References: |
[1] D.J. Aldous. Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5:1 (1999), 3-48. [2] V.P. Belavkin. A Quantum Nonadapted Ito Formula and Stochastic Analysis in Fock Scale. J. Funct. Anal. 102:2 (1991), 414-447. [3] V. Belavkin, V. Kolokoltsov. On general kinetic equation for many particle systems with interaction, fragmentation and coagulation. Proc. R. Soc. Lond. A 459 (2002), 1-22. [4] P. Bremaud. Point Processes and Queues, Springer, 1981. [5] Mu Fa Chen. From Markov Chains to Non-Equilibrium Particle Systems. World Scientific, 1992. [6] D. Dawson. Critical dynamics and fluctuations for a mean field model of cooperative behavior. J. Stat. Phys. 31 (1983), 29-85. [7] D. Dawson et al. Generalized Mehler Semigroups and Catalytic Branching Processes with Immigration. Potential Anal. 21:1 (2004), 75-97. [8] M. Deaconu, N. Fournier, E. Tanre. Rate of convergence of a stochastic particle system for the Smoluchowski coagulation equation. Methodol. Comput. Appl. Probab. 5:2 (2003), 131-158. [9] A.M. Etheridge. An Introduction to Superprocesses. University Lecture Series, v. 20. AMS Providence, 2000. [10] A. Joffe, M. Metivier. Weak convergence of sequence of semimatingales with applications to multitype branching processes. Adv. Appl. Probab. 18 (1986), 20-65. [11] S.N. Ethier, T.G. Kurtz. Markov Processes. Characterization and convergence. John Wiley Sons 1986. [12] M. Freidlin. Functional Integration and Partial Differential Equations. Princeton Univ. Press, Princeton, NY 1985. [13] E. Gine, J.A. Wellner. Uniform convergence in some limit theorem for multiple particle systems. Stochastic Processes and their Applications 72 (1997), 47-72. [14] O. Kallenberg. Foundations of Modern Probability. Second ed., Springer 2002. [15] A. Kolodko, K. Sabelfeld, W. Wagner. A stochastic Method for Solving Smoluchowski's coagulation equation. Math. Comput. Simulation 49 (1999), 57-79. [16] V. N. Kolokoltsov. On Extension of Molli¯ed Boltzmann and Smoluchovski Equations to Particle Systems with a k-ary Interaction. Russian Journal of Math.Phys. 10:3 (2003), 268-295. [17] V. N. Kolokoltsov. Hydrodynamic Limit of Coagulation-Fragmentation Type Models of k-nary Interacting Particles. Journal of Statistical Physics 115, 5/6 (2004), 1621-1653. [18] V. N. Kolokoltsov. Kinetic equations for the pure jump models of k-nary interacting particle systems. Markov Processes and Related Fields 12 (2006), 95-138. [19] V. N. Kolokoltsov. On the regularity of solutions to the spatially homogeneous Boltzmann equation with polynomially growing collision kernel. Preprint Universidad Autonoma Metropolitana, 04.0402.1.I.003.2005, Mexico. Published in Adv.Stud.Cont.Math. 12:1 (2006), 9-38. [20] V. N. Kolokoltsov. Symmetric Stable Laws and Stable-Like Jump-Diffusions. Proc. London Math. Soc. 3:80 (2000), 725-768. [21] V. N. Kolokoltsov. Nonlinear Markov Semigroups and Interacting Levy Type Processes. Journ. Stat. Physics 126:3 (2007), 585-642. [22] M. Lachowicz, Ph. Laurencot, D. Wrzosek. On the Oort-Hulst-Savronov coagulation equation and its relation to the Smoluchowski equation. SIAM J. Math. Anal. 34 (2003), 1399-1421. [23] P. Lescot, M. Roeckner. Perturbations of Generalized Mehler Semigroups and Applications to Stochastic Heat Equation with Lèvy Noise and Singular Drift. Potential Anal. 20:4 (2004), 317-344. [24] F. Leyvraz. Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Physics Reports 383, 2-3 (2003), 95-212. [25] R.H. Martin. Nonlinear operators and differential equations in Banach spaces. New York, 1976. [26] V.P. Maslov. Perturbation Theory and Asymptotical Methods. Moscow State University Press, 1965 (in Russian). French Transl. Dunod, Paris, 1972. [27] V.P. Maslov. Mèthodes Opèratorielles. Moscow, Nauka 1974 (in Russian). French transl. Moscow, Mir, 1987. [28] V.P. Maslov. Complex Markov Chains and Functional Feynman Integral. Moscow, Nauka, 1976 (in Russian). [29] S. Mèlèard. Convergence of the fluctuations for interacting diffusions with jumps associated with Boltzmann equations. Stochastics Stochastics Rep. 63: 3-4 (1998), 195-225. [30] M. Mètivier.Weak convergence of mesaure-valued processes using Sobolev imbedding techniques. Proceedings 'Stochastic Partial Differential Equations', Trento 1985, Springer LNM 1236, 172-183. [31] I. Mitoma. Tightness of probabilities on C([0; 1]; S0) and D([0; 1]; S0). Ann. Probab. 11:4 (1983), 989{999. [32] I. Mitoma. An 1-dimensional inhomogeneous Langevin's equation. J. Functional Analysis 61 (1985), 342-359. [33] J.M. van Neerven. Continuity and Representation of Gaussian Mehler Semigroups. Potential Anal. 13:3 (2000), 199-211. [34] J. Norris. Cluster Coagulation. Comm. Math. Phys. 209(2000), 407-435. [35] A. Ja. Povzner. The Boltzmann equation in the kinetic theory of gases. Mat. Sbornik 58 (1962), 65-86. [36] R. Rebolledo. Sur l'existence de solution a certain problèmes de semimartingales, C.R. Acad. Sci. Paris, Ser. A-B 290:18 (1980), 843-846. |