# The Library

### PREFERRED POINT GEOMETRY AND STATISTICAL MANIFOLDS

Tools

UNSPECIFIED.
(1993)
*PREFERRED POINT GEOMETRY AND STATISTICAL MANIFOLDS.*
ANNALS OF STATISTICS, 21
(3).
pp. 1197-1224.
ISSN 0090-5364

**Full text not available from this repository.**

## Abstract

A new mathematical object called a preferred point geometry is introduced in order to (a) provide a natural geometric framework in which to do statistical inference and (b) reflect the distinction between homogeneous aspects (e.g., any point theta may be the true parameter) and preferred point ones (e.g., when theta0 is the true parameter). Although preferred point geometry is applicable generally in statistics, we focus here on its relationship to statistical manifolds, in particular to Amari's expected geometry. A symmetry condition characterises when a preferred point geometry both subsumes a statistical manifold and, simultaneously, generalises it to arbitrary order. There are corresponding links with Barndorff-Nielsen's strings. The rather unnatural mixing of metric and nonmetric connections in statistical manifolds is avoided since all connections used are shown to be metric. An interpretation of duality of statistical manifolds is given in terms of the relation between the score vector and the maximum likelihood estimate.

Item Type: | Journal Article |
---|---|

Subjects: | Q Science > QA Mathematics |

Journal or Publication Title: | ANNALS OF STATISTICS |

Publisher: | INST MATHEMATICAL STATISTICS |

ISSN: | 0090-5364 |

Official Date: | September 1993 |

Volume: | 21 |

Number: | 3 |

Number of Pages: | 28 |

Page Range: | pp. 1197-1224 |

Publication Status: | Published |

URI: | http://wrap.warwick.ac.uk/id/eprint/20938 |

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

### Actions (login required)

View Item |