The Library
Interplay between network topology and synchronybreaking bifurcation: homogeneous fourcell coupled networks
Tools
Kamei, Hiroko (2008) Interplay between network topology and synchronybreaking bifurcation: homogeneous fourcell coupled networks. PhD thesis, University of Warwick.

PDF
WRAP_THESIS_Kamei_2008.pdf  Requires a PDF viewer. Download (2941Kb) 
Official URL: http://webcat.warwick.ac.uk/record=b2279722~S15
Abstract
Complex networks are studied across many fields of science. Much progress has been made on static and statistical features of networks, such as small world and scalefree networks. However, general studies of network dynamics are comparatively rare. Synchrony is one commonly observed dynamical behaviour in complex networks. Synchrony breaking is where a fully synchronised network loses coherence, and breaks up into multiple clusters of selfsynchronised subnetworks. Mathematically this can be described as a bifurcation from a fully synchronous state, and in this thesis we investigate the effect of network topology on synchronybreaking bifurcations.
Coupled cell networks represent a collection of individual dynamical systems (termed cells) that interact with each other. Each cell is described by an ordinary differential equation (ODE) or a system of ODEs. Schematically, the architecture of a coupled cell network can be represented by a directed graph with a node for each cell, and edges indicating cell couplings. Regular homogeneous networks are a special case where all the nodes/cells and edges are of the same type, and every node has the same number of input edges, which we call the valency of the network. Classes of homogeneous regular networks can be counted using an existing group theoretic enumeration formula, and this formula is extended here to enumerate networks with more generalised structures. However, this does not generate the networks themselves. We therefore develop a computer algorithm to display all connected regular homogeneous networks with less than six cells and analysed synchronybreaking bifurcations for fourcell regular homogeneous networks.
Robust patterns of synchrony (invariant synchronised subspaces under all admissible vector fields) describe how cells are divided into multiple synchronised clusters, and their existence is solely determined by the network topology. These robust patterns of synchrony have a hierarchical relationship, and can be treated as a partially ordered set, and expressed as a lattice. For each robust pattern of synchrony (or lattice point) we can reduce the original network to a smaller network, called a quotient network, by representing each cluster as a single combined node.
Therefore, the lattice for a given regular homogeneous network provides robust patterns of synchrony and corresponding quotient networks. Some lattice structures allow a synchrony breaking bifurcation analysis based solely on the dynamics of the quotient networks, which are lifted to the original network using the robust patterns of synchrony. However, in other cases the lattice structure also tells us of the existence and location of additional synchronybreaking bifurcating branches not seen in the quotient networks.
In conclusion the work undertaken here shows that the invariant synchronised subspaces that arise from a network topology facilitate the classification of synchronybreaking bifurcations of networks.
Item Type:  Thesis or Dissertation (PhD)  

Subjects:  Q Science > QA Mathematics  
Library of Congress Subject Headings (LCSH):  Social sciences  Network analysis, Topology, Mathematical statistics, Bifurcation theory, Coupled problems (Complex systems)  
Official Date:  July 2008  
Dates: 


Institution:  University of Warwick  
Theses Department:  Department of Chemistry  
Thesis Type:  PhD  
Publication Status:  Unpublished  
Supervisor(s)/Advisor:  Stewart, Ian, 1945  
Format of File:  
Extent:  299 leaves : ill. (some col.), charts  
Language:  eng 
Request changes or add full text files to a record
Repository staff actions (login required)
View Item 
Downloads
Downloads per month over past year