
The Library
EQUIVALENCE OF DEGENERATE HOPF BIFURCATIONS
Tools
UNSPECIFIED (1991) EQUIVALENCE OF DEGENERATE HOPF BIFURCATIONS. NONLINEARITY, 4 (3). pp. 685-695. ISSN 0951-7715.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Abstract
We prove the equivalence of degenerate Hopf bifurcations which have all their closed orbits at the bifurcation point. Although these Hopf bifurcations have infinity codimension, they can nevertheless occur generically in dynamical systems under constraint such as in the Hamiltonian systems or in the replicator equations; and so in these contexts a treatment of their equivalence is required. The analysis is rather delicate. The Poincare return maps of the flows give rise to a one-parameter family of one-dimensional maps and we start by determining the conjugacy classes of such families: There are surprisingly only two classes depending upon the finiteness or infiniteness of an integral modulus. The conjugacy class of the return maps is then used to show the equivalence of the Hopf bifurcations.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics Q Science > QC Physics |
||||
Journal or Publication Title: | NONLINEARITY | ||||
Publisher: | IOP PUBLISHING LTD | ||||
ISSN: | 0951-7715 | ||||
Official Date: | August 1991 | ||||
Dates: |
|
||||
Volume: | 4 | ||||
Number: | 3 | ||||
Number of Pages: | 11 | ||||
Page Range: | pp. 685-695 | ||||
Publication Status: | Published |
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |