Directional edge and texture representations for image processing

[thumbnail of WRAP_THESIS_Yao_2007.pdf]
Preview
PDF
WRAP_THESIS_Yao_2007.pdf - Requires a PDF viewer.

Download (40MB)

Request Changes to record.

Abstract

An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations.

Item Type: Thesis [via Doctoral College] (PhD)
Subjects: Q Science > QA Mathematics > QA76 Electronic computers. Computer science. Computer software
Library of Congress Subject Headings (LCSH): Image processing -- Digital techniques, Fourier transformations -- Computer programs, Pattern recognition systems, Pattern perception -- Research, Digital filters (Mathematics), Texture (Art) -- Computer simulation
Official Date: October 2007
Dates:
Date
Event
October 2007
Published
Institution: University of Warwick
Theses Department: Department of Computer Science
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Rajpoot, Nasir M. (Nasir Mahmood)
Sponsors: Overseas Research Student Awards Scheme (ORSAS) ; University of Warwick (UoW)
Format of File: pdf
Extent: 240 leaves : ill., charts
Language: eng
URI: https://wrap.warwick.ac.uk/2395/

Export / Share Citation


Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item