
The Library
Ultra-long-period oscillations in EuV filaments near to eruption : two-wavelength correlation and seismology
Tools
Foullon, C. (Claire), Verwichte, E. (Erwin) and Nakariakov, V. M. (Valery M.) (2009) Ultra-long-period oscillations in EuV filaments near to eruption : two-wavelength correlation and seismology. Astrophysical Journal, Vol.700 (No.2). pp. 1658-1665. doi:10.1088/0004-637X/700/2/1658 ISSN 0004-637X.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1088/0004-637X/700/2/1658
Abstract
We investigate whether or not ultra-long-period oscillations in EUV filaments can be related to their eruption. We report new observations of long-period (similar to 10-30 hr) oscillatory motions in an apparently quiescent filament, as it crosses the solar disk in a 12 minute cadence SOHO/Extreme-Ultraviolet Imaging Telescope (EIT) 195 angstrom uninterrupted data set. This data set is chosen to explore characteristics of the filament oscillations depending on its eruptive behavior, which is observed while the filament is still on the disk. The periods are found to increase in a near-stable regime prior to eruption. For the two sequences reported so far, we compare and link the EUV filament oscillations with pulsations in full-disk solar EUV irradiance from SOHO/ CELIAS/SEM 304 parallel to flux measurements. In intervals with stationary periods, we find that the 304 parallel to pulsations and the 195 parallel to filament oscillations have similar periodicities, but are phase-shifted by about a quarter of period. The two-wavelength correlation serves to show that, when the filament is the dominant dynamical feature but can no longer be tracked on the disk, the full-disk irradiance may provide a mean to identify the period increase prior to the filament eruption. We use the periods thus obtained to estimate the height increase of filaments' suspending coronal magnetic field lines, based on a magnetohydrodynamic (MHD) wave interpretation of the oscillations. The results are consistent with changes in prominence heights detected off-limb and thus support the seismological tool employed. Other interpretations connected with thermal overstability or MHD piston effect are possible. These theoretical predictions however do not explain the quarter-period shift between the two EUV-wavelength signals. In any case, the detected variations may provide a powerful diagnostic tool for the forecasting of prominence eruptions.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QB Astronomy | ||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Physics | ||||
Library of Congress Subject Headings (LCSH): | Sun -- Filaments, Solar oscillations, Sun -- Prominences, Ultraviolet radiation | ||||
Journal or Publication Title: | Astrophysical Journal | ||||
Publisher: | Institute of Physics Publishing Ltd. | ||||
ISSN: | 0004-637X | ||||
Official Date: | 1 August 2009 | ||||
Dates: |
|
||||
Volume: | Vol.700 | ||||
Number: | No.2 | ||||
Number of Pages: | 8 | ||||
Page Range: | pp. 1658-1665 | ||||
DOI: | 10.1088/0004-637X/700/2/1658 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Funder: | Science and Technology Facilities Council (Great Britain) (STFC) |
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |