Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Functional genomics of photoperiodic bulb initiation in onion (Allium cepa)

Tools
- Tools
+ Tools

Taylor, Andrew (2009) Functional genomics of photoperiodic bulb initiation in onion (Allium cepa). PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_THESIS_Taylor_2009.pdf - Requires a PDF viewer.

Download (5Mb)
Official URL: http://webcat.warwick.ac.uk/record=b2258737~S15

Request Changes to record.

Abstract

Bulb initiation is a process which is photoperiodically driven, drawing parallels with flowering. Photoperiodic flowering is well characterised at molecular and genetic levels and occurs when photoreceptors interact with the circadian clock, regulating the expression of CONSTANS (CO), which itself regulates the expression of floral pathway integrating genes such as FLOWERING LOCUS T (FT), leading to floral initiation. Two genes which regulate CO transcription are FLAVIN-BINDING, KELCH REPEAT, F-BOX (FKF1) and GIGANTEA (GI). The onion genome is very large with a high level of duplication, presenting challenges for any molecular-based study. The aim of this study was to test the hypothesis that genes controlling daylength response are conserved between the model plant Arabidopsis and onion and hence between the different end-processes bulbing and flowering.
Bulbing ratios were used to measure the response of onion plants to long day (LD) and short day (SD) conditions and the reversibility of the bulbing process. It was shown that bulbing is reversible, with a delay when plants are transferred from SDs to LDs, suggesting the accumulation of an inhibitor.
Diurnal expression patterns of onion genes homologous to Arabidopsis flowering time genes were examined using quantitative RT-PCR. Phylogenetic analyses were conducted to validate the identity of the homologues. Molecular and phylogenetic data suggests that an onion GIGANTEA (GI) homologue was isolated. Peaks of expression of ZT10 in LDs and ZT7 in SDs mirror the expression of Arabidopsis GI. Homologues of FKF1 and the circadian clock gene ZEITLUPE (ZTL) were also characterised. The putative FKF1 homologue showed different expression patterns in varieties exhibiting different daylength responses. These differences may contribute to the different daylength responses. A CO-like gene, which is closely related to Arabidopsis COL4, and three FT-like genes were also characterised. It appears that many of the genes controlling daylength response are conserved in onion.

Item Type: Thesis or Dissertation (PhD)
Subjects: S Agriculture > SB Plant culture
Library of Congress Subject Headings (LCSH): Onions -- Growth, Arabidopsis thaliana, Photoperiodism, Biological rhythms, Bulbs (Plants)
Official Date: May 2009
Dates:
DateEvent
May 2009Submitted
Institution: University of Warwick
Theses Department: Warwick HRI
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Thomas, Brian, 1949- ; Massiah, Andrea ; Morris, K. (Karl)
Sponsors: Biotechnology and Biological Sciences Research Council (Great Britain) (BBSRC)
Format of File: pdf
Extent: 261 leaves : ill., charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us