Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

LOCAL ADAPTIVE GALERKIN BASES FOR LARGE-DIMENSIONAL DYNAMIC-SYSTEMS

Tools
- Tools
+ Tools

UNSPECIFIED (1991) LOCAL ADAPTIVE GALERKIN BASES FOR LARGE-DIMENSIONAL DYNAMIC-SYSTEMS. NONLINEARITY, 4 (2). pp. 159-197. ISSN 0951-7715.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Request Changes to record.

Abstract

We suggest and develop a method for following the dynamics of systems whose long-time behaviour is confined to an attractor or invariant manifold A of potentially large dimension. The idea is to embed A in a set of local coverings. The dynamics of the phase point P on A in each local ball is then approximated by the dynamics of its projections into the local tangent space. Optimal coordinates in each local patch are chosen by a local version of a singular value decomposition (SVD) analysis which picks out the principal axes of inertia of a data set. Because the basis is continually updated, it is natural to call the procedure an adaptive basis method. The advantages of the method are the following. (i) The choice of the local coordinate system in the local tangent space of A is dictated by the dynamics of the system being investigated and can therefore reflect the importance of natural nonlinear structures which occur locally but which could not be used as part of a global basis. (ii) The number of important or active local degrees of freedom is clearly defined by the algorithm and will usually be much lower than the number of coordinates in the local embedding space and certainly considerably fewer than the number which would be required to provide a global embedding of A. (iii) While the local coordinates indicate which nonlinear structures are important there, the transition matrices which glue the coordinate patches together carry information about the global geometry of A. (iv) The method also suggests a useful algorithm for the numerical integration of complicated spatially extended equation systems, by first using crude integration schemes to generate data from which optimal local and sometimes global Galerkin bases are chosen.

Item Type: Journal Article
Subjects: Q Science > QA Mathematics
Q Science > QC Physics
Journal or Publication Title: NONLINEARITY
Publisher: IOP PUBLISHING LTD
ISSN: 0951-7715
Official Date: May 1991
Dates:
DateEvent
May 1991UNSPECIFIED
Volume: 4
Number: 2
Number of Pages: 39
Page Range: pp. 159-197
Publication Status: Published

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us