Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

IMPORT OF BARLEY PHOTOSYSTEM-I SUBUNIT-N INTO THE THYLAKOID LUMEN IS MEDIATED BY A BIPARTITE PRESEQUENCE LACKING AN INTERMEDIATE PROCESSING SITE - ROLE OF THE DELTA-PH IN TRANSLOCATION ACROSS THE THYLAKOID MEMBRANE

Tools
- Tools
+ Tools

UNSPECIFIED (1994) IMPORT OF BARLEY PHOTOSYSTEM-I SUBUNIT-N INTO THE THYLAKOID LUMEN IS MEDIATED BY A BIPARTITE PRESEQUENCE LACKING AN INTERMEDIATE PROCESSING SITE - ROLE OF THE DELTA-PH IN TRANSLOCATION ACROSS THE THYLAKOID MEMBRANE. JOURNAL OF BIOLOGICAL CHEMISTRY, 269 (5). pp. 3762-3766.

Research output not available from this repository, contact author.

Request Changes to record.

Abstract

Translocation across the thylakoid membrane of the recently identified photosystem I polypeptide, PSI-N, has been analyzed in pea (Pisum sativum) and barley (Hordeum vulgare). PSI-N from barley is synthesized in the cytosol with a bipartite presequence similar in structural terms to those of other cytosolically synthesized proteins routed to the thylakoid lumen. In vitro reconstitution assays demonstrate that translocation into thylakoids is absolutely dependent on the trans-thylakoidal DELTApH, but that nucleotide triphosphates are not required; the translocation mechanism is thus similar in these respects to those utilized by the 23- and 16-kDa proteins of the oxygen-evolving complex. The translocation of PSI-N is unique in that the presequence of PSI-N does not contain an intermediate cleavage site for the stromal processing peptidase; import experiments using intact chloroplasts depleted of a DELTApH by nigericin treatment demonstrate the accumulation of the full precursor protein in the stroma. Translocation across the thylakoid membrane can take place in the absence of stromal factors, although the presence of stromal extracts leads to a consistent but slight enhancement of translocation efficiency. We also show that efficient translocation of the 33-kDa protein of the oxygen-evolving complex can take place in the complete absence of DELTApH, in apparent contradiction with earlier findings; the translocation of this protein is thus similar in several respects to that of plastocyanin. The data indicate the operation of two very different types of translocation mechanism, with PSI-N exhibiting additional separate characteristics.

Item Type: Journal Article
Subjects: Q Science > QD Chemistry
Journal or Publication Title: JOURNAL OF BIOLOGICAL CHEMISTRY
Publisher: AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
ISSN: 0021-9258
Official Date: 4 February 1994
Dates:
DateEvent
4 February 1994UNSPECIFIED
Volume: 269
Number: 5
Number of Pages: 5
Page Range: pp. 3762-3766
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us