(\mathbf{A}_m^*; \ldots; \mathbf{A}_N^* \right) = \frac{1}{\gamma} \sum_{k=1}^{\infty} \ln \frac{x^*_m}{x^*_k}
\]

For each maxima \(\mathbf{A}^*_m \), its univariate generalized extreme value (GEV) distribution \(G_n \) with

\[
G_n (\mathbf{A}^*_m) = \exp \left(1 + \frac{x^*_m}{\gamma} \right) ^{-\frac{1}{\gamma}}
\]

with \(\mathbf{A}^*_1 \) and \(\mathbf{A}^*_2 \) the minima. To characterize the dependence of extremal risks, the upper tail dependence coefficient (see Joe [1997]) is used:

\[
\tau = \lim_{\theta \to \pm 1} \Pr (X_1 > F^{-1}(\theta)) j X_2 > F^{-1}(\theta)
\]

We can interpret \(\tau \) as the probability that one random variable is extreme given that the other is extreme. In our example, the dependence of minima is not significantly different from the dependence of maxima, which means that bear markets are quite similar to bull markets from an economic point of view. Figure 3 provides an example for a probability that is equivalent to a 5
years waiting time. We remark that some past extreme events have a waiting time bigger than 5 years.

![Figure 3: Failure areas for the pair (CAC40,DowJones) and a 5 years waiting time. Note that C and C* correspond to the cases of independence and perfect positive dependence between the two asset returns.](image)

4 Credit risk management

One of the main issue concerning credit risk is without doubt the modelling of joint default distribution. Li [2000] and Maccarini [2000] suggest that copulas could be a suitable tool for such a problem. Indeed, a default is generally described by a survival function \(S(t) = \Pr \{ t \geq t \} \), which indicates the probability that a security will attain age \(t \). \(T \) is a random variable called the survival time, which is denoted time-until-default in Li [2000]. Let \(C \) be a survival copula. A multivariate survival distribution \(S \) can be defined as follows

\[
S(t_1, \ldots, t_N) = C(S_1(t_1), \ldots, S_N(t_N)) \tag{3}
\]

where \((S_1, \ldots, S_N)\) are the marginal survival functions. Neilsen [1999] notices that “\(C \) couples the joint survival function to its univariate margins in a manner completely analogous to the way in which a copula connects the joint distribution function to its margins”. Introducing correlation between defaultable securities can then be done using the copula framework.

4.1 Computing the risk of a credit portfolio

Using the previous framework, it is then possible to compute risk measure (or economic capital) of any portfolio of risky securities. Thus, one could remark for instance that the CreditMetrics methodology implicitly uses the Normal Copula in (3) for their credit risk measure (Li [2000]). Indeed, in this (structural) approach the distribution of the joint default is obtained from the Asset Value Model of Merton where underlyings are assumed to be gaussian. To show that the dependence function has a great impact on the computation of the risk of a credit portfolio, we consider the example of joint default probability in the CreditMetrics framework with the one-year transition matrix of Table 8. In Figure 4, we remark that even if the copulas has the same Kendall’s tau\(^1\), we can obtain very divergent joint default probabilities, and of course very divergent credit risk VaRs.

![Figure 4: One-year joint default probabilities (in %). In order to compare them, we use Kendall’s tau.](image)

Table 8: S&P one-year transition matrix (in %)

<table>
<thead>
<tr>
<th>Initial Rating</th>
<th>AAA</th>
<th>AA</th>
<th>A</th>
<th>BBB</th>
<th>BB</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>0.25</td>
<td>0.24</td>
<td>0.26</td>
<td>0.32</td>
<td>0.36</td>
<td>0.38</td>
</tr>
<tr>
<td>AA</td>
<td>0.35</td>
<td>0.37</td>
<td>0.39</td>
<td>0.42</td>
<td>0.48</td>
<td>0.50</td>
</tr>
<tr>
<td>A</td>
<td>0.50</td>
<td>0.52</td>
<td>0.54</td>
<td>0.59</td>
<td>0.64</td>
<td>0.66</td>
</tr>
<tr>
<td>BBB</td>
<td>0.75</td>
<td>0.78</td>
<td>0.80</td>
<td>0.85</td>
<td>0.90</td>
<td>0.92</td>
</tr>
<tr>
<td>BB</td>
<td>0.95</td>
<td>0.98</td>
<td>1.00</td>
<td>1.05</td>
<td>1.10</td>
<td>1.12</td>
</tr>
<tr>
<td>B</td>
<td>1.15</td>
<td>1.18</td>
<td>1.20</td>
<td>1.25</td>
<td>1.30</td>
<td>1.32</td>
</tr>
<tr>
<td>CCC</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

\(^1\) It is one of the most known measures to compare the concordance between copulas.

