The Library
Explicit large nuclear charge limit of electronic ground states for Li, Be, B, C, N, O, F, Ne and basic aspects of the periodic table
Tools
Friesecke, Gero and Goddard, B. (Benjamin). (2009) Explicit large nuclear charge limit of electronic ground states for Li, Be, B, C, N, O, F, Ne and basic aspects of the periodic table. SIAM Journal on Mathematical Analysis, Vol.41 (No.2). pp. 631664. ISSN 00361410

PDF
WRAP_Friesecke_Explicit_large.pdf  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (449Kb) 
Official URL: http://dx.doi.org/10.1137/080729050
Abstract
This paper is concerned with the Schrödinger equation for atoms and ions with $N=1$ to 10 electrons. In the asymptotic limit of large nuclear charge $Z$, we determine explicitly the lowlying energy levels and eigenstates. The asymptotic energies and wavefunctions are in good quantitative agreement with experimental data for positive ions, and in excellent qualitative agreement even for neutral atoms ($Z=N$). In particular, the predicted ground state spin and angular momentum quantum numbers ($^1S$ for He, Be, Ne, $^2S$ for H and Li, $^4S$ for N, $^2P$ for B and F, and $^3P$ for C and O) agree with experiment in every case. The asymptotic Schrödinger ground states agree, up to small corrections, with the semiempirical hydrogen orbital configurations developed by Bohr, Hund, and Slater to explain the periodic table. In rare cases where our results deviate from this picture, such as the ordering of the lowest $^1D^o$ and $^3S^o$ states of the carbon isoelectronic sequence, experiment confirms our predictions and not Hund's.
Item Type:  Journal Article 

Alternative Title:  Explicit large nuclear charge limit of electronic ground states for Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen, Fluorine, Neon and basic aspects of the periodic table 
Subjects:  Q Science > QC Physics 
Divisions:  Faculty of Science > Mathematics 
Library of Congress Subject Headings (LCSH):  Quantum chemistry  Research, Electronic structure  Research, Periodic law  Research, Schrödinger equation, Particles (Nuclear physics)  Research 
Journal or Publication Title:  SIAM Journal on Mathematical Analysis 
Publisher:  Society for Industrial and Applied Mathematics 
ISSN:  00361410 
Date:  21 May 2009 
Volume:  Vol.41 
Number:  No.2 
Page Range:  pp. 631664 
Identification Number:  10.1137/080729050 
Status:  Peer Reviewed 
Access rights to Published version:  Open Access 
References:  [AS72] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Natl. Bureau Standards Appl. Math. 55, U.S. Department of Commerce, Washington, D.C., 1972. [AdP01] P. Atkins and J. de Paula, Atkins’ Physical Chemistry, 7th ed., Oxford University Press, Oxford, 2001. [BT86] Ch. W. Bauschlicher and P. R. Taylor, Benchmark full configurationinteraction calculations on H2O, F, and F−, J. Chem. Phys., 85 (1986), pp. 2779–2783. [BS57] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and TwoElectron Atoms, Handb. Phys. 35, SpringerVerlag, Berlin, 1957. [Boh22] N. Bohr, The Theory of Atomic Spectra and Atomic Constitution, Cambridge University Press, Cambridge, UK, 1922. [Con80] E. U. Condon, Atomic Structure, Cambridge University Press, Cambridge, UK, 1980. [CS35] E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, Cambridge, UK, 1935. [Dir29] P. A. M. Dirac, Quantum mechanics of manyelectron systems, Proc. Roy. Soc. London A, 123 (1929), pp. 714–733. [Fri03] G. Friesecke, The multiconfiguration equations for atoms and molecules, Arch. Rational Mech. Anal., 169 (2003), pp. 35–71. [FriXX] G. Friesecke, Mathematical Models in Quantum Chemistry, monograph in preparation. [FG09] G. Friesecke and B. D. Goddard, Asymptoticsbased CI models for atoms: Properties, exact solution of a minimal model for Li to Ne, and application to atomic spectra, Multiscale Model. Simul., to appear (2009). [FF77] C. Froese Fischer, The HartreeFock Method for Atoms. A Numerical Approach, Wiley Interscience, New York, 1977. [Gri95] D. J. Griffiths, Introduction to Quantum Mechanics, PrenticeHall, Englewood Cliffs, NJ, 1995. [Har28] D. R. Hartree, The wave mechanics of an atom with a nonCoulomb central field. Part I—Theory and methods, Proc. Cambridge Philos. Soc., 24 (1928), pp. 89–132. [Har57] D. R. Hartree, The Calculation of Atomic Structures, John Wiley, New York, 1957. [Her86] D. R. Herschbach, Dimensional interpolation for twoelectron atoms, J. Chem. Phys., 84 (1986), pp. 838–851. [Huh93] J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, Harper Collins, New York, 1993. [Hun25] F. Hund, Zur Deutung verwickelter Spektren, insbesondere der Elemente Scandium bis Nickel, Z. Phys., 33 (1925), pp. 345–371. [Hyl30] E. A. Hylleraas, ¨ Uber der Grundterm der Zweielecktronenprobleme von H−, He, Li+, Be++ usw, Z. Phys., 65 (1930), pp. 209–225. [Joh05] R. D. Johnson, ed., NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database, Number 101, Release 12, 2005. [Jos02] J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin, New York, 2002. [Kat51] T. Kato, Fundamental properties of Hamiltonian operators of Schr¨odinger type, Trans. Amer. Math. Soc., 70 (1951), pp. 212–218. [Kat95] T. Kato, Perturbation Theory of Linear Operators, Springer, Berlin, 1995. [LL77] L. D. Landau and L. M. Lifschitz, Quantum Mechanics, Pergamon Press, Oxford, 1977. [Lay59] D. Layzer, On a screening theory of atomic spectra, Ann. Physics, 8 (1959), pp. 271–296. [Lie84] E. H. Lieb, Bound on the maximum negative ionization of atoms and molecules, Phys. Rev. A, 29 (1984), pp. 3018–3028. [Loe86] J. G. Loeser, Atomic energies from the largedimension limit, J. Chem. Phys., 86 (1986), pp. 5635–5646. [Moo70] C. E. Moore, Selected Tables of Atomic Spectra (NSRDSNBS 3), National Bureau of Standards, Washington, D.C., 1970. [RD71] M. E. Riley and A. Dalgarno, Perturbation calculation of the helium ground state energy, Chem. Phys. Lett., 9 (1971), pp. 382–386. [RJK+07] Yu. Ralchenko, F.C. Jou, D. E. Kelleher, A. E. Kramida, A. Musgrove, J. Reader, W. L. Wiese, and K. Olsen, NIST Atomic Spectra Database (Version 3.1.2), National Institute of Standards and Technology, Gaithersburg, MD, 2007. [Sch01] F. Schwabl, Quantum Mechanics, Springer, Berlin, 2001. [SW67] S. Seung and E. B. Wilson, Ground state energy of lithium and threeelectron ions by perturbation theory, J. Chem. Phys., 47 (1967), pp. 5343–5352. [SC62] C. S. Sharma and C. A. Coulson, HartreeFock and correlation energies for 1s2s 3S and 1S states of heliumlike ions, Proc. Phys. Soc., 80 (1962), pp. 81–96. [Sla30] J. C. Slater, Atomic shielding constants, Phys. Rev., 36 (1930), pp. 57–64. [SO96] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, Dover, New York, 1996. [TRR00] G. Tanner, K. Richter, and J. M. Rost, The theory of twoelectron atoms: Between ground state and complete fragmentation, Rev. Modern Phys., 72 (2000), pp. 497– 544. [TTST94] H. Tatewaki, K. Toshikatsu, Y. Sakai, and A. J. Thakkar, Numerical HartreeFock energies of lowlying excited states of neutral atoms with Z ≤ 18, J. Chem. Phys., 101 (1994), pp. 4945–4948. [Wil84] S. Wilson, Manybody perturbation theory using a barenucleus reference function: A model study, J. Phys. B, 17 (1984), pp. 505–518. [Wit80] E. Witten, Quarks, atoms, and the 1/N expansion, Phys. Today, 33 (1980), p. 38. [Zhi60] G. M. Zhislin, Discussion of the spectrum of Schr¨odinger operators for systems of many particles, Tr. Mosk. Mat. Obs., 9 (1960), pp. 81–120. 
URI:  http://wrap.warwick.ac.uk/id/eprint/2209 
Actions (login required)
View Item 