Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

GENETIC, BIOCHEMICAL AND IMMUNOLOGICAL EVIDENCE FOR THE INVOLVEMENT OF 2 ALCOHOL DEHYDROGENASES IN THE METABOLISM OF PROPANE BY RHODOCOCCUS-RHODOCHROUS PNKB1

Tools
- Tools
+ Tools

UNSPECIFIED (1992) GENETIC, BIOCHEMICAL AND IMMUNOLOGICAL EVIDENCE FOR THE INVOLVEMENT OF 2 ALCOHOL DEHYDROGENASES IN THE METABOLISM OF PROPANE BY RHODOCOCCUS-RHODOCHROUS PNKB1. ARCHIVES OF MICROBIOLOGY, 157 (6). pp. 488-492.

Full text not available from this repository, contact author.

Request Changes to record.

Abstract

NAD+-dependent propan-1-ol and propan-2-ol dehydrogenase activities were detected in cell-free extracts of Rhodococcus rhodochrous PNKb1 grown on propane and potential intermediates of propane oxidation. However, it was unclear whether this activity was mediated by one or more enzymes. The isolation of mutants unable to utilize propan-1-ol (alcA-) or propan-2-ol (alcB-) as sole carbon and energy sources demonstrated that these substrates are metabolized by different alcohol dehydrogenases. These mutants were also unable to utilize propane as a growth substrate indicating that both alcohols are intermediates of propane metabolism. Therefore, propane is metabolized by terminal and sub-terminal oxidation pathways. Western-blot analysis demonstrated that a previously purified NAD+-dependent propan-2-ol dehydrogenase (Ashraf and Murrell 1990) was only synthesized after growth on propane and sub-terminal oxidation intermediates (but not acetone), and not propan-1-ol or terminal oxidation intermediates. Therefore, our evidence suggest that another dehydrogenase is involved in the metabolism of propan-1-ol and this agrees with the isolation of the alcA- and alcB- phenotypes. The previously characterized NAD+-dependent propan-2-ol dehydrogenase from R. rhodochrous PNKb1 is highly conserved amongst members of the propane-utilizing Rhodococcus-Nocardia complex.

Item Type: Journal Article
Subjects: Q Science > QR Microbiology
Journal or Publication Title: ARCHIVES OF MICROBIOLOGY
Publisher: SPRINGER VERLAG
ISSN: 0302-8933
Official Date: May 1992
Dates:
DateEvent
May 1992UNSPECIFIED
Volume: 157
Number: 6
Number of Pages: 5
Page Range: pp. 488-492
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: publications@live.warwick.ac.uk
Contact Details
About Us