Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

NEUTRALIZATION ESCAPE MUTANTS OF TYPE-A INFLUENZA-VIRUS ARE READILY SELECTED BY ANTISERA FROM MICE IMMUNIZED WITH WHOLE VIRUS - A POSSIBLE MECHANISM FOR ANTIGENIC DRIFT

Tools
- Tools
+ Tools

UNSPECIFIED (1994) NEUTRALIZATION ESCAPE MUTANTS OF TYPE-A INFLUENZA-VIRUS ARE READILY SELECTED BY ANTISERA FROM MICE IMMUNIZED WITH WHOLE VIRUS - A POSSIBLE MECHANISM FOR ANTIGENIC DRIFT. JOURNAL OF GENERAL VIROLOGY, 75 (Part 12). pp. 3493-3502. ISSN 0022-1317.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Request Changes to record.

Abstract

It is not fully understood how antigenic drift of the haemagglutinin of type A influenza virus in man occurs in the presence of the expected polyclonal antibody response to the five antigenic sites, A to E. Here we show that 12 % (11/92) of sera from mice which had mounted a secondary immune response to inactivated influenza virus were able to select escape mutants. No escape mutant was selected with serum from nonimmunized mice (0/65). Selection required only a single passage, and escape mutants were identified by their reaction with monoclonal antibodies (MAbs); all but one had altered reactivity at site A. Most of the site A escape mutants (7/10) were conventional in character and did not react in haemagglutination-inhibition (HI) or neutralization assays with the identifying MAb. The HA genes of three of these were part sequenced and had a predicted single amino acid substitution (Gly-144 --> Glu) in site A. The other escape mutants (3/10) had a small (2-fold) reduction in HI and neutralization to the site A MAb, but no amino acid substitution in site A. The final mutant was a conventional site B escape mutant. To model antisera which selected escape mutants, we constructed 'pseudo-immune sera' using mixtures of two neutralizing MAbs in which the first MAb was held at a constant high concentration (1000 HIU/ml). Escape mutants could be selected to the first MAb when the titre of the second MAb was reduced to a low but still inhibiting concentration (1 to 3 HIU/ml). Mixtures of three MAbs also selected escape mutants with similar facility provided that the second and third MAbs were reduced to a similar low concentration. Thus it is possible that the ability of an antiserum to select escape mutants is due to the neutralizing antibody response being biased to an epitope/cross-reacting epitopes within a single antigenic site. However, when escape mutants were reacted in HI assay with their selecting antiserum, the maximum difference from the titre with wt virus was 75 %. The findings of this study may be relevant to the understanding of antigenic drift in type A human influenza virus, and to immune-driven antigenic variation in other virus infections.

Item Type: Journal Article
Subjects: T Technology > TP Chemical technology
Q Science > QR Microbiology > QR355 Virology
Journal or Publication Title: JOURNAL OF GENERAL VIROLOGY
Publisher: SOC GENERAL MICROBIOLOGY
ISSN: 0022-1317
Official Date: December 1994
Dates:
DateEvent
December 1994UNSPECIFIED
Volume: 75
Number: Part 12
Number of Pages: 10
Page Range: pp. 3493-3502
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us