\(^2\) For example, if the factors are Gamma distributed, the dependence function between defaults is the Cook-Johnson copula.
works of survival analysis and multivariate exponential distributions which provide a starting point for many extensions (see the survey [9]).

4.2 Pricing credit derivatives

Copulas may also apply to the pricing of credit derivatives. One may for instance consider the case of a contingent claim that depends on the rst default among a list of N credit events (such an option is called a rst-to-default). For simplicity, we assume here that the default of each credit event is given by the same Weibull survival function. In Figure 5, we have represented the hazard rate, the survival function, the mean residual time-until-default and the density.

Figure 5: Weibull survival time.

Let us define the rst-to-default time as follows

\[\hat{\tau} = \min (T_1; \ldots; T_N) \]

Nelson [1999] shows that the survival function of \(\hat{\tau} \) is given by the diagonal section of the survival copula:

\[S(\hat{\tau}) = C(S_1(\hat{\tau}); \ldots; S_N(\hat{\tau})) \]

Figure 6 shows the influence of the correlation parameter \(\rho \) of the Normal copula and the influence of the number of securities \(N \) on the density of \(\hat{\tau} \). In Figure 7, we have reported the premium of the rst-to-default option \(V_{[\hat{\tau} \leq T]} \) in the case of deterministic interest rates. In the left plot, the maturity of the option \(T \) is two years. In the right plot, we take two securities. As noted by Coutant, Martineau, Messines, Riboulet and Roncalli [2001], we can find an analytical formula for the density of \(\hat{\tau} \) in the case of the Normal copula and compute easily the option prices even if the interest rates are stochastic thanks to numerical quadrature integration.

\[V_{[\hat{\tau} \leq T]} = \int_{\hat{\tau} \leq T} f_{\hat{\tau}}(\hat{\tau}) d\hat{\tau} \]

where \(f_{\hat{\tau}} \) is the density of the survival time \(T_N \).

Figure 6: Density of the rst-to-default. The solid line with circles corresponds to the density of one survival time.

Figure 7: Premium of the rst-to-default option.
5 Operational risk management

One of the standard measurement methodologies for operational risk with internal data is the following\(^2\):

\(^2\) Let \(\mathcal{X} \) be the random variable that describes the severity of loss. We denote also \(X_k^i(t) \) as the random process of \(\mathcal{X} \) for each operational risk \(k \) (\(k = 1, \ldots, K \)).

\(^2\) For each risk, we assume that the number of events at time \(t \) is a random variable \(N_k(t) \).

\(^2\) The loss process \(\%(t) \) is also defined as

\[
\%(t) = \sum_{k=1}^{K} \frac{X_k^i(t)}{N_k(t)}
\]

\(^2\) The Economic Capital with an \(\% \) confidence level is usually defined as

\[
EC = F^{-1}(\%)
\]

with \(F^{-1} \) the inverse function of the loss distribution \(\%(t) \). This methodology can be viewed as the Loss Distribution Approach proposed by the Basel Committee on Banking Supervision (see document [1]). In the New Basel Capital Accord, dependence eects in operational risk are not considered:

The capital charge is based on the simple sum of the operational risk VaR for each business line/risk type cell. Correlation eects across the cells are not considered in this approach (annex 6 of [1]).

But, from the point of view of economic capital allocation, “correlation eects” are a keypoint of the operational risk measure. One possibility is then to introduce dependence by using correlations between frequencies of different types of risk. Each individual frequency \(N_k(t) \) is generally assumed to be a Poisson variable \(\mathbb{P} \) with mean \(\lambda_k \). However, multivariate Poisson distributions are relatively complicated for dimensions higher than two. Song [2000] suggests then an interesting alternative by using copulas. Assuming a Normal copula, we note \(\mathbb{P}(\cdot; \rho) \) the multivariate Poisson distribution generated by the Normal copula with parameter \(\rho \) and univariate Poisson distribution \(\mathbb{P}(\cdot; \lambda_k) \).

The next table contains the probability mass function

\[
p_{i,j} = \Pr(N_1 = i; N_2 = j) = \mathbb{P}(\cdot; \lambda_k)
\]

The Economic Capital \(EC = F^{-1}(\%) \) with an \(\% \) confidence level for operational risk could then be calculated by assuming that \(N = N_1; \ldots; N_K \) follows a multivariate Poisson distribution \(\mathbb{P}(\cdot; \lambda) \). Moreover, there are no computational difficulties, because the estimation of the parameters \(\lambda_k \) and \(\% \) is straightforward and the quantile can be easily obtained with Monte Carlo methods. Figure 8 illustrates the simulation of a bivariate Poisson distribution.

\begin{table}
\begin{tabular}{cccc}
\hline
\(p_{i,j} \) & 0 & 1 & 2 & \% \(p_{i,j} \) \\
\hline
0 & 0.995 & 0.133 & 0.089 & 0.368 \\
1 & 0.034 & 0.100 & 0.113 & 0.368 \\
2 & 0.006 & 0.031 & 0.052 & 0.184 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\hline
\(p_{k,l} \) & 0.135 & 0.271 & 0.271 & \% \(p_{k,l} \) \\
\hline
\end{tabular}
\end{table}

\begin{figure}
\begin{center}
\includegraphics[width=\textwidth]{figure8.png}
\end{center}
\caption{Random generation of bivariate Poisson variables \(\mathbb{P}(30) \) and \(\mathbb{P}(60) \).}
\end{figure}

6 Conclusion

In this paper, we show that copula is a very powerful tool for risk management since it fulfills one of its main goals: the modelling of dependence between the individual risks. That is why this approach is an open \(\% \)d for
risk. Indeed, there is a need to understand other 'industrial' copula functions such as Normal and Student. Before going further, copulas have to become more familiar to practitioners and we believe they will.

Eric Bouyé, FERC, City University Business School, England
Valdo Durrleman, Department of Operations Research & Financial Engineering, Princeton University, USA
Ashkan Nikeghbali, Université Paris VI, France
Gaël Riboulet & Thierry Roncalli, Groupe de Recherche Opérationnelle, Crédit Lyonnais, France

References
The following working papers on copulas are available upon request (thierry.roncalli@creditlyonnais.fr):

 Abstract: Copulas are a general tool to construct multivariate distributions and to investigate dependence structure between random variables. However, the concept of copula is not popular in finance. In this paper, we show that copulas can be extensively used to solve many financial problems.
 Keywords: Copulas, dependence, markov processes, brownian copula, value-at-risk, stress-testing, operational risk.

 Abstract: We study how copulas properties are modified after some suitable transformations. In particular, we show that using appropriate transformations permits to fit the dependence structure in a better way.
 Keywords: γ-transformation, Kendall’s tau, Spearman’s rho, upper tail dependence.

 Abstract: In this paper, we give a few methods for the choice of copulas in financial modelling.
 Keywords: Maximum likelihood method, inference for margins, CML method, point estimator, non parametric estimation, Deheuvels copula, copula approximation, discrete L^p norm.

 Abstract: In this paper, we study the approximation procedures introduced by Li, Mikusinski, Sherlock and Taylor [1997]. We show that there exists a bijection between the set of the discretized copulas and the set of the doubly stochastic matrices. For the Bernstein and checkerboard approximations, we then provide analytical formulas for the Kendall’s tau and Spearman’s rho concordance measures. Moreover, we demonstrate that these approximations does not exhibit tail dependence. Finally, we consider the general case of approximations induced by partitions of unity. Moreover, we show that the set of copulas induced by partition of unity is a Markov sub-algebra with respect to the $*$-product of Darsow, Nguyen and Olsen [1992].
 Keywords: Doubly stochastic matrices, Bernstein polynomials approximation, checkerboard copula, partitions of unity, Markov algebras, product of copulas.

 Abstract: In this paper, we consider the problem of bounds for distribution convolutions and we present some applications to risk management. We show that the upper Fréchet bound is not always the more risky dependence structure. It is in contradiction with the belief in finance that maximal risk correspond to the case where the random variables are comonotonic.
Keywords: Triangle functions, dependency bounds, infimal, supremal and \(\sigma \)-convolutions, Makarov inequalities, Value-at-Risk, ‘square root’ rule, Williamson’s uniform quantisation method, Dall’Aglio problem, Kantorovich distance.

Abstract: We consider the problem of modelling the dependence between financial markets. In financial economics, the classical tool is the Pearson (or linear) correlation to compare the dependence structure. We show that this coefficient does not give a precise information on the dependence structure. Instead, we propose a conceptual framework based on copulas. Two applications are proposed. The first one concerns the study of extreme dependence between international equity markets. The second one concerns the analysis of the East Asian crisis.

Keywords: Linear correlation, extreme value theory, quantile regression, concordance order, Deheuvels copula, contagion, Asian crisis.

Abstract: In this paper, we consider the open question on Spearman’s rho and Kendall’s tau of Nelsen [1991]. Using a technical hypothesis, we can answer in the positive. However, one question remain open: how can we understand the technical hypothesis? Because this hypothesis is not right in general, we can find some pathological cases which contradicts the Nelsen’s conjecture.

Keywords: Spearman’s rho, Kendall’s tau, cubic copula.

Keywords: Copulas, financial applications, risk management, statistical modelling, probabilistic metric spaces, markov operators, quasi-copulas.

Keywords: Copulas, two-assets option, Markov processes, Value-at-Risk, credit risk, credit derivatives.

10. Durrleman, V., A. Nikeghbali and T. Roncalli [2001], What are the most important copulas in finance?, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Slides, 40 p., March 2001

Keywords: Copulas, risky dependence function, singular copulas, extreme points, quantile aggregation, spread option.

Abstract: In this paper, we show that copula is a very powerful tool for risk management since it fulfills one of its main goal: the modelling of dependence between the individual risks. That is why this approach is an open field for risk.

Keywords: Copulas, value-at-risk, stress-testing, credit risk, operational risk.
List of other working papers:

2001

1. Soosung Hwang and Steve Satchell, GARCH Model with Cross-sectional Volatility; GARCHX Models, WP01-16
2. Soosung Hwang and Steve Satchell, Tracking Error: Ex-Ante versus Ex-Post Measures, WP01-15
4. Soosung Hwang and Mark Salmon, An Analysis of Performance Measures Using Copulae, WP01-13
5. Soosung Hwang and Mark Salmon, A New Measure of Herding and Empirical Evidence, WP01-12
6. Richard Lewin and Steve Satchell, The Derivation of New Model of Equity Duration, WP01-11
7. Massimiliano Marcellino and Mark Salmon, Robust Decision Theory and the Lucas Critique, WP01-10
8. Jerry Coakley, Ana-Maria Fuertes and Maria-Teresa Perez, Numerical Issues in Threshold Autoregressive Modelling of Time Series, WP01-09
9. Jerry Coakley, Ana-Maria Fuertes and Ron Smith, Small Sample Properties of Panel Time-series Estimators with I(1) Errors, WP01-08
10. Jerry Coakley and Ana-Maria Fuertes, The Felsdtein-Horioka Puzzle is Not as Bad as You Think, WP01-07
11. Jerry Coakley and Ana-Maria Fuertes, Rethinking the Forward Premium Puzzle in a Non-linear Framework, WP01-06
12. George Christodoulakis, Co-Volatility and Correlation Clustering: A Multivariate Correlated ARCH Framework, WP01-05
14. Eric Bouyé and Nicolas Gaussel and Mark Salmon, Investigating Dynamic Dependence Using Copulae, WP01-03
15. Eric Bouyé, Multivariate Extremes at Work for Portfolio Risk Measurement, WP01-02

2000

1. Soosung Hwang and Steve Satchell, Valuing Information Using Utility Functions, WP00-06
2. Soosung Hwang, Properties of Cross-sectional Volatility, WP00-05
3. Soosung Hwang and Steve Satchell, Calculating the Miss specification in Beta from Using a Proxy for the Market Portfolio, WP00-04
4. Laun Middleton and Stephen Satchell, Deriving the APT when the Number of Factors is Unknown, WP00-03
5. George A. Christodoulakis and Steve Satchell, Evolving Systems of Financial Returns: Auto-Regressive Conditional Beta, WP00-02
6. Christian S. Pedersen and Stephen Satchell, Evaluating the Performance of Nearest Neighbour Algorithms when Forecasting US Industry Returns, WP00-01

1999

1. Yin-Wong Cheung, Menzie Chinn and Ian Marsh, How do UK-Based Foreign Exchange Dealers Think Their Market Operates?, WP99-21
2. Soosung Hwang, John Knight and Stephen Satchell, Forecasting Volatility using LINEX Loss Functions, WP99-20
5. Soosung Hwang and Stephen Satchell, Modelling Emerging Market Risk Premia Using Higher Moments, WP99-17
11. Renzo Avesani, Giampiero Gallo and Mark Salmon, On the Evolution of Credibility and Flexible Exchange Rate Target Zones, WP99-11
12. Paul Marriott and Mark Salmon, An Introduction to Differential Geometry in Econometrics, WP99-10
13. Mark Dixon, Anthony Ledford and Paul Marriott, Finite Sample Inference for Extreme Value Distributions, WP99-09
14. Ian Marsh and David Power, A Panel-Based Investigation into the Relationship Between Stock Prices and Dividends, WP99-08
15. Ian Marsh, An Analysis of the Performance of European Foreign Exchange Forecasters, WP99-07
16. Frank Critchley, Paul Marriott and Mark Salmon, An Elementary Account of Amari's Expected Geometry, WP99-06
17. Demos Tambakis and Anne-Sophie Van Royen, Bootstrap Predictability of Daily Exchange Rates in ARMA Models, WP99-05
19. Christopher Neely and Paul Weller, Predictability in International Asset Returns: A Re-examination, WP99-03

1998

1. Soosung Hwang and Stephen Satchell, Implied Volatility Forecasting: A Comparison of Different Procedures Including Fractionally Integrated Models with Applications to UK Equity Options, WP98-05
2. Roy Batchelor and David Peel, Rationality Testing under Asymmetric Loss, WP98-04
3. Roy Batchelor, Forecasting T-Bill Yields: Accuracy versus Profitability, WP98-03
4. Adam Kurpiel and Thierry Roncalli, Option Hedging with Stochastic Volatility, WP98-